Elektrostatyka. mgr inż. Grzegorz Strzeszewski. 20 kwietnia 2013 r. ZespółSzkółnr2wWyszkowie. mgr inż. Grzegorz Strzeszewski Elektrostatyka

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elektrostatyka. mgr inż. Grzegorz Strzeszewski. 20 kwietnia 2013 r. ZespółSzkółnr2wWyszkowie. mgr inż. Grzegorz Strzeszewski Elektrostatyka"

Transkrypt

1 Elektrostatyka mgr inż. Grzegorz Strzeszewski ZespółSzkółnr2wWyszkowie 20 kwietnia 2013 r.

2 Nauka jest dla tych, którzy chcą być mądrzejsi, którzy chcą wykorzystywać swój umysł do poznawania otaczającego nas świata. Jeżeliktośchcewżyciupozostaćciemnyigłupi,tonatakiego nie ma siły. Musimy mu pozwolić takim zostać.

3 Pole elektryczne Pole elektryczne jest to stan przestrzeni, gdzie na umieszczone w niej ładunki elektryczne działają siły elektrostatyczne. Ładunek elektryczny w przyrodzie występują dwa rodzaje ładunków, które umownie oznaczamy jako dodatnie i ujemne. Jednostką ładunku elektrycznego jest 1 Culomb, 1 C. Ładunek elektronu: e = 1, C. Prawo zachowania ładunku: W układzie odosobnionym, suma algebraiczna zgromadzonych tam ładunków nie zmienia się.

4 Prawo zachowania ładunku Prawo zachowania ładunku(postać matematyczna) dla n ładunków będących w odosobnieniu: i=n Q = Q 1 +Q 2 +Q 3 + +Q n = Q i = const. Z prawa zachowania ładunku wynika, że ładunku elektrycznego nie można stworzyć ani zniszczyć. Można jedynie spowodować przejście pewnej liczby ładunków z jednego ciała do drugiego. Podczas elektryzacji przy powstawaniu ładunku jednego znaku musi powstać ta sama ilość ładunku przeciwnego znaku. Elektryzacja jest procesem przekazywania ładunków elektrycznych z jednego ciała do drugiego. i=1

5 Sposoby elektryzacji przez pocieranie, drogą indukcji(influencji), przez zetknięcie ciała z ciałem mającycm nadmiar ładunków danego rodzaju. Równowaga ładunków elektrycznych w otaczającym nas świecie jest podstawowym prawem natury. Ładunek elektronu i równy mu co do wartości ładunek protonu są najmniejszymi porcjami ładunku występującymi ( w przyrodzie. ) Wprawdzie kwarki mają ładunki ułamkowe 1 3 e, 2 3 e alesąone uwięzione w nukleonach jąder atomów.

6 Gęstość ładunków W elektrostatyce ładunki elektryczne traktujemy jako nieskończenie podzielne i nieruchome. Rozróżniamy trzy rodzaje gęstości ładunku: objętościowa ρ, gdy ładunki rozmieszczone są w obszarze o objętości V, powierzchniowa σ, gdy ładunki rozłożone są na powierzchni S, liniowaτ,gdyładunkirozłożonesąnaprzewodzieodługości l. Odpowiednie gęstości definiujemy jako: ρ = Q V [ C m 3 ], σ = Q S [ C m 2 ], τ = Q l [ C m].

7 Pole elektrostatyczne Dookoła ciała naelektryzowanego powstaje pole elektryczne, które działa na inne umieszczone w pobliżu ładunki. W celu wyobrażenia sobie pola elektrycznego wygodnie jest posłużyć się obrazem graficznym tego pola. + Rysunek: Obraz pola elektrostatycznego, utworzony przez odosobniony dodatni ładunek punktowy.

8 Pole elektrostatyczne c. d. _ Rysunek: Obraz pola elektrostatycznego, utworzony przez odosobniony ujemny ładunek punktowy.

9 Obrazy graficzne pola Q _ 1 + Q 2 Rysunek: Linie pola elektrostatycznego dwóch ładunków różnoimiennych. Układdwóchładunkówróżnoimiennych,takichże Q 1 = Q 2 nazywamy dipolem elektrycznym.

10 Obrazy graficzne pola c. d. + Q 1 =Q 2 + Rysunek: Linie sił pola elektrostatycznego dwóch ładunków jednoimiennych(dodatnich).

11 Pole równomierne +Q -Q Rysunek: Pole równomierne powstałe między dwoma równoległymi płytkami metalowymi.

12 Natężenie pola elektrycznego Natężeniepolaelektrycznego Ewdowolnympunkcie,wktórym istnieje, określamy jako stosunek siły działającej na umieszczony w tym punkcie ładunek próbny do wartości tego ładunku. E = F q. Natężenie pola elektrycznego jest wielkością wektorową. Zwrot wektora Ejestzgodnyzezwrotemwektorasiły F. Ładunekpróbny q,toładunekdodatninatylemały,żejegopole własne jest do pominięcia.

13 Natężenie pola elektrycznego Jednostką natężenia pola elektrycznego jest: V m. Kierunek natężenia pola elektrycznego jest zgodny z kierunkiem siły działającej na dodatni ładunek q. Natężenie pola elektrycznego, pochodzące od kilku ładunków jest sumą wektorową natężeń od poszczególnych ładunków: E = E 1 + E E n = i=n i=1 E i.

14 Prawo Coulomba Jeżeli w polu elektrostatycznym wytworzonym przez ładunek punktowy Q 1,umieścimydrugiładunekpunktowy Q 2,tobędziena niego działać siła określona wzorem: F = Q 1Q 2 4πεr 2. Kierunek działania siły leży na prostej łączącej te ładunki, a jej zwrot zależy od znaków ładunków: jednoimienne odpychają się a różnoimienne przyciągają. r odległość między ładunkami, mierzona w metrach. +Q F -F _ + -Q r

15 Przenikalność elektryczna ε ε =ε 0 ε r ε przenikalnośćelektrycznabezwzględna,mierzonajestw F m, ε 0 przenikalnośćelektrycznapróżni, ε 0 =8, F m, ε r przenikalnośćelektrycznaśrodowiska,wktórymznajdująsię ładunki(przenikalność względna). Przenikalnośćelektrycznawzględnaε r jestwielkością bezwymiarową. Określa ona ile razy przenikalność danego środowiska jest większa od przenikalności elektrycznej próżni.

16 ε r niektórychdielektryków Materiał ε r Materiał ε r próżnia 1 parafina 2,0 2,5 powietrze 1, 0006 bakelit 3, 5 6, 0 papierizolac. 1,8 5,8 porcelana 4,5 6,0 olejizolac. 2,2 2,5 szkło 3,0 8,0 guma 2,5 2,8 mika 4,0 6,0 ebonit 2,0 3,5 marmur 6,0 8,0 wodadestyl. 80 rutylon TiO 2 100

17 Potencjał i napięcie elektryczne Napięciem elektrycznym między dwoma punktami A i B nazywamy stosunek pracy W, którą wykonują siły pola elektrycznego podczas przemieszczania ładunku próbnego q z punktu A do B. U AB = W q = E l. Potencjałemelektrycznym V A wpunkcie Apolaelektrycznego nazywamy stosunek pracy wykonanej podczas przemieszczania ładunku próbnego z punktu A do nieskończoności, do ładunku próbnego q. V A = W AB, B. q

18 Powierzchnie ekwipotencjalne Powierzchnie ekwipotencjalne są to miejsca geometryczne punktów równego potencjału. powierzchnie ekwipotencjalne _ V 1 =const V 2 =const V 3 =const

19 Indukcja elektryczna Wektor indukcji elektrycznej określamy następująco: D =ε 0 E + P, gdzie: P wektor polaryzacji elektrycznej, określony jako: P =κ E. κ =ε 0 κ r, κ podatność elektryczna(bezwzględna). ε r =1+κ r, D =ε E.

20 Strumień indukcji elektrycznej Strumień indukcji elektrycznej Ψ zdefiniowany jest jako iloczyn indukcjielektrycznej Dipowierzchni S,prostopadłejdowektora D. Powierzchnia S powinna być tak dobrana, aby można było przyjąć, że wartość indukcji jest stała na całej powierzchni S. Ψ = DS. Jednostkąindukcjielektrycznej D (D)jestkulombnametr kwadratowy C m 2. Jednostką strumienia indukcji elektrycznej Ψ(krócej: strumienia elektrycznego) jest kulomb C.

21 Twierdzenie Gaussa Strumień indukcji elektrycznej Ψ, przenikający powierzchnię zamkniętą S 0,równyjestsumieładunkówznajdującychsięw obszarze ograniczonym tą powierzhnią: i=n Ψ = Q i, i=1 n ilośćładunkówwewnątrzpowierzchni S 0. 1 Q Q2 S 0 Q n

22 Pole elektryczne kuli Kula odosobniona, naładowana ładunkiem Q. Q R r Natężenie pola elektrycznego w odległości r od środka kuli ma wartość: E = Q 4πεr 2. Wektornatężeniapola Ejestrównoległydopromienia rajego zwrot zależy od znaku ładunku Q.

23 Pole wokół przewodu Pole elektryczne wokół odosobnionego przewodu prostoliniowego o gęstości liniowej ładunku τ. r Wartość natężenia pola elektrycznego jest stała wzdłuż dowolnego okręgu wokół przewodu i równa: E = τ 2πεr. Natężenie pola elektrycznego jest odwrotnie proporcjonalne do odległości od przewodu.

24 Pojemność elektryczna Kondensator elektryczny jest układem dwóch przewodników (okładzin) rozdzielonych środowiskiem izolacyjnym(dielektrykiem). Pojemność elektryczna kondensatora jest wielkością charakteryzującą jego zdolność do gromadzenia ładunku elektrycznego. Doświadczalnie stwierdzono, że ładunek zgromadzony na okładkach kondensatora jest wprost proporcjonalny do napięcia przyłożonego do kondensatora U i jego pojemności C: Q = CU. Pojemność kondensatora mierzona jest w faradach(f). Farad jest pojemnością dużą. W praktyce posługujemy się jednostkami mniejszymi:µf, nf, pf.

25 Praktyczne jednostki pojemności elektrycznej Pojemność elektryczna kondensatorów mierzona jest w faradach(f). 1 F = 1 C 1 V. Farad jest pojemnością dużą a więc niepraktyczną w technicznych zastosowaniach. W praktyce, do pomiaru pojemności kondensatorów posługujemy się jednostkami mniejszymi. Jednostką milion razy mniejszą do farada jest mikrofarad(1 µf) 1µF =10 6 F =0, F. Nanofarad(1 nf) jest jednostką tysiąc razy mniejszą od mikrofarada 1 nf =10 3 µf =10 9 F =0, F. Pikofarad(1 pf) jest jednostką tysiąc razy mniejszą od nanofarada 1 pf =10 3 nf =10 6 µf =10 12 F =0, F.

26 Kondensator płaski ε d U Pojemność kondensatora płaskiego: C = εs d. Pojemność kondensatora jest tym większa im większa jest powierzchnia okładzin i im mniejsza odległość między nimi. Pojemność kondensatora zależy także od własności dielektryka umieszczonego między jego okładzinami.

27 Rodzaje kondensatorów papierowe okładziny wykonuje się z dwóch pasków folii aluminiowej, przedzielonych papierem nasyconym parafiną lub olejem, mikowe buduje się je jako płaskie, niezwjalne, ceramiczne dielektrykiem jest zazwyczaj dwutlenek tytanu lub jego związki, elektrolityczne stosowane tylko w obwodach prądu stałego, polistyrenowe i poliestrowe wykonywane są z metalizowanej folii poliestrowej, powietrzne, zazwyczaj o regulowanej pojemności.

28 _ Szeregowe łączenie kondensatorów C1 C 2 C3 -Q +Q -Q +Q -Q +Q + U 1 U 2 U 3 U Pojemność zastępcza: C z = C 1 C 2 C 3 C 1 C 2 +C 2 C 3 +C 1 C 3, lub 1 C z = 1 C C C 3.

29 Łączenie szeregowe pojemności Pojemność zastępcza n kondensatorów połączonych szeregowo: 1 = i=n 1 =. C z C 1 C 2 C n C i=1 i Inna postać wzoru na pojemność zastępczą n kondensatorów połączonych szeregowo: C z = C 1 C 2 C n C 2 C 3 C n +C 1 C 3 C n + +C 1 C 2 C n 1. Stosując skróconą notację matematyczną dla sumy i iloczynu wielu składników(n liczba kondensatorów połączonych szeregowo), ostatni wzór można przepisać w postaci bardziej zwięzłej. Otrzymamy wtedy tak zwany wzór Strzeszewskiego.

30 Wzór Strzeszewskiego Wzór na pojemność zastępczą n kondensatorów połączonych szeregowo zapisany w zwięzłej postaci jako wzór Strzeszewskiego: C z = gdzie: i=n C i = C 1 C 2 C n, i=1 j=n C j = C 2 C 3 C n +C }{{} 1 C 3 C n + +C }{{} 1 C 2 C n 1. }{{} j=1 j k brak C 1 brak C 2 brak C n

31 Szeregowe łączenie kondensatorów c. d. Podstawiając we wzorze Strzeszewskiego kolejne liczby naturalne w miejsce n, otrzymujemy: n =2 C z = C 1 C 2 C 1 +C 2, n =3 n =4 itd. C z = C z = C 1 C 2 C 3 C 1 C 2 +C 2 C 3 +C 1 C 3, C 1 C 2 C 3 C 4 C 1 C 2 C 3 +C 1 C 2 C 4 +C 1 C 3 C 4 +C 2 C 3 C 4,

32 Przykład Obliczyć pojemność zastępczą układu pięciu kondensatorów połączonych szeregowo: C1 C2 C3 C4 C5 Dane: C 1 = 2 F; C 2 = 4 F; C 3 = 3 F; C 4 = 5 F; C 5 = 6 F. Rozwiązanie: Do wyznaczenia pojemności zastępczej wykorzystamy wzór Strzeszewskiego(n = 5): C z = = = = (µF) 5 ( )(µF) 4 = = µf = µf 0,69µF.

33 Równoległe łączenie kondensatorów + _ U +Q 1 +Q 2 +Q 3 C1 C 2 C3 -Q1 -Q2 -Q3 Pojemność zastępcza: C z = C 1 +C 2 +C 3. Pojemność zastępcza n kondensatorów połączonych równolegle: i=n C z = C 1 +C 2 + +C n = C i. i=1

34 Energia pola elektrycznego Ładowanie kondensatora związane jest z doprowadzeniem do niego energii. Energia zgromadzona jest w polu elektrycznym kondensatora. Ilość zgromadzonej w polu elektrycznym energii obliczamy według wzoru: W e = CU2 2. Jednostką energii jest dżul(1 J). Ponieważ Q = CU, mamy wzory równoważne na energię zgromadzoną w polu elektrycznym: W e = QU 2, W e = Q2 2C.

35 Przykłady Przykład Obliczyć pracę wykonaną przy przesuwaniu w powietrzu ładunku Q 1 = C =5 pcznajdującegosięwpoluelektrycznym wytworzonymprzezładunek Q = C =200µC.Ładunek Q 1 przesuniętoodpunktu r A =0,5 modładunku Qdopunktu r B =1,5 modładunku Qwzdłużprostejłączącejobaładunki. VA VB +Q + Q 1 r A r B Wskazówki:ε r =1dlapowietrza, W = Q 1 (V A V B ),potencjał wytworzonyprzezładunek Qrównyjest V = Q 4πεr. (Odpowiedź: W 12µJ).

36 Przykłady Przykład Obliczyć siłę działającą między dwoma ładunkami punktowymi: Q 1 =1 mc,iq 2 = 1 mcumieszczonymiwodległości r =0,4 modsiebie. Rozwiązanie: Stosujemy prawo Coulomba +Q+ F -F -Q r F = Q 1Q 2 4πεr 2 = ( 1) ,14 8, (0,4) 2 56 kn. Ładunki są różnoimienne, dlatego obliczona siła ma znak minus(ładunki przyciągają się). _

37 Przykłady Przykład Obliczyć pojemność zwijki kondensatorowej o następujących danych: długośćfoliialuminiowej l =10,4 m,szerokość b =12 cm,grubość izolacji d =0,1 mm,przenikalnośćelektrycznawzględnaε r =4,5. Rozwiązanie: W kondensatorze zwijkowym okładziny pracują obustronnie. Pole powierzchni okładziny obliczamy wówczas z wzoru: Pojemność kondensatora S =2bl =2 10,4 m 0,0001 m 2,5 m 2. C =ε 0 ε r S d =8, ,5 2, µF.

38 Przykłady Przykład Kondensatorogrubościizolacji d =0,1 mmipojemności C =12µFpodłączonodo źródła napięcia stałego U = 1200 V. Obliczyć ładunek zgromadzony na okładzinach oraz natężenie pola w kondensatorze. Obliczyć energię zgromadzoną w polu elektrycznym kondensatora. Rozwiązanie: Ładunek zgromadzony na okładzinach: Natężenie pola elektrycznego: Energia pola elektrycznego: Q = CU = F 1200 V =14,4 mc. E = U d =1200 V 10 4 m =12 MV m, W e = CU2 2 = =86,4 J.

39 Przykłady Przykład Obliczyć pojemność zastępczą: dane: C 1 =10µF, C 2 =20µF, C 3 =30µF. b) a) C1 C2 C1 C2 d) c) C1 C2 C3 C1 C2 C3 Odpowiedź:a)6,67µF,b)30µF,c)50µF,d)60µF.

40 Przykłady Przykład Obliczyć pojemność zastępczą oraz ładunek i napięcie na poszczególnych kondensatorach przy zasilaniu układu kondensatorów napięciem U. Dane: C 1 =10µF, C 2 =20µF, C 3 =30µF, C 4 =50µF, C 5 = 40µF, C 6 =70µF, U =1000 V. a) b) C4 C1 C2 C1 C2 C5 C3 C3 C6 Odpowiedź:a) C z =15µF,b) C z 18,67µF.

41 Dziękuję za uwagę.

POLE ELEKTRYCZNE PRAWO COULOMBA

POLE ELEKTRYCZNE PRAWO COULOMBA POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni KONDENSATORY Podstawowe własności elektrostatyczne przewodników: Natężenie pola wewnątrz przewodnika E = 0 Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni Potencjał elektryczny wewnątrz

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora

Bardziej szczegółowo

21 ELEKTROSTATYKA. KONDENSATORY

21 ELEKTROSTATYKA. KONDENSATORY Włodzimierz Wolczyński Pojemność elektryczna 21 ELEKTROSTATYKA. KONDENSATORY - dla przewodników - dla kondensatorów C pojemność elektryczna Q ładunek V potencjał, U napięcie jednostka farad 1 r Pojemność

Bardziej szczegółowo

UKŁADY KONDENSATOROWE

UKŁADY KONDENSATOROWE UKŁADY KONDENSATOROWE 3.1. Wyprowadzić wzory na: a) pojemność kondensatora sferycznego z izolacją jednorodną (ε), b) pojemność kondensatora sferycznego z izolacją warstwową (ε 1, ε 2 ) c) pojemność odosobnionej

Bardziej szczegółowo

Lekcja 43. Pojemność elektryczna

Lekcja 43. Pojemność elektryczna Lekcja 43. Pojemność elektryczna Pojemność elektryczna przewodnika zależy od: Rozmiarów przewodnika, Obecności innych przewodników, Ośrodka w którym się dany przewodnik znajduje. Lekcja 44. Kondensator

Bardziej szczegółowo

WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA

WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA Idealny przewodnik to materiał zawierająca nieskończony zapas zupełnie swobodnych ładunków. Z tej definicji wynikają podstawowe własności elektrostatyczne idealnych przewodników:

Bardziej szczegółowo

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych: POLE ELEKTRYCZNE Ładunek i materia Ładunek elementarny. Zasada zachowania ładunku Prawo Coulomba Elektryzowanie ciał Pole elektryczne i pole zachowawcze Natężenie i strumień pola elektrycznego Prawo Gaussa

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,

Bardziej szczegółowo

ELEKTROSTATYKA. cos tg60 3

ELEKTROSTATYKA. cos tg60 3 Włodzimierz Wolczyński 45 POWTÓRKA 7 ELEKTROSTATYKA Zadanie 1 Na nitkach nieprzewodzących o długościach 1 m wiszą dwie jednakowe metalowe kuleczki. Po naładowaniu obu ładunkiem jednoimiennym 1μC nitki

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Elektrostatyka. A. tyle samo B. będzie 2 razy mniejsza C. będzie 4 razy większa D. nie da się obliczyć bez znajomości odległości miedzy ładunkami

Elektrostatyka. A. tyle samo B. będzie 2 razy mniejsza C. będzie 4 razy większa D. nie da się obliczyć bez znajomości odległości miedzy ładunkami Elektrostatyka Zadanie 1. Dwa jednoimienne ładunki po 10C każdy odpychają się z siłą 36 10 8 N. Po dwukrotnym zwiększeniu odległości między tymi ładunkami i dwukrotnym zwiększeniu jednego z tych ładunków,

Bardziej szczegółowo

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka

Bardziej szczegółowo

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Elektryczne właściwości materii Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział materii ze względu na jej właściwości Przewodniki elektryczne: Przewodniki I

Bardziej szczegółowo

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych 6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

Elektryczne właściwości materiałów. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Elektryczne właściwości materiałów. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elektryczne właściwości materiałów Materiały dydaktyczne dla kierunku Technik Optyk (W) Kwalifikacyjnego kursu zawodowego. Podział materii ze względu na jej właściwości Przewodniki elektryczne: Przewodniki

Bardziej szczegółowo

Linie sił pola elektrycznego

Linie sił pola elektrycznego Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,

Bardziej szczegółowo

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:

Bardziej szczegółowo

Wykład 17 Izolatory i przewodniki

Wykład 17 Izolatory i przewodniki Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy

Bardziej szczegółowo

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku Rozdział 4 Pole elektryczne 4.1 Ładunki elektryczne 4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku W niniejszym rozdziale zostaną przedstawione wybrane zagadnienia elektrostatyki. Elektrostatyka

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F. Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności

Bardziej szczegółowo

Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 21 marca 2016 Maciej J. Mrowiński (IF PW) Wykład 4 i 5 21

Bardziej szczegółowo

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

2 K A T E D R A F I ZYKI S T O S O W AN E J

2 K A T E D R A F I ZYKI S T O S O W AN E J 2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 3 Janusz Andrzejewski Prąd elektryczny Prąd elektryczny to uporządkowany ruch swobodnych ładunków. Ruchowi chaotycznemu nie towarzyszy przepływ prądu. Strzałki szare - to nieuporządkowany(chaotyczny)

Bardziej szczegółowo

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 22 ELEKTROSTATYKA CZĘŚĆ 2. KONDENSATORY

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 22 ELEKTROSTATYKA CZĘŚĆ 2. KONDENSATORY autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 22 ELEKTROSTATYKA CZĘŚĆ 2. KONDENSATORY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO

Bardziej szczegółowo

cz.3 dr inż. Zbigniew Szklarski

cz.3 dr inż. Zbigniew Szklarski Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Elektrostatyka, część pierwsza

Elektrostatyka, część pierwsza Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.

Bardziej szczegółowo

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek

Bardziej szczegółowo

Prąd elektryczny 1/37

Prąd elektryczny 1/37 Prąd elektryczny 1/37 Prąd elektryczny Prądem elektrycznym w przewodniku metalowym nazywamy uporządkowany ruch elektronów swobodnych pod wpływem sił pola elektrycznego. Prąd elektryczny może również płynąć

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 3 Janusz Andrzejewski Prawo Coulomba a prawo Newtona Janusz Andrzejewski 2 Natężenie i potencjał pola elektrycznego A q A B q A D q A C q A q 0 D B C A E E E E r r r r 0 0 + + + + + + D

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Zebranie faktów

Bardziej szczegółowo

Pojemność elektryczna

Pojemność elektryczna Pojemność elektryczna Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pojemność elektryczna Umieśćmy na pewnym

Bardziej szczegółowo

Podstawy Elektroniki i Elektrotechniki

Podstawy Elektroniki i Elektrotechniki Podstawy Elektroniki i Elektrotechniki Sławomir Mamica mamica@amu.edu.pl Obwody prądu elektrycznego http://main5.amu.edu.pl/~zfp/sm/home.html Plan. Krótko o elektryczności Ładunek elektryczny Pole elektryczne

Bardziej szczegółowo

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektrostatyka Projekt współfinansowany przez Unię Europejską w ramach Europejskiego unduszu Społecznego Ładunek elektryczny Materia zbudowana jest z atomów. Atom składa się z dodatnie naładowanego jądra

Bardziej szczegółowo

Elektrostatyczna energia potencjalna U

Elektrostatyczna energia potencjalna U Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko

Bardziej szczegółowo

Wykład 8: Elektrostatyka Katarzyna Weron

Wykład 8: Elektrostatyka Katarzyna Weron Wykład 8: Elektrostatyka Katarzyna Weron Matematyka Stosowana Przewodniki i izolatory Przewodniki - niektóre ładunki ujemne mogą się dość swobodnie poruszać: metalach, wodzie, ciele ludzkim, Izolatory

Bardziej szczegółowo

znak minus wynika z faktu, że wektor F jest zwrócony

znak minus wynika z faktu, że wektor F jest zwrócony Wykład 6 : Pole grawitacyjne. Pole elektrostatyczne. Prąd elektryczny Pole grawitacyjne Każde dwa ciała o masach m 1 i m 2 przyciągają się wzajemnie siłą grawitacji wprost proporcjonalną do iloczynu mas,

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

Obwodem elektrycznym nazywamy zespół połączonych ze sobą elementów, umożliwiający zamknięty obieg prądu.

Obwodem elektrycznym nazywamy zespół połączonych ze sobą elementów, umożliwiający zamknięty obieg prądu. Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl Obwód elektryczny i jego schemat. Obwodem elektrycznym nazywamy zespół połączonych ze sobą elementów, umożliwiający zamknięty obieg prądu. Schemat

Bardziej szczegółowo

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE DO ZDOBYCIA PUNKTÓW 50 POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 Jest to powtórka przed etapem rejonowym (głównie elektrostatyka). ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte otwarte SUMA zadanie 1 1 pkt Po włączeniu

Bardziej szczegółowo

Pojęcie ładunku elektrycznego

Pojęcie ładunku elektrycznego Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z

Bardziej szczegółowo

Podstawy fizyki sezon 2 3. Prąd elektryczny

Podstawy fizyki sezon 2 3. Prąd elektryczny Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Wykład 18 Dielektryk w polu elektrycznym

Wykład 18 Dielektryk w polu elektrycznym Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości.

Bardziej szczegółowo

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych Kondensatory Kondensator Kondensator jest to układ dwóch przewodników przedzielonych dielektrykiem, na których zgromadzone są ładunki elektryczne jednakowej wartości ale o przeciwnych znakach. Budowa Najprostsze

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

1 K A T E D R A F I ZYKI S T O S O W AN E J

1 K A T E D R A F I ZYKI S T O S O W AN E J 1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku

Bardziej szczegółowo

KONKURS FIZYCZNY CZĘŚĆ 3. Opracowanie Agnieszka Janusz-Szczytyńska

KONKURS FIZYCZNY CZĘŚĆ 3. Opracowanie Agnieszka Janusz-Szczytyńska KONKURS FIZYCZNY CZĘŚĆ 3 Opracowanie Agnieszka Janusz-Szczytyńska ZAGADNIENIA DO KONKURSU ETAP II Kolorem czerwonym zaznaczone są zagadnienia wykraczające poza program nauczania, na zielono zagadnienia,

Bardziej szczegółowo

Elektryczność i Magnetyzm

Elektryczność i Magnetyzm Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman Wykład szósty 14 marca 019 Z ostatniego wykładu Doświadczenie Millikana Potencjał i pole od dipola

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Elektrostatyka. Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty.

Elektrostatyka. Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty. Elektrostatyka Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty. Pozostawało to odosobnioną ciekawostką aż do XVIw., kiedy Wlliam Gilbert wykazał, że podobną

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

Podstawy fizyki sezon 2 1. Elektrostatyka 1

Podstawy fizyki sezon 2 1. Elektrostatyka 1 Biblioteka AGH Podstawy fizyki sezon 2 1. Elektrostatyka 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci

Bardziej szczegółowo

ELEKTROSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5

ELEKTROSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5 ELEKTROSTATYKA 2.1 Obliczyć siłę, z jaką działają na siebie dwa ładunki punktowe Q 1 = Q 2 = 1C umieszczone w odległości l km od siebie, a z jaką siłą - w tej samej odległości - dwie jednogramowe kulki

Bardziej szczegółowo

PROGRAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II

PROGRAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II POGAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II Opracowała: mgr Joanna Kondys Cele do osiągnięcia: etapowe udział w olimpiadzie fizycznej udział w konkursie fizycznym dla szkół średnich docelowe

Bardziej szczegółowo

R o z d z i a ł 7 POLE ELEKTRYCZNE

R o z d z i a ł 7 POLE ELEKTRYCZNE R o z d z i a ł 7 POLE ELEKTRYCZNE Zjawiska elektryczne towarzyszyły człowiekowi od samego początku jego pojawienia się. Wyładowania atmosferyczne napawały grozą, zaś zjawiska bioelektryczne i elektryzacja

Bardziej szczegółowo

Fizyka 2 Podstawy fizyki

Fizyka 2 Podstawy fizyki Fizyka Podstawy fizyki dr hab. inż. Wydział Fizyki e-mail: wrobel.studia@gmail.com konsultacje: Gmach Mechatroniki, pok. 34; środa 13-14 i po umówieniu mailowym http://www.if.pw.edu.pl/~wrobel/simr_f_17.html

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Potencjał pola elektrycznego U ab ΔV W q b a F dx q b a F q dx b a (x)dx U gradv ab ΔV b a dv dv dv x,y,z i j k (x)dx dx dy dz Natężenie pola wskazuje kierunek w którym potencjał

Bardziej szczegółowo

Wykład FIZYKA II. 1. Elektrostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 1. Elektrostatyka.   Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II. Elektrostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ELEKTROMAGNETYZM Już starożytni Grecy Potarty kawałek

Bardziej szczegółowo

Rozdział 1. Pole elektryczne i elektrostatyka

Rozdział 1. Pole elektryczne i elektrostatyka Rozdział 1. Pole elektryczne i elektrostatyka 2018 Spis treści Ładunek elektryczny Prawo Coulomba Pole elektryczne Prawo Gaussa Zastosowanie prawa Gaussa: Izolowany przewodnik Zastosowanie prawa Gaussa:

Bardziej szczegółowo

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej 1. Wstęp Pojemność kondensatora można obliczyć w prosty sposób znając wartości zgromadzonego na nim ładunku i napięcia między okładkami: Q

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Elektrostatyka Elektryczność nas otacza i tworzy...

Elektrostatyka Elektryczność nas otacza i tworzy... Elektrostatyka Elektryczność nas otacza i tworzy... Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Elektryczność

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Przewodniki w polu elektrycznym

Przewodniki w polu elektrycznym Przewodniki w polu elektrycznym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Przewodniki to ciała takie, po

Bardziej szczegółowo

Elektrostatyka, cz. 2

Elektrostatyka, cz. 2 Podstawy elektromagnetyzmu Wykład 4 Elektrostatyka, cz. Praca, energia, pojemność i kondensatory, ekrany elektrostatyczne Energia Praca w polu elektrostatycznym dw =F dl=q E dl W = L F d L=q L E d L=q

Bardziej szczegółowo

Elektrostatyczna energia potencjalna. Potencjał elektryczny

Elektrostatyczna energia potencjalna. Potencjał elektryczny Elektrostatyczna energia potencjalna Potencjał elektryczny Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłą pola nadając ładunkowi

Bardziej szczegółowo

25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III POZIOM PODSTAWOWY

25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III POZIOM PODSTAWOWY 25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III Hydrostatyka Gazy Termodynamika Elektrostatyka Prąd elektryczny stały POZIOM PODSTAWOWY Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa...

Imię i nazwisko ucznia Data... Klasa... Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Między

Bardziej szczegółowo

ELEKTROSTATYKA. Ze względu na właściwości elektryczne ciała dzielimy na przewodniki, izolatory i półprzewodniki.

ELEKTROSTATYKA. Ze względu na właściwości elektryczne ciała dzielimy na przewodniki, izolatory i półprzewodniki. ELEKTROSTATYKA Ładunkiem elektrycznym nazywamy porcję elektryczności. Ładunkiem elementarnym e nazywamy najmniejszą wartość ładunku zaobserwowaną w przyrodzie. Jego wartość jest równa wartości ładunku

Bardziej szczegółowo

Podstawy fizyki sezon 2 3. Prąd elektryczny

Podstawy fizyki sezon 2 3. Prąd elektryczny Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny

Bardziej szczegółowo

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy.

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy. Magnetyzm Magnetyzm zdolność do przyciągania małych kawałków metalu Magnes Bar Magnet S S N N Iron filings N Kompas S Biegun południowy Biegun północny wp.lps.org/kcovil/files/2014/01/magneticfields.ppt

Bardziej szczegółowo

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem Pole magnetyczne Własność przestrzeni polegającą na tym, że na umieszczoną w niej igiełkę magnetyczną działają siły, nazywamy polem magnetycznym. Pole takie wytwarza ruda magnetytu, magnes stały (czyli

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 2: lektrostatyka cz. 2. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Dygresja matematyczna - operatory Operator przyporządkowuje np. polu skalarnemu odpowiednie

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo