System bonus-malus z mechanizmem korekty składki

Wielkość: px
Rozpocząć pokaz od strony:

Download "System bonus-malus z mechanizmem korekty składki"

Transkrypt

1 System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia Aktuarialne teoria i praktyka Warszawa, września 2014 Ubezpieczeniowy Fundusz Gwarancyjny 1

2 Plan referatu 1. Wprowadzenie 2. System bonus-malus 3. System bonus-malus z korektą składki 4. Wyznaczanie stawek składki i korekty 5. Przykłady obliczeniowe 6. Podsumowanie Ubezpieczeniowy Fundusz Gwarancyjny 2

3 Wprowadzenie Systemy bonus-malus (SBM) powszechnie stosowane narzędzie oceny ryzyka a posteriori Dyskusja na temat wad i zalet SBM sugeruje, że pożądane mogą być jego modyfikacje Rozważymy system, w którym w zależności od liczby zgłoszonych szkód na końcu okresu następuje zwrot lub dopłata składki Ubezpieczeniowy Fundusz Gwarancyjny 3

4 System bonus-malus - formalnie System bonus-malus jest określony przez: 1) Zbiór klas taryfowych L = {0,,s} 2) Wektor stawek składki r = (r 0,,r s ) 3) Klasę startową l 0 (najczęściej taką, że r l 0 = 1) 4) Reguły przejścia reprezentowane za pomocą macierzy T(k) takich że t ij (k) = 1 jeśli po zgłoszeniu k szkód następuje zmiana klasy taryfowej z klasy i na klasę j i 0 w przeciwnym przypadku. Ubezpieczeniowy Fundusz Gwarancyjny 4

5 Proces zgłaszania szkód (1) 1) Portfel złożony z M umów ubezpieczenia 2) i-ty ubezpieczony opisany jest przez ciągi 3) Ciągi N i i X i są niezależne dla każdego i. Pary (N i,x i ) oraz (N j,x j ) są niezależne dla i j 4) Elementy ciągu X i mają ten sam rozkład o wartości oczekiwanej µ 5) Łączna wartość szkód zgłoszonych w okresie (t-1,t] jest równa Ubezpieczeniowy Fundusz Gwarancyjny 5

6 Proces zgłaszania szkód (2) 6) Zmienne losowe Q i są niezależne i mają taki sam rozkład o wartości oczekiwanej 1 7) Przy ustalonym Q i = q i zmienne N it są niezależne i mają rozkład Poiss(l it q i ). Przy tych założeniach zatem parametr q można interpretować jako względną skłonność do ryzyka. Przy założonym procesie zgłaszania szkód klasy taryfowe, w których znajduje się ubezpieczony w kolejnych okresach tworzą warunkowy łańcuch Markowa (L 0,L 1,L 2, ) Ubezpieczeniowy Fundusz Gwarancyjny 6

7 System bonus-malus z korektą składki w rozważanej modyfikacji SBM składka płacona jest w dwóch ratach: na początku okresu - w wysokości zależnej od klasy taryfowej na końcu okresu - w wysokości zależnej od klasy taryfowej oraz liczby zgłoszonych szkód. stawka składki całkowitej płacona przez ubezpieczonego wybranego losowo z populacji jest więc równa: cel: wyznaczyć funkcje p i b tak, aby system spełniał określone warunki optymalności. przyjęte podejście: przybliżanie parametru ryzyka Q za pomocą stawki składki P t+1 Ubezpieczeniowy Fundusz Gwarancyjny 7

8 Wyznaczanie stawek składki: metoda I Interesuje nas minimalizacja wyrażenia Rozwiązanie powyższego zadana dane jest wzorami Ubezpieczeniowy Fundusz Gwarancyjny 8

9 Wyznaczanie stawek składki: metoda I Własności otrzymanych współczynników: globalna równowaga finansowa: lokalna równowaga finansowa: lepsza ocena ryzyka: sprawiedliwe traktowanie ubezpieczonych: dla każdego l = 0,,s. Ubezpieczeniowy Fundusz Gwarancyjny 9

10 Wyznaczanie stawek składki: metoda I Uwaga: ostatnia własność jest spełniona dla modelu, w którym liczba szkód rośnie wraz z parametrem ryzyka. Formalnie: warunkiem dostatecznym jest relacja dla θ θ. Relacja LR to porządek wyznaczony przez iloraz wiarygodności (ang. likelihood ratio order): W szczególności, powyższy warunek jest spełniony dla poissonowskiego modelu wiarygodności Ubezpieczeniowy Fundusz Gwarancyjny 10

11 Wyznaczanie stawek składki: metoda II Zastosowanie metody I może być skomplikowane obliczeniowo, a także prowadzić do taryfy mało przejrzystej dla klienta Alternatywa: liniowa taryfa składki i korekty Innymi słowy, szukamy wartości parametrów minimalizujących wyrażenie gdzie Ubezpieczeniowy Fundusz Gwarancyjny 11

12 Wyznaczanie stawek składki: metoda II Można pokazać, że rozwiązanie tak postawionego zadania istnieje i jest wyznaczone jednoznacznie Ubezpieczeniowy Fundusz Gwarancyjny 12

13 Wyznaczanie stawek składki: metoda II Własności omawianej metody: Przejrzysta taryfa i stała dopłata za każdą szkodę Wyznaczenie współczynników wymaga obliczenia momentów pierwszego i drugiego rzędu Możliwość innego podziału całkowitej składki, np. obniżenie składki początkowej w zamian za mniejszy zwrot na końcu okresu Dla ubezpieczeń typu autocasco (ang. first-party) system jest podobny do postulowanego w literaturze systemu z udziałem własnym określonym jako procent składki bazowej Ubezpieczeniowy Fundusz Gwarancyjny 13

14 Wyznaczanie stawek składki: metoda III Poprzednie metody zakładały, że w przypadku braku szkód następuje zwrot składki, a zgłaszanie szkód jest karane dopłatą składki Z marketingowego punktu widzenia korzystna może być budowa systemu, w którym możliwy jest tylko zwrot składki Formalnie, szukamy optymalnych stawek składki postaci Interesuje nas zatem minimalizacja wyrażenia Ubezpieczeniowy Fundusz Gwarancyjny 14

15 Wyznaczanie stawek składki: metoda III Można pokazać, że omawiany problem ma jednoznaczne rozwiązane dane wzorami Ubezpieczeniowy Fundusz Gwarancyjny 15

16 Wyznaczanie stawek składki: metoda III Własności otrzymanych współczynników: Przy założeniach analogicznych do pierwszej metody dla każdego l=0,,s zachodzi Koszty zwrotu składki przenoszone są na szkodowych kierowców, zatem na początku okresu wszyscy ubezpieczeni płacą składkę wyższą w stosunku do standardowego systemu: Własność globalnej i lokalnej równowagi finansowej Wysokość zwrotu składki jest rosnącą funkcją prawdopodobieństwa bezszkodowego roku. Ubezpieczeniowy Fundusz Gwarancyjny 16

17 Przykład liczbowy założenia przyjmujemy poissonowski model wiarygodności parametr Q ma rozkład Gamma(a,a) przyjmujemy a = 1 oraz l = 0.1 rozważamy następujący system bonus-malus (-1/+2): liczba szkód klasa Ubezpieczeniowy Fundusz Gwarancyjny 17

18 Przykład liczbowy metoda I stawka składki 600% 500% 400% 300% składka początkowa 0 szkód 1 szkoda 2 szkody 200% 3 i więcej szkód 100% 0% klasa taryfowa Ubezpieczeniowy Fundusz Gwarancyjny 18

19 Przykład liczbowy metoda II stawka składki 500% 450% 400% 350% 300% 250% 200% 150% składka początkowa 0 szkód 1 szkoda 2 szkody 3 szkody 100% 50% 0% klasa taryfowa Ubezpieczeniowy Fundusz Gwarancyjny 19

20 Przykład liczbowy metoda III stawka składki 400% 350% 300% 250% 200% składka początkowa brak szkód 150% 100% 50% klasa taryfowa Ubezpieczeniowy Fundusz Gwarancyjny 20

21 Przykład liczbowy: porównanie metod stawka składki 400% 350% 300% 250% 200% 150% składka początkowa (metoda I) brak szkód (metoda I) składka początkowa (metoda II) brak szkód (metoda II) składka początkowa (metoda III) brak szkód (metoda III) 100% 50% klasa taryfowa Ubezpieczeniowy Fundusz Gwarancyjny 21

22 Podsumowanie system bonus-malus z korektą składki alternatywa dla systemu UBI i tradycyjnego SBM wskazane zostały sposoby konstrukcji takiego systemu na podstawie kryteriów statystycznych parametry systemu uzyskane z wykorzystaniem przedstawionych metod mają szereg własności pożądanych z aktuarialnego i marketingowego punktu widzenia Ubezpieczeniowy Fundusz Gwarancyjny 22

23 Podsumowanie Korzyści dla zakładu ubezpieczeń: wyjście naprzeciw oczekiwaniom klientów przyciąganie dobrych kierowców i odstraszanie kierowców szkodowych lepsza ocena ryzyka bez ingerencji w prywatność klienta Korzyści dla klienta: wpływ na płaconą składkę klient dostaje produkt, który może traktować jak umowę z udziałem w zyskach z ubezpieczenia Korzyści społeczne: wzmocnienie funkcji prewencyjnej ubezpieczeń Ubezpieczeniowy Fundusz Gwarancyjny 23

24 Literatura Denuit M., Maréchal X., Pitrebois S., Walhin J. (2007), Actuarial Modelling of Claim Counts: Risk Classification, Credibility and Bonus-Malus Systems Lemaire J. (1995), Bonus-Malus Systems in Automobile Insurance Norberg R. (1976), A Credibility Theory for Automobile Bonus Systems Ubezpieczeniowy Fundusz Gwarancyjny 24

25 Dziękujemy za uwagę! mgr Kamil Gala dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny 25

Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną

Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną Anna Szymańska Katedra Metod Statystycznych Uniwersytet Łódzki Taryfikacja w ubezpieczeniach

Bardziej szczegółowo

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Ubezpieczeniowy Fundusz Gwarancyjny mgr Karolina Pasternak-Winiarska mgr Kamil Gala Zagadnienia

Bardziej szczegółowo

System bonus-malus z korektą składki

System bonus-malus z korektą składki Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny Wojciech Bijak Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Ubezpieczeniowy Fundusz Gwarancyjny System bonus-malus z korektą składki Streszczenie

Bardziej szczegółowo

Model równowagi na rynku prywatnych ubezpieczeń zdrowotnych

Model równowagi na rynku prywatnych ubezpieczeń zdrowotnych Model równowagi na rynku prywatnych ubezpieczeń zdrowotnych Agata de Sas Stupnicka Zagadnienia aktuarialne teoria i praktyka Wrocław, 6-8 września 2010 Plan prezentacji Wprowadzenie ubezpieczenia zdrowotne,

Bardziej szczegółowo

Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną

Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną Anna Szymańska Wydział Ekonomiczno-Socjologiczny Uniwersytet Łódzki Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną Streszczenie Towarzystwa ubezpieczeniowe konkurują

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

DOI: /sps JEL Classification: G22 Insurance; Insurance Companies; Actuarial Studies

DOI: /sps JEL Classification: G22 Insurance; Insurance Companies; Actuarial Studies ZALEŻNOŚĆ STOCHASTYCZNA W AKTUARIALNYCH MODELACH TARYFIKACJI A POSTERIOR ŚLĄSKI Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny Wojciech Bijak Szkoła Główna Handlowa w Warszawie, Ubezpieczeniowy Fundusz

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości

Bardziej szczegółowo

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część III

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część III Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 3 maja 200 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 00 minut Komisja Nadzoru

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. Niech łączna wartość szkód: Ma złożony rozkład Poissona. Momenty rozkładu wartości poedyncze szkody wynoszą:, [ ]. Wiemy także, że momenty nadwyżki wartości poedyncze szkody ponad udział własny

Bardziej szczegółowo

Ubezpieczenia majątkowe

Ubezpieczenia majątkowe Funkcje użyteczności a składki Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk Ekonomicznych i Społecznych 2016/2017 Funkcja użyteczności Niech ω wielkość majątku decydenta wyrażona w j.p., u (ω) stopień

Bardziej szczegółowo

UBEZPIECZENIE KALKULACJA SKŁADEK

UBEZPIECZENIE KALKULACJA SKŁADEK Ustalanie składek oraz świadczeń i odszkodowań. Składki, świadczenia i odszkodowania stanowią pozycje główne strumieni finansowych uruchamianych przez działalność ubezpieczeniową, główne pozycje rachunków

Bardziej szczegółowo

Fuzja sygnałów i filtry bayesowskie

Fuzja sygnałów i filtry bayesowskie Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna

Bardziej szczegółowo

Zarządzanie ryzykiem finansowym

Zarządzanie ryzykiem finansowym Zarządzanie projektami Wrocław, 30 października 2013 Spis treści Motywacja Rachunek prawdopodobieństwa Koherentne miary ryzyka Przykłady zastosowań Podsumowanie Po co analizować ryzyko na rynkach finansowych?

Bardziej szczegółowo

LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Komisja

Bardziej szczegółowo

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego Łukasz Kończyk WMS AGH Plan prezentacji Model regresji liniowej Uogólniony model liniowy (GLM) Ryzyko ubezpieczeniowe Przykład

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

1. Wstęp SYSTEMY BONUS-MALUS Z WIELOLETNIĄ HISTORIĄ SZKODOWĄ. Wojciech Bijak. Piotr Dziel

1. Wstęp SYSTEMY BONUS-MALUS Z WIELOLETNIĄ HISTORIĄ SZKODOWĄ. Wojciech Bijak. Piotr Dziel SYSTEMY BONUS-MALUS Z WIELOLETNIĄ HISTORIĄ SZKODOWĄ Wojciech Bijak Szkoła Główna Handlowa w Warszawie Piotr Dziel Ubezpieczeniowy Fundusz Gwarancyjny e-mails: wobi@sgh.waw.pl; pdziel@ufg.pl ISSN 1644-6739

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o

Bardziej szczegółowo

LX Egzamin dla Aktuariuszy z 28 maja 2012 r.

LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa, 28

Bardziej szczegółowo

Zagadnienie najkrótszej drogi w sieci

Zagadnienie najkrótszej drogi w sieci L L Zagadnienie najkrótszej drogi w sieci 1 Rozważmy sieć, gdzie graf jest grafem skierowanym (digrafem) a jest funkcją określoną na zbiorze łuków. Wartość tej funkcji na łuku!"$#%'&, którą oznaczać będziemy

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Łączenie i agregacja systemów bonus-malus w ubezpieczeniach komunikacyjnych

Łączenie i agregacja systemów bonus-malus w ubezpieczeniach komunikacyjnych Wojciech Bijak Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Ubezpieczeniowy Fundusz Gwarancyjny Łączenie i agregacja systemów bonus-malus w ubezpieczeniach komunikacyjnych Streszczenie

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa dwuwymiarowa i korelacja

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa dwuwymiarowa i korelacja WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Zmienna losowa dwuwymiarowa i korelacja Zmienna losowa dwuwymiarowa Definiujemy ją tak samo, jak zmienną losową jednowymiarową, z tym że poszczególnym zdarzeniom elementarnym

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:...klucz odpowiedzi... Czas egzaminu:

Bardziej szczegółowo

Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky

Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky ego Marek Kałuszka Michał Krzeszowiec Ogólnopolska Konferencja Naukowa Zagadnienia

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

TARYFA SKŁADEK ZA UBEZPIECZENIE AUTOCASCO STANDARD (ACS)

TARYFA SKŁADEK ZA UBEZPIECZENIE AUTOCASCO STANDARD (ACS) TARYFA SKŁADEK ZA UBEZPIECZENIE AUTOCASCO STANDARD (ACS) 1 1. Niniejsza taryfa składek ma zastosowanie do umów ubezpieczenia zawieranych na podstawie ogólnych warunków ubezpieczenia Autocasco Standard

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza 1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza x µ x = 06e. dożyje wieku największej śmiertelności (tzn. takiego wieku, w którym

Bardziej szczegółowo

MODELOWANIE STRUKTURY PROBABILISTYCZNEJ UBEZPIECZEŃ ŻYCIOWYCH Z OPCJĄ ADBS JOANNA DĘBICKA 1, BEATA ZMYŚLONA 2

MODELOWANIE STRUKTURY PROBABILISTYCZNEJ UBEZPIECZEŃ ŻYCIOWYCH Z OPCJĄ ADBS JOANNA DĘBICKA 1, BEATA ZMYŚLONA 2 JOANNA DĘBICKA 1, BEATA ZMYŚLONA 2 MODELOWANIE STRUKTURY PROBABILISTYCZNEJ UBEZPIECZEŃ ŻYCIOWYCH Z OPCJĄ ADBS X OGÓLNOPOLSKA KONFERENCJA AKTUARIALNA ZAGADNIENIA AKTUARIALNE TEORIA I PRAKTYKA WARSZAWA,

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo

Ubezpieczeniowy Fundusz Gwarancyjny. Jakość i standaryzacja danych a efektywność procesów realizowanych przez UFG

Ubezpieczeniowy Fundusz Gwarancyjny. Jakość i standaryzacja danych a efektywność procesów realizowanych przez UFG Ubezpieczeniowy Fundusz Gwarancyjny Jakość i standaryzacja danych a efektywność procesów realizowanych przez UFG Przemysław Czapliński Wojciech Bijak Krzysztof Hrycko Holiday Inn, Warszawa 25 marca 2009

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

1 Funkcja użyteczności

1 Funkcja użyteczności 1 Funkcja użyteczności Funkcja użyteczności to funkcja, której wartościami są wartości użyteczności (satysfakcji, komfortu psychicznego). Można mówić o użyteczności różnych zjawisk. Użyteczność pieniądza

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 5. Przybliżone metody rozwiązywania równań 5.1 Lokalizacja pierwiastków 5.2 Metoda bisekcji 5.3 Metoda iteracji 5.4 Metoda stycznych (Newtona) 5.5 Metoda

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Mikroekonometria 4. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 4. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 4 Mikołaj Czajkowski Wiktor Budziński Regresja kwantylowa W standardowej Metodzie Najmniejszych Kwadratów modelujemy warunkową średnią zmiennej objaśnianej: E( yi Xi) = μ ( Xi) Pokazaliśmy,

Bardziej szczegółowo

Regulamin Oferty promocyjnej Jeździsz 3 lata bez szkody, a za polisę płacisz jakbyś miał 60% zniżki. Postanowienia ogólne

Regulamin Oferty promocyjnej Jeździsz 3 lata bez szkody, a za polisę płacisz jakbyś miał 60% zniżki. Postanowienia ogólne Regulamin Oferty promocyjnej Jeździsz 3 lata bez szkody, a za polisę płacisz jakbyś miał 60% zniżki 1 Postanowienia ogólne 1. Niniejszy Regulamin określa zasady oferty promocyjnej Jeździsz 3 lata bez szkody,

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Automatyczny system wykrywania nieubezpieczonych posiadaczy pojazdów mechanicznych wspierający kontrole prowadzone przez UFG

Automatyczny system wykrywania nieubezpieczonych posiadaczy pojazdów mechanicznych wspierający kontrole prowadzone przez UFG Automatyczny system wykrywania nieubezpieczonych posiadaczy pojazdów mechanicznych wspierający kontrole prowadzone przez UFG XX Forum Teleinformatyki 25.09.2014, Warszawa dr hab. Wojciech Bijak, prof.

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Predykcja szkód z uwzględnieniem zależności w ubezpieczeniach AC i OC komunikacyjnym

Predykcja szkód z uwzględnieniem zależności w ubezpieczeniach AC i OC komunikacyjnym Daniel Sobiecki 1 Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Predykcja szkód z uwzględnieniem zależności w ubezpieczeniach AC i OC komunikacyjnym Streszczenie Przedmiotem opracowania

Bardziej szczegółowo

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r.

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Mikroekonomia II: Kolokwium, grupa II

Mikroekonomia II: Kolokwium, grupa II Mikroekonomia II: Kolokwium, grupa II Prowadząca: Martyna Kobus 2012-06-11 Piszemy 90 minut. Sprawdzian jest za 70 punktów. Jest 10 pytań testowych, każde za 2 punkty (łącznie 20 punktów za test) i 3 zadania,

Bardziej szczegółowo

Nowy wymiar jakości danych w ubezpieczeniach. Wojciech Partyka

Nowy wymiar jakości danych w ubezpieczeniach. Wojciech Partyka Nowy wymiar jakości danych w ubezpieczeniach Wojciech Partyka Znaczenie jakości danych Wymiana danych z podmiotami zewnętrznymi Integracja systemów informatycznych Zapewnienie możliwości uczestniczenia

Bardziej szczegółowo

Karolina Napierała Wojciech Otto

Karolina Napierała Wojciech Otto Kalkulaca rezerw w ubezieczeniach maątkowych w oarciu o teorię zaufania, z równoczesnym r wykorzystaniem danych o odszkodowaniach wyłaconych i rezerwie liczone metodą indywidualną Karolina Naierała Wociech

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji

Bardziej szczegółowo

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy

Bardziej szczegółowo

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

LIX Egzamin dla Aktuariuszy z 12 marca 2012 r.

LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

1. Ubezpieczenia życiowe

1. Ubezpieczenia życiowe 1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Algorytm simplex i dualność

Algorytm simplex i dualność Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

SPOTKANIE 11: Reinforcement learning

SPOTKANIE 11: Reinforcement learning Wrocław University of Technology SPOTKANIE 11: Reinforcement learning Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.edu.pl 19.01.2016 Uczenie z nadzorem (ang. supervised learning)

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje

Bardziej szczegółowo

Rola i funkcja nowoczesnej firmy ubezpieczeniowej w zapewnieniu bezpieczeństwa w przemyśle

Rola i funkcja nowoczesnej firmy ubezpieczeniowej w zapewnieniu bezpieczeństwa w przemyśle Rola i funkcja nowoczesnej firmy ubezpieczeniowej w zapewnieniu bezpieczeństwa w przemyśle Dr inż. Dariusz Gołębiewski Kierownik Zespołu Oceny Ryzyka PZU SA XII Konferencja Naukowo-Techniczna Bezpieczeństwo

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2016 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2016 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Dana jest następująca macierz wypłat gry o sumie zero: Podaj rozwiązanie tej gry. M = 3 2 2 2 3 4 5 2 3 3 2 2 4 2 0 3 3 3 Kredyt ma być spłacany na początku roku

Bardziej szczegółowo

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak Inne kryteria tworzenia portfela Analiza i Zarządzanie Portfelem cz. 3 Dr Katarzyna Kuziak. Minimalizacja ryzyka przy zadanym dochodzie Portfel efektywny w rozumieniu Markowitza odchylenie standardowe

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

Analiza statystyczna trudności tekstu

Analiza statystyczna trudności tekstu Analiza statystyczna trudności tekstu Łukasz Dębowski ldebowsk@ipipan.waw.pl Problem badawczy Chcielibyśmy mieć wzór matematyczny,...... który dla dowolnego tekstu...... na podstawie pewnych statystyk......

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

4. Ubezpieczenie Życiowe

4. Ubezpieczenie Życiowe 4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Modele procesów masowej obsługi

Modele procesów masowej obsługi Modele procesów masowej obsługi Musiał Kamil Motek Jakub Osowski Michał Inżynieria Bezpieczeństwa Rok II Wstęp Teoria masowej obsługi to samodzielna dyscyplina, której celem jest dostarczenie możliwie

Bardziej szczegółowo

Psychometria PLAN NAJBLIŻSZYCH WYKŁADÓW. Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. TEN SLAJD JUŻ ZNAMY

Psychometria PLAN NAJBLIŻSZYCH WYKŁADÓW. Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. TEN SLAJD JUŻ ZNAMY definicja rzetelności błąd pomiaru: systematyczny i losowy Psychometria Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. rozkład X + błąd losowy rozkład X rozkład X + błąd systematyczny

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

Ubezpieczenie Gminy Miasta Gdańska. Marek Komorowski

Ubezpieczenie Gminy Miasta Gdańska. Marek Komorowski Ubezpieczenie Gminy Miasta Gdańska Marek Komorowski Ubezpieczenie Gminy Miasta Gdańska City Polisa Zakresy ubezpieczeń: majątkowe komunikacyjne odpowiedzialność cywilna 2 Ubezpieczenie Gminy Miasta Gdańska

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych - wykład 2 i 3

Wprowadzenie do badań operacyjnych - wykład 2 i 3 Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j

Bardziej szczegółowo