Rys Układ o jednym stopniu swobody jako model drgających elementów maszynowych i maszyn jako całości

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rys Układ o jednym stopniu swobody jako model drgających elementów maszynowych i maszyn jako całości"

Transkrypt

1 5.2. OBNIŻENIE AMPLITUDY DRGAŃ ELEMENTÓW Z kursu drgań mechanicznych wiadomo, że każdy element mechaniczny, podzespół, a nawet całą maszynę można w przybliżeniu zmodelować układem mechanicznym o jednym stopniu swobody, tak jak na rys Rys Układ o jednym stopniu swobody jako model drgających elementów maszynowych i maszyn jako całości Parametry modelu: masa - m, sztywność - k, tłumienie - c zredukowane są do środka masy lub innego punktu reprezentatywnego elementu (na korpusie, na łapach, wirniku itp.). Oznaczona na rysunku wielkość F(t) to siła wzbudzająca drgania, zaś u(t) to przemieszczenia masy zredukowanej m. Charakter sił wzbudzających i ich możliwe reprezentacje czasowe i widmowe omówiliśmy już uprzednio w rozdziale drugim, tutaj jedynie założymy dodatkowo liniowość sił sprężystych (ku) i wiskotyczny charakter sił tłumiących (cu) w rozpatrywanym obiekcie. Załóżmy dalej, że siła wymuszająca ma charakter zdeterminowany i może być z dostateczną dokładnością przedstawiona w postaci szeregu Fouriera, czyli S F(t)= Σ F n cos(n ω o t + φ n ) n=1 z częstością podstawową ω o =2πfo i przesunięciami faz kolejnych harmonicznych φ n. Częstość podstawowa ω o wynika na ogół z cyklu pracy (obrotów) rozpatrywanego urządzenia. Z dynamiki wiadomo, że charakter ruchu układu modelowego można zbadać rozwiązując jego równanie różniczkowe ruchu... S mu + cu + ku = F(t)= F n cos(n ω o t + φ n ) (5.1) n=1 Łatwo sprawdzić, te rozwiązanie to można przedstawić w postaci szeregu

2 S F n cos ω o n t u(t) = (k-n² ω o ² m)² + h² n² ω o ² n=1 S u(t) = α F (n ω o )F n cos n ω o t (5.2) n=1 gdzie h=c/2m.

3 ZMIANA PARAMETRÓW UKŁADU W celu zbadania wpływu parametrów układu m, c, k na jego amplitudę drgań załóżmy, że wszystkie harmoniki siły wymuszającej są zerowe z wyjątkiem n = 1, czyli F 1 0, F n = 0, n 1. Wtedy odpowiedź na wymuszenie harmoniczne zgodnie ze wzorem (5.2) będzie u(t) = F 1 cos ω o t (k- ω o 2 m)² (5.3) u(t) = α F (ω o )F 1 cos ω o t Niech podstawowa częstość wymuszenia ω o zmienia się w szerokich granicach 0 < ω o < i przedstawmy podatność układu α F (ω o ) na wykresie w skali logarytmicznej, tak jak na rys5.2..dla ułatwienia zrozumienia tego rysunku zwróćmy uwagę na fakt, że dla częstotliwości niskich ω o 0 mamy α F (ω o ) 1/k, gdy ω o 0 (5.4) Rys Bezwymiarowa podatność układu o jednym stopniu swobody ze strefami wpływu parametrów

4 Jak widać podatność układu, a więc i amplituda drgań dla niskich częstotliwości zależy jedynie od jego sztywności. Znaczy to,że w obszarze niskich częstotliwości(rys.5.2)zmiana amplitudy drgań może być uzyskana jedynie przez zmianę sztywności układu(strefa wpływu k na rys.5.2). Dla wzrastających wartości częstości zdążających do rezonansu w układzie ω o (k/m) podatność rezonansowa zależy jedynie od tłumienia α F (ω o ) 1/hω o, gdy ω o k/m (5.5) znaczy to, że w strefie rezonansowej amplituda drgań zależy przede wszystkim od wartości tłumienia w układzie i tu leży główna możliwość minimalizacji rezonansowych drgań elementów maszyn. Po minięciu strefy rezonansowej na rys.5.2,tzn. dla ω o >> k/m lub bezwymiarowo ω o / k/m >>1 podatność układu przyjmie wartość α F (ω o ) 1/m ω o gdy ω o >> k/m (5.6) Znaczy to, że amplituda drgań w tym zakresie jest kontrolowana przez inercje (masę) układu drgającego (strefa wpływu m). Zauważmy przy tym jeszcze, że wartość podatności (5.6) jest identyczna z podatnością masy swobodnej, na która działa siła harmoniczna. Znaczy to, że dla częstotliwości wyższych w obszarze pozarezonansowym wpływ więzów sprężystych i dyssypatywnych jest do pominięcia, zaś układ zachowuje się jak swobodny w rozpatrywanym kierunku. Dodajmy tu jeszcze, że określenie częstość niska lub wysoka jest zawsze rozumiane w odniesieniu do częstotliwości rezonansowej układu ω r = k/m. Dlatego też na rysunku 5.2 poszczególne strefy wpływu łatwiej było oznaczyć w skali bezwymiarowej częstotliwości δ = ω r / k/m. Sumując przedstawione rozważania można stwierdzić, że amplituda drgań analizowanego układu, jako modelu elementu maszynowego, zachowuje się następująco: w zakresie częstotliwości niskich determinowana jest sztywnością układu, w zakresie rezonansowym wartością tłumienia, zaś w pozarezonansowym - masą. W terminologii angielskiej strefy te noszą odpowiednie nazwy: "stiffness controled", "damping controled" oraz "mass controled".

5 ZMIANA PARAMETRÓW WYMUSZENIA Analizując ponownie amplitudę drgań wymuszonych naszego wkładu (5.2), można dojść do wniosku, że będzie ona tym większa, im więcej składowych Fn będzie mieć siła wymuszająca F(t) oraz im większe będą te składowe. Ilość składowych to szerokość widmowa wymuszenia, ta zaś z kolei dla wymuszeń krótkotrwałych związana jest z czasem trwania poszczególnych zdarzeń wymuszenia. Najłatwiej to zilustrować przytaczając twierdzenie o podobieństwie obrazów i przekształceń fourierowskich [24,8]. F[u(at)]=(1/ a )U(f/a) (5.7) oraz zasadę nieoznaczoności w dziedzinie widma i czasu t f ~ 1 (5.8) Z obu relacji wynika, ze im krótszy czas trwania zjawiska (małe t lub a), tym szerszy jego zakres widmowy. Dlatego chcąc zmniejszyć amplitudę drgań układu należy eliminować siły wzbudzające o dużej zawartości harmonicznych 1ub mówiąc ogólnie o szerokim widmie. Takim widmem cechują się przede wszystkim siły występujące przy wzajemnych zderzeniach. Wiadomo przy tym, że wartość siły zderzenia zależy od prędkości względnej ciał pary zderzeniowej, ich masy oraz stanu powierzchni (twardość). Stąd też zmniejszenie mas, prędkości oraz wprowadzenie elastycznej warstwy pośredniej (tam gdzie to jest możliwe), w znacznym stopniu redukuje efekty drganiowe takich sił wymuszających. Z drugiej strony jak już pokazaliśmy widmo sił zderzeniowych (w ogólności impulsowych) jest tym szersze w skali częstotliwości, im krócej trwa efekt zderzenia. Tak więc, jeśli wyeliminowanie zderzeń nie jest możliwe (prasy, młoty), to należy wydłużyć czas trwania zderzenia, np. przez ukosowanie wykrojników, stosowanie przekładek elastycznych itd. Tym samym zmniejszy się wartość szczytową siły F(t) oraz wyeliminuje się wysokoczęstościowe drgania układu (konstrukcji). Jak dalece jest to istotne można pokazać obliczając średni kwadrat odpowiedzi układu (5.2), otrzymując (5.9) Przy wymuszeniu szerokopasmowym, np. ciągiem uderzeń, zawsze znajdzie się składowa wymuszenia bliska częstości rezonansowej r ω o ω r = k/m wtedy zamiast(5.9) możemy napisać wzór na odpowiedź rezonansową (5.10)

6 która jak wiemy jest kontrolowana przez wartość tłumienia h. Znacznie gorszą sytuację mamy, gdy element jest układem wielorezonansowym, możliwym jedynie do zamodelowania przez układ o wielu stopniach swobody. Wtedy, jak można pokazać, przy wymuszeniu szerokopasmowym (bądź cięgiem uderzeń) wszystkie rezonanse będą wzbudzone i zamiast jednego składnika (5.10) będziemy mieć sumę odpowiedzi rezonansowych jako odpowiedź układu (np. (5.9)). Omówione poczynania minimalizacyjne odnoszą się przede wszystkim do urządzeń o uderzeniowym sposobie pracy. W wielu jednak przypadkach zachodzące uderzenia, a zwłaszcza mikrouderzenia, nie wynikają ze sposobu pracy, lecz z wadliwego stanu eksploatacyjnego maszyny bądź źle zaprojektowanego dynamicznie sposobu pracy mechanizmu. W takich przypadkach jedynym środkiem zaradczym jest likwidacja zbędnych luzów w pierwszym przypadku oraz zmiana charakteru pracy mechanizmu w drugim. Chodzi tu na przykład o taki zarys krzywek, by konieczna zmiana przyspieszenia na profilu krzywki była minimalna, nie powodująca odrywania popychacza. Jeśli siła F(t) jest wynikiem ruchu obrotowego lub posuwisto-zwrotnego elementów, to zawiera ona cały szereg harmonicznych związanych z ruchem podstawowym. Zmniejszenie amplitud tych harmonicznych uzyskuje się przez wyrównoważenie sił i momentów bezwładności. Zabieg ten jest szczególnie istotny dla maszyn szybkoobrotowych, gdyż siły bezwładności rosną z kwadratem prędkości kątowej.

7 DOŁĄCZENIE UKŁADU DODATKOWEGO W praktyce przemysłowej zdarzają się sytuacje rezonansowych drgań podzespołów lub elementów, gdzie nie istnieje możliwość odstrojenia układu przez zmianę masy lub sztywności, zwiększenia tłumienia, oraz nie można zmienić charakteru sił wymuszających. Jako przykład może tu posłużyć korpus maszynki elektrycznej do włosów z napędem elektromagnetycznym możliwy do zamodelowania jako swobodna bryła. Żadne zmiany parametrów tu więc nic nie zmienią. Drugi przykład to wał wykorbiony silnika spalinowego, który z natury pracuje niestacjonarnie przechodząc wielokrotnie z obrotami, tzn. z wymuszeniem, wszystkie swe strefy rezonansowe. Podobnie ma się rzecz z suwnicą, dźwigiem, a nawet łukiem sportowym. Nie sposób więc mówić tu o odstrojeniu bądź zmianie parametrów układu jako sposobie minimalizacji drgań. W takich przypadkach jedyną możliwością zmniejszenia amplitud drgań, a także naprężeń i hałasu, jest dołączenie w miejscu przekroczenia amplitud drgań dodatkowego układu mechanicznego, zwanego eliminatorem drgań. W ogólności eliminatory drgań, zwane często nieprecyzyjnie tłumikami (bo tłumik to również element tłumiący - dyssypatywny), dzielimy na dwie klasy. Pierwsza z nich to eliminatory dynamiczne, działające na zasadzie kompensacji sił, oraz druga klasa eliminatory rezonansowe, działające na zasadzie wnoszenia dodatkowego tłumienia (dyssypacji), które w rezonansie układu głównego staje się istotne i obniża amplitudę drgań rezonansowych. Tak więc mamy układ główny o niedopuszczalnie wysokich drganiach, do którego dołączamy układ dodatkowy eliminator drgań. Jest zaś oczywiste, że natura ruchu obu układów może być obrotowa jak przy drganiach skrętnych wałów lub też prostoliniowa jak w pozostałych przypadkach. Zmienia się jedynie wtedy wymiar fizyczny i postać konstrukcyjna. elementów układu, np. masa przechodzi na biegunowy moment bezwładności układu,względem osi obrotu itd. Nie rozróżniając zatem rodzaju ruchu eliminatorów i ich postaci konstrukcyjnych omówimy jedynie ideę ich działania i stosowania, odsyłając zainteresowanych do literatury szczegółowej [9, 10]. Rys.5.3. Modele typowych eliminatorów drgań: a) dynamiczny, b) z tłumikiem wiskotycznym, c) z tłumikiem ciernym, d) uderzeniowy, e) charakterystyka częstotliwościowa układu głównego z eliminatorem dynamicznym i bez eliminatora, f) to samo dla eliminatora rezonansowego

8 Eliminator dynamiczny (rys. 5.3a) złożony jest z elementów inercyjnego i sprężystego, a czasami nawet dodatkowego elementu dyssypatywnego, zapewniającego optymalne tłumienie. W rzeczywistości, mimo niejednokrotnego braku dodatkowego elementu tłumiącego, zawsze mamy do czynienia z dyssypacją energii, choćby w materiale sprężyny. Stad też tłumik h o w modelu zawsze powinien być wzięty pod uwagę. Kompensacja sił, będąca istotą działania eliminatora dynamicznego, zachodzi jedynie dla przypadku, kiedy częstość wymuszenia ω o siły F(t)= F o cos ω o t jest równa częstości własnej rezonansowej układu dodatkowego ω r. Tak więc warunkiem dostrojenia i poprawnej pracy eliminatora dynamicznego jest ω o = k e / m e (5.11) Optymalna wartość tłumienia wyraża się bardziej skomplikowanym wzorem, a proste oszacowania stopnia tłumienia może być zapisana wzorem [9, r.3], (5.12) a więc zależy od stosunku masy eliminatora do masy układu głównego m, µ = m e /m. Maksymalna amplituda drgań układu głównego przy takim nastrojeniu w odniesieniu do jego ugięcia statycznego (linia przerywana na rys. 5.3e) (5.13) Tak więc, jeśli bezwymiarowa masa eliminatora będzie µ= m o /m =0,1, to maksymalna amplituda drgań w całej skali częstotliwości układu głównego U max = 4,6 U st. Dokładną teorię takich eliminatorów i obszary ich zastosowań można znaleźć w [9] oraz [81], tutaj jedynie wymienimy jeszcze raz maszynkę do włosów, wały napędowe silników spalinowych, elementy korpusowe, korpusy i linie napędu obrabiarek, wysokie budynki itp., zaś generalnie można powiedzieć, że stosuje się je w dziedzinie niskich częstotliwości rzędu do 100 Hz. Eliminator rezonansowy Lanchestera składa się z eliminatora i elementu tłumiącego - z tłumikiem wiskotycznym (rys. 5.3b) lub tłumikiem ciernym (rys.5.3c). Ponieważ nie ma tu sprężystego elementu sprzęgającego, nie ma więc przekazywania przeciwfazowych sił kompensujących, a jedynie odbiór energii i jej dyssypacja w elemencie tłumiącym, co może ujawnić się dopiero w rezonansie układu głównego. Optymalna wartość tłumienia eliminatora Lanchestera wg den Hartoga [9, r.3] wynosi ξ opt = h e opt / h e cr = 1/(2(1+µ)(2+µ)) (5.14) Maksymalna amplituda drgań układu głównego (rys. 5.3f), [82, r. 24] (U max / U st ) wisk = 1+2/µ (5.15) (U max / U st ) cierny = π²/4µ

9 co dla µ=0,1 da U max = 21 U st oraz 24,6 U st. Widać więc, że w przypadku eliminatora rezonansowego, wiskotycznego czy ciernego wymagana jest znacznie większa masa eliminatora. Obszary zastosowania eliminatorów rezonansowych są ograniczone istotą ich działania (tłumienie rezonansów), a poza tym nie ma istotnych innych ograniczeń czy to dla drgań postępowych, czy skrętnych. Eliminator rezonansowy uderzeniowy (rys. 5.3d) nie ma stałego połączenia z układem głównym, zaś oddziaływanie obu układów jest impulsowe zderzeniowe ze ścianami pojemnika przy nawrotach ruchu mas eliminatora. Zwykle masa eliminatora jest rozdzielona na n małych mas - m o (m e = nm o ), wykonujących niezależne ruchy w pojemniku. Efektywność ich działania zależy od luzu, czyli drogi swobodnej, jaką masy te mogą przebyć. Zgodnie z teorią takich eliminatorów [83] ich luz bezwymiarowy D oraz efektywność dogodnie jest wyrażać w odniesieniu do amplitudy rezonansowej w układzie głównym bez eliminatora U rez. Definiując więc efektywność jako E = (amplituda rezonansowa bez eliminatora)/(amplituda rezonansowa z eliminatorem) (5.16) i luz bezwymiarowy D = (rzeczywisty luz)/(amplituda rezonansowa bez eliminatora) możemy dla eliminatora wielomasowego n >>1 napisać relację przybliżoną D (1+µ/η ) -1, E 1+ µ/η, czyli DE 1 (5.17) Jeśli więc stratność w układzie głównym η = 2 ξ wyniesie η = 0,01, zaś bezwymiarowa masa eliminatora η = m e /m = n m o /m = 0,1, to ponad czterokrotne zmniejszenie drgań rezonansowych otrzymamy, gdy luz będzie rzędu połowy amplitudy drgań rezonansowych. Porównawczo można powiedzieć, że eliminator uderzeniowy jest najbardziej efektywny wśród eliminatorów rezonansowych, jednak jego względna nowość nie zaowocowała jeszcze pełnym rozpowszechnieniem. A że idea ta jest słuszna i sięgająca nie tylko częstości niskich, warto przytoczyć sposób podwyższania izolacyjności ścian betonowych przez wypełnianie piaskiem specjalnych otworów. Daje to podwyższenie izolacyjności ściany (zmniejszenie amplitudy drgań przy pobudzeniu dźwiękiem) rzędu 20 db [29, r. III.7]. Na pograniczu eliminatorów drgań leży czynne wykorzystanie tarcia konstrukcyjnego w połączeniach elementów maszyn [81,84]. Przy konstrukcyjnym zapewnieniu względnych mikroruchów cała moc ruchu drganiowego dyssypowana jest przez tarcie na ciepło. Tego typu dyssypacja energii ma szczególne znaczenie przy redukcji drgań rezonansowych elementów maszynowych, a nawet została wykorzystana do redukcji promieniowania hałasu misy alejowej silnika diselowskiego [85]

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS)

3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS) 3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS) 3.1. DRGANIA TRANSLACYJNE I SKRĘTNE WYMUSZME SIŁOWO I KINEMATYCZNIE W poprzednim punkcie o modelowaniu doszliśmy do przekonania, że wielokrotnie

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 5

INSTRUKCJA DO ĆWICZENIA NR 5 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego

Bardziej szczegółowo

Teoria maszyn mechanizmów

Teoria maszyn mechanizmów Adam Morecki - Jan Oderfel Teoria maszyn mechanizmów Państwowe Wydawnictwo Naukowe SPIS RZECZY Przedmowa 9 Część pierwsza. MECHANIKA MASZYN I MECHANIZMÓW Z CZŁONAMI SZTYWNYMI 13 1. Pojęcia wstępne do teorii

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

5.3. WIBROIZOLACJA MASZYN I URZĄDZEŃ

5.3. WIBROIZOLACJA MASZYN I URZĄDZEŃ 5.3. WIBROIZOLACJA MASZYN I URZĄDZEŃ Dotychczas zajmowaliśmy się środkami redukcji drgań w ich źródle, poprzez zmianę parametrów siły wymuszającej, zmianę parametrów układu drgającego bądź przez dołączenie

Bardziej szczegółowo

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów LABORATORIUM DRGANIA I WIBROAUSTYA MASZYN Wydział Budowy Maszyn i Zarządzania Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

Bardziej szczegółowo

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów LABORATORIUM WIBROAUSTYI MASZYN Wydział Budowy Maszyn i Zarządzania Instytut Mechaniki Stosowanej Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

2.ANALIZA DYNAMICZNA OBIEKTÓW MECHANICZNYCH

2.ANALIZA DYNAMICZNA OBIEKTÓW MECHANICZNYCH 2.ANALIZA DYNAMICZNA OBIEKTÓW MECHANICZNYCH Funkcjonowanie maszyn, urządzeń, instalacji, w ogólności obiektów mechanicznych nieodłącznie jest związane z przekazywaniem różnorakich oddziaływań siłowych.

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu [Mechanika i Budowa Maszyn] Studia drugiego stopnia

Karta (sylabus) modułu/przedmiotu [Mechanika i Budowa Maszyn] Studia drugiego stopnia Karta (sylabus) modułu/przedmiotu [Mechanika i Budowa Maszyn] Studia drugiego stopnia Przedmiot: Drgania lotniczych zespołów napędowych Rodzaj przedmiotu: podstawowy Kod przedmiotu: MBM S 3 5-0_1 Rok:

Bardziej szczegółowo

Tabela 3.2 Składowe widmowe drgań związane z występowaniem defektów w elementach maszyn w porównaniu z częstotliwością obrotów [7],

Tabela 3.2 Składowe widmowe drgań związane z występowaniem defektów w elementach maszyn w porównaniu z częstotliwością obrotów [7], 3.5.4. Analiza widmowa i kinematyczna w diagnostyce WA Drugi poziom badań diagnostycznych, podejmowany wtedy, kiedy maszyna wchodzi w okres przyspieszonego zużywania, dotyczy lokalizacji i określenia stopnia

Bardziej szczegółowo

(R) przy obciążaniu (etap I) Wyznaczanie przemieszczenia kątowego V 2

(R) przy obciążaniu (etap I) Wyznaczanie przemieszczenia kątowego V 2 SPIS TREŚCI Przedmowa... 10 1. Tłumienie drgań w układach mechanicznych przez tłumiki tarciowe... 11 1.1. Wstęp... 11 1.2. Określenie modelu tłumika ciernego drgań skrętnych... 16 1.3. Wyznaczanie rozkładu

Bardziej szczegółowo

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY 1. Cel ćwiczenia Przeprowadzenie izolacji drgań przekładni zębatej oraz doświadczalne wyznaczenie współczynnika przenoszenia drgań urządzenia na fundament.. Wprowadzenie

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

6.REDUKCJA OBIEKTU MECHANICZNEGO DO MODELU O JSS 6.1. CEL I MOTYWACJA METOD PRZYBLIŻONYCH

6.REDUKCJA OBIEKTU MECHANICZNEGO DO MODELU O JSS 6.1. CEL I MOTYWACJA METOD PRZYBLIŻONYCH 6.REDUKCJA OBIEKTU MECHANICZNEGO DO MODELU O JSS Mimo że rozważaliśmy w poprzednim punkcie modele układów o dwu stopniach swobody, to w zastosowaniach nie wyszliśmy poza ramy szeregowego połączenia dwu

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 01/18. WIESŁAW FIEBIG, Wrocław, PL WUP 08/18 RZECZPOSPOLITA POLSKA

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 01/18. WIESŁAW FIEBIG, Wrocław, PL WUP 08/18 RZECZPOSPOLITA POLSKA RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 229701 (13) B1 (21) Numer zgłoszenia: 419686 (51) Int.Cl. F16F 15/24 (2006.01) F03G 7/08 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D-3

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D-3 POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D-3 Temat: Obliczenie częstotliwości własnej drgań swobodnych wrzecion obrabiarek Konsultacje: prof. dr hab. inż. F. Oryński

Bardziej szczegółowo

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora.

DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora. DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część 3 drgania wymuszone siłą harmoniczną drgania

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI BUDOWLANYCH

DYNAMIKA KONSTRUKCJI BUDOWLANYCH DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

Drgania wymuszone - wahadło Pohla

Drgania wymuszone - wahadło Pohla Zagadnienia powiązane Częstość kołowa, częstotliwość charakterystyczna, częstotliwość rezonansowa, wahadło skrętne, drgania skrętne, moment siły, moment powrotny, drgania tłumione/nietłumione, drgania

Bardziej szczegółowo

WYKŁAD 3. Rozdział 2: Drgania układu liniowego o jednym stopniu swobody. Część 2 Drgania z wymuszeniem harmonicznym

WYKŁAD 3. Rozdział 2: Drgania układu liniowego o jednym stopniu swobody. Część 2 Drgania z wymuszeniem harmonicznym WYKŁAD 3 Rozdział : Drgania układu liniowego o jednym stopniu swobody Część Drgania z wymuszeniem harmonicznym.5. Istota i przykłady drgań wymuszonych Drgania wymuszone to drgania, których energia wynika

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

VII. Drgania układów nieliniowych

VII. Drgania układów nieliniowych VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku

Bardziej szczegółowo

BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO

BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO 1. Cel ćwiczenia Celem ćwiczenia jest poznanie kinematyki i dynamiki ruchu w procesie przemieszczania wstrząsowego oraz wyznaczenie charakterystyki użytkowej

Bardziej szczegółowo

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia

Bardziej szczegółowo

Napęd pojęcia podstawowe

Napęd pojęcia podstawowe Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) moment - prędkość kątowa Energia kinetyczna Praca E W k Fl Fr d de k dw d ( ) Równanie ruchu obrotowego (bryły sztywnej) d ( ) d d d

Bardziej szczegółowo

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

Napęd pojęcia podstawowe

Napęd pojęcia podstawowe Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) suma momentów działających na bryłę - prędkość kątowa J moment bezwładności d dt ( J ) d dt J d dt dj dt J d dt dj d Równanie ruchu obrotowego

Bardziej szczegółowo

Materiały pomocnicze do egzaminu Dynamika Systemów Elektromechanicznych

Materiały pomocnicze do egzaminu Dynamika Systemów Elektromechanicznych Materiały pomocnicze do egzaminu Dynamika Systemów Elektromechanicznych Studia Magisterskie IIgo stopnia Specjalności: PTiB, EiNE, APiAB, Rok I Opracował: dr hab. inż. Wiesław Jażdżynski, prof.nz.agh Kraków,

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

RUCH HARMONICZNY. sin. (r.j.o) sin

RUCH HARMONICZNY. sin. (r.j.o) sin RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Wibroizolacja i redukcja drgań

Wibroizolacja i redukcja drgań Wibroizolacja i redukcja drgań Firma GERB istnieje od 1908 roku i posiada duże doświadczenie w zakresie wibroizolacji oraz jest producentem systemów dla redukcji drgań różnego rodzaju struktur, maszyn

Bardziej szczegółowo

TEORIA DRGAŃ Program wykładu 2016

TEORIA DRGAŃ Program wykładu 2016 TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia Przedmiot: Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MT 1 S 0 2 14-0_1 Rok: I Semestr: II Forma

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Silniki prądu stałego. Wiadomości ogólne

Silniki prądu stałego. Wiadomości ogólne Silniki prądu stałego. Wiadomości ogólne Silniki prądu stałego charakteryzują się dobrymi właściwościami ruchowymi przy czym szczególnie korzystne są: duży zakres regulacji prędkości obrotowej i duży moment

Bardziej szczegółowo

Efekt naskórkowy (skin effect)

Efekt naskórkowy (skin effect) Efekt naskórkowy (skin effect) Rozważmy cylindryczny przewód o promieniu a i o nieskończonej długości. Przez przewód płynie prąd I = I 0 cos ωt. Dla niezbyt dużych częstości ω możemy zaniedbać prąd przesunięcia,

Bardziej szczegółowo

4.DRGANIA WYMUSZONE MODELU O JSS 4.1. MODELE WYMUSZEŃ

4.DRGANIA WYMUSZONE MODELU O JSS 4.1. MODELE WYMUSZEŃ 4.DRGANIA WYMUSZONE MODELU O JSS Poznaliśmy już najważniejsze cechy swobodnego zachowania się modelu o jednym stopniu swobody, a także wyciągnęliśmy przesłanki techniczne wynikające z analizy drgań swobodnych.

Bardziej szczegółowo

Projekt nr 4. Dynamika ujęcie klasyczne

Projekt nr 4. Dynamika ujęcie klasyczne Projekt nr 4 Dynamika POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 4 Dynamika ujęcie klasyczne Konrad Kaczmarek

Bardziej szczegółowo

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera. ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: mechanika i budowa maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład, laboratorium Dynamika pojazdów Dynamics of vechicles

Bardziej szczegółowo

Dynamika mechanizmów

Dynamika mechanizmów Dynamika mechanizmów napędy zadanie odwrotne dynamiki zadanie proste dynamiki ogniwa maszyny 1 Modelowanie dynamiki mechanizmów wymuszenie siłowe od napędów struktura mechanizmu, wymiary ogniw siły przyłożone

Bardziej szczegółowo

Dobór silnika serwonapędu. (silnik krokowy)

Dobór silnika serwonapędu. (silnik krokowy) Dobór silnika serwonapędu (silnik krokowy) Dane wejściowe napędu: Masa całkowita stolika i przedmiotu obrabianego: m = 40 kg Współczynnik tarcia prowadnic = 0.05 Współczynnik sprawności przekładni śrubowo

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D - 4 Temat: Zastosowanie teoretycznej analizy modalnej w dynamice maszyn Opracowanie: mgr inż. Sebastian Bojanowski Zatwierdził:

Bardziej szczegółowo

dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA

dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA NAZEWNICTWO LINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE O STAŁYCH WSPÓŁCZYNNIKACH d n u a n d x + a d n 1 u n n 1 d x +... + a d 2 u n 1 2 d x + a d u 2 1 d x + a u = b( x) Powyższe równanie o niewiadomej funkcji

Bardziej szczegółowo

ĆWICZENIE NR.6. Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych

ĆWICZENIE NR.6. Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych ĆWICZENIE NR.6 Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych 1. Wstęp W nowoczesnych przekładniach zębatych dąży się do uzyskania małych gabarytów w stosunku do

Bardziej szczegółowo

1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11

1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11 SPIS TREŚCI 1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11 1. ZARYS DYNAMIKI MASZYN 13 1.1. Charakterystyka ogólna 13 1.2. Drgania mechaniczne 17 1.2.1. Pojęcia podstawowe

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Ćwiczenie 1 Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych

Ćwiczenie 1 Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych Napędy elektromechaniczne urządzeń mechatronicznych - projektowanie Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych Przykłady napędów bezpośrednich - twardy

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia

MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia Przedmiot: Drgania Mechaniczne Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MBM 1 S 0 5 61-1_0 Rok: III Semestr: 5 Forma studiów: Studia stacjonarne

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Badania doświadczalne drgań własnych nietłumionych i tłumionych

Badania doświadczalne drgań własnych nietłumionych i tłumionych Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny Politechnika Śląska www.imio.polsl.pl fb.com/imiopolsl twitter.com/imiopolsl LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Badania

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

Równania różniczkowe opisujące ruch fotela z pilotem:

Równania różniczkowe opisujące ruch fotela z pilotem: . Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne 1, 2, 3- Kinematyka 1 Pomiary w fizyce i wzorce pomiarowe 12.1 2 Wstęp do analizy danych pomiarowych 12.6 3 Jak opisać położenie ciała 1.1 4 Opis

Bardziej szczegółowo

Wykład 2 Silniki indukcyjne asynchroniczne

Wykład 2 Silniki indukcyjne asynchroniczne Wykład 2 Silniki indukcyjne asynchroniczne Katedra Sterowania i InŜynierii Systemów 1 Budowa silnika inukcyjnego Katedra Sterowania i InŜynierii Systemów 2 Budowa silnika inukcyjnego Tabliczka znamionowa

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same

Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Egzamin 1 Strona 1 Egzamin - AR egz1 2005-06 Zad 1. Rozwiązanie: Zad. 2 Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Zad.3 Rozwiązanie: Zad.4 Rozwiązanie: Egzamin 1 Strona 2

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 17/09

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 17/09 PL 214449 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 214449 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 384436 (22) Data zgłoszenia: 11.02.2008 (51) Int.Cl.

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl 3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do

Bardziej szczegółowo

Struktura układu pomiarowego drgań mechanicznych

Struktura układu pomiarowego drgań mechanicznych Wstęp Diagnostyka eksploatacyjna maszyn opiera się na obserwacji oraz analizie sygnału uzyskiwanego za pomocą systemu pomiarowego. Pomiar sygnału jest więc ważnym, integralnym jej elementem. Struktura

Bardziej szczegółowo

lim Np. lim jest wyrażeniem typu /, a

lim Np. lim jest wyrażeniem typu /, a Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona

Bardziej szczegółowo

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

Ćwiczenie: "Silnik prądu stałego"

Ćwiczenie: Silnik prądu stałego Ćwiczenie: "Silnik prądu stałego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

\"':" 2.1. Wprowadzenie teoretyczne BADANIE DRGAŃ GIĘTNYCH BELKI PRZY WYMUSZENIU BEZWŁADNOŚCIOWYM 17 ( 3 )

\': 2.1. Wprowadzenie teoretyczne BADANIE DRGAŃ GIĘTNYCH BELKI PRZY WYMUSZENIU BEZWŁADNOŚCIOWYM 17 ( 3 ) Ćwiczenie 2 BADANIE DRGAŃ GIĘTNYCH BELKI PRZY WYMUSZENIU BEZWŁADNOŚCIOWYM Celem ćwiczenia jest praktyczne zaznajomienie studentów z analizą drgań giętnych belki wymuszonych bezwładnościowo. Ćwiczenie obejmuje

Bardziej szczegółowo

f = 2 śr MODULACJE

f = 2 śr MODULACJE 5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne Rozwiąż dowolnie przez siebie wybrane dwa zadania spośród poniższych trzech: Nazwa zadania: ZADANIE T A. Oblicz moment bezwładności jednorodnego

Bardziej szczegółowo