wielokąt o trzech bokach
|
|
- Irena Wysocka
- 8 lat temu
- Przeglądów:
Transkrypt
1 WIADOMOŚCI WSTĘPNE
2 wielokąt o trzech bokach. Trójkąt to najmniejsza (w sensie inkluzji) figura wypukła i domknięta, zawierająca pewne trzy ustalone i niewspółliniowe punkty płaszczyzny (otoczka wypukła wspomnianych trzech punktów). Wikipedia
3 Inkluzja w matematyce: relacja zawierania się zbiorów Otoczka wypukła podzbioru przestrzeni liniowej najmniejszy zbiór wypukły zawierający ten podzbiór. Otoczkę wypukłą podzbioru A oznacza się zwykle jako conv A, np. powłoką wypukłą zbioru wypukłego jest ten sam zbiór.
4 Dla dowolnego skończonego zbioru punktów płaszczyzny {P 1, P 2,..., P n }, gdzie n > 2 powłoka wypukła tego zbioru jest wielokątem wypukłym (ewentualnie zdegenerowanym do odcinka) o wierzchołkach należących do zbioru. Analogicznie w przestrzeni 3-wymiarowej powłoka wypukła skończonego zbioru punktów jest wielościanem wypukłym (ewentualnie zdegenerowanym do wielokąta lub odcinka).
5 Powłoką wypukłą zbioru trzech punktów niewspółliniowych (takich, które nie leżą na wspólnej prostej) jest Otoczką wypukłą zbioru dwupunktowego {A, B} jest
6 płaszczyzna ograniczona łamaną zwyczajną zamkniętą złożoną z trzech odcinków..
7 Trójkątem nazywamy część wspólną trzech półpłaszczyzn, których brzegi zawierają w sobie odpowiednie boki trójkąta gdzie wierzchołek nie należący do brzegu leży na półpłaszczyźnie. Trójkąt to część płaszczyzny ograniczona przez odcinki łączące trzy niewspółliniowe punkty. Trójkątem nazywamy figurę płaską będącą wielokątem o trzech bokach. Jeden z boków trójkąta jest nazywany podstawą.
8 ze względu na boki: ze względu na kąty:
9 każdy bok jest innej długości AB BC AC AB AC
10 dwa boki są równej długości AC BC Boki równe nazywamy ramionami, trzeci bok nazywamy podstawą. W trójkącie równoramiennym kąty przy podstawie mają tę samą miarę α = β.
11 Trójkąt równoramienny posiada co najmniej jedną oś symetrii przecinającą podstawę w połowie długości oraz przechodzącą przez wierzchołek kąta łączącego ramiona. W trójkącie równoramiennym dwie wysokości są równe. Trzecia wysokość opuszczona na podstawę dzieli ją na dwie równe części, a półprosta, w której leży ta wysokość, dzieli kąt między ramionami trójkąta na dwa kąty o równych miarach.
12 wszystkie boki równej długości AB BC AC
13 wszystkie kąty są równe i mają miarę 60, wysokość trójkąta równobocznego dzieli go na dwa przystające trójkąty prostokątne, wysokości trójkąta i dwusieczne jego kątów zawierają się w symetralnych boków tego trójkąta, wysokości trójkąta równobocznego dzielą się w stosunku 1:2, wysokość trójkąta równobocznego h a 3 2
14 punkt przecięcia wysokości jest środkiem okręgu wpisanego w trójkąt oraz środkiem okręgu opisanego na trójkącie, promień okręgu wpisanego w trójkąt r 1 h 3 a 3 6 promień okręgu opisanego na trójkącie r 2 a 3 R h R 3 3 pole trójkąta 1 P a h 2 P a 2 4 3
15 ma wszystkie kąty wewnętrzne ostre α < 90 β < 90 γ < 90 Wysokości w trójkącie ostrokątnym przecinają się w punkcie, który leży wewnątrz trójkąta.
16 jeden z kątów wewnętrznych jest prosty α + β = 90 Dwa boki trójkąta leżące obok kąta prostego nazywamy przyprostokątnymi, a trzeci bok nazywamy przeciwprostokątną.
17 Przyprostokątne trójkąta prostokątnego są jego wysokościami. Zależności w trójkącie prostokątnym: a:c=sinα, b:c=cosα, a:b=tgα, b:a=ctgα,
18 Jeżeli kąty ostre trójkąta prostokątnego są równe 30 i 60, to jego przeciwprostokątna jest dwa razy dłuższa od przyprostokątnej leżącej naprzeciw kąta 30. Trójkąt prostokątny spełnia Twierdzenie Pitagorasa
19 jeden z kątów wewnętrznych jest rozwarty α + β < 90 γ > 90 Wysokości w trójkącie rozwartokątnym przecinają się w punkcie, który leży poza trójkątem.
20 W każdym trójkącie o bokach, których długości wynoszą a, b i c zachodzi następujące nierówności: Trójkąt o bokach, których długości wynoszą a, b i c istnieje wtedy i tylko wtedy, gdy spełnione są te trzy nierówności. Nierówności te można zapisać łącznie:
21 najkrótszy odcinek łączący wierzchołek trójkąta z przeciwległym bokiem (lub jego przedłużeniem); jest on zawsze prostopadły do tego boku.
22 Punkt przecięcia wysokości z podstawą nazywa się spodkiem wysokości. Powstaje on w wyniku rzutu prostokątnego wierzchołka na podstawę. Każdy trójkąt ma trzy wysokości: w trójkącie ostrokątnym wszystkie mają odcinek wspólny z wnętrzem trójkąta. w trójkącie prostokątnym dwie z jego wysokości zawierają przyprostokątne. w trójkącie rozwartokątnym wysokości poprowadzone z kątów ostrych przecinają go tylko w wierzchołku. W trójkącie równobocznym o boku a długości wszystkich wysokości są równej miary, która wynosi h a 3 2
23 Proste zawierające wysokości dowolnego trójkąta przecinają się w jednym punkcie. Dowód geometryczny Proste przechodzące przez punkty A, B, C równoległe odpowiednio do BC, CA, AB boków trójkąta ABC wyznaczają trójkąt A B C. Ponieważ oraz, to czworokąt ABCB jest równoległobokiem, skąd wynika, że BC = AB i podobnie BC = AC.. Zatem A jest środkiem boku B C. Analogicznie wykazuje się, że B jest środkiem A C, a C środkiem A B. Rozpatrywane wysokości trójkąta ABC są zarazem symetralnymi boków trójkąta A B C, a więc przecinają się w jednym punkcie.
24 Proste zawierające wysokości dowolnego trójkąta przecinają się w jednym punkcie. Drugi dowód geometryczny Niech A, B oznaczają spodki dwóch wysokości opuszczonych odpowiednio z wierzchołków A i B trójkąta ABC, a H ich punkt przecięcia. Należy wykazać, że prosta CH przecinająca bok AB w punkcie C jest do niego prostopadła. Na czworokącie CA HB można opisać okrąg, podobnie na czworokącie A BAB, stąd kąt A AB jest równy kątowi BB A i równy kątowi HCA. Ponieważ kąt CHA jest równy kątowi C HA, to miara kąta HA C równa się mierze kąta HC A, czyli kąt HC A jest równy 90 0.
25 punkt przecięcia wysokości trójkąt ortocentrum
26 prosta zawierająca wierzchołek trójkąta i środek przeciwległego boku. Każdy trójkąt ma trzy środkowe, które przecinają się w jednym punkcie, będącym środkiem geometrycznym (barycentrum, lub środkiem ciężkości lub, błędnie, środkiem masy) trójkąta. Punkt ten dzieli każdą ze środkowych na dwie części, przy czym odcinek łączący barycentrum z wierzchołkiem jest dwa razy dłuższy od odcinka łączącego barycentrum ze środkiem boku. Uwaga: Środkowej trójkąta nie należy mylić z linią środkową łączącą środki dwóch boków trójkąta.
27 punkt przecięcia środkowych trójkąta barycentrum
28 odcinek łączący środki dwóch boków trójkąta. W każdym trójkącie istnieją trzy różne linie środkowe, każdej z nich odpowiada jeden bok trójkąta - ten, z którym środkowa jest rozłączna. linia środkowa Linii środkowej nie należy mylić ze środkową trójkąta. Twierdzenie: Linia środkowa jest równoległa do odpowiadającego jej boku. Jej długość jest dwukrotnie mniejsza od długości tego boku.
29 Dowód (wektorowy) Zgodnie z oznaczeniami rysunku co oznacza, że odcinek DE jest równoległy do odcinka AB i ma dwukrotnie mniejszą długość. Dowód (geometryczny) Ponieważ więc spełnione są założenia odwrotnego twierdzenia Talesa. Stąd Oznacza to, że Wystarczy teraz skorzystać z podobieństwa trójkątów ABC i BEC
30 prosta prostopadła do tego boku i przechodząca przez jego środek. Każdy trójkąt ma trzy symetralne boków, przecinające się w punkcie będącym środkiem okręgu opisanego na tym trójkącie.
31 przecinają się w punkcie, który jest środkiem okręgu wpisanego w ten trójkąt. środek okręgu wpisanego w trójkąt
32 Dwusieczna kąta wewnętrznego w trójkącie dzieli przeciwległy bok proporcjonalnie do długości pozostałych boków. W oznaczeniach przyjętych na rysunku treść twierdzenia wyraża proporcja:
33 Dowód: Prowadzimy z punktu A półprostą AO prostopadłą do dwusiecznej CD w punkcie O. Przecina ona również przedłużenie boku BC w pewnym punkcie B. Zauważyć trzeba, że i. Następnie należy poprowadzić przez B prostą równoległą do boku AB przecina ona prostą CD w pewnym punkcie D. Trójkąty i są przystające, a więc. Z podobieństwa trójkątów i wynika, że: czyli
34 W każdym trójkącie punkty przecięcia: środkowych boków S 1, symetralnych boków S 2, wysokości S 3 (odpowiednio: barycentrum, środek okręgu opisanego, ortocentrum) leżą na jednej prostej, zwanej prostą Eulera. Ponadto,. S 3 S 1 S 2 wysokości środkowe boków symetralne boków Prosta Eulera
35 znany jest także jako okrąg Feuerbacha lub okrąg Eulera jest to okrąg, który przechodzi przez dziewięć charakterystycznych punktów dowolnego trójkąta. Punktami tymi są: środki boków (na rysunku niebieskie), spodki trzech wysokości (czerwone) oraz punkty dzielące na połowy trzy odcinki, które łączą wierzchołki tego trójkąta z jego ortocentrum (zielone).
36 punkt w trójkącie związany z okręgami dopisanymi, nazwany od nazwiska Christiana von Nagela, niemieckiego matematyka, który opisał go w 1836 roku, punkt w którym przecinają się proste łączące wierzchołki z punktami styczności przeciwległych boków z odpowiednimi okręgami dopisanymi.
37 Punkt Nagela Okręgi dopisane do trójkąta ABC
38 w trójkącie ABC jest to punkt przecięcia się następujących okręgów: przechodzącego przez punkty A, B i stycznego do przedłużenia boku AC, przechodzącego przez punkty B, C i stycznego do przedłużenia boku BA, przechodzącego przez punkty C, A i stycznego do przedłużenia boku CB. Punkt Brocarda
39 Trzy okręgi o tych samych cięciwach, lecz styczne do przedłużeń boków w przeciwnych końcach tych cięciw, przecinają się w drugim punkcie Brocarda trójkąta ABC. [Edupedia] Punkt Borcarda - w trójkącie ABC o bokach a, b, c znajduje się dokładnie jeden taki punkt P, że proste AP, BP, CP z bokami odpowiednio c, a, b tworzą równe kąty. [Wikipedia]
40 (punkt Torricellego) to punkt w trójkącie, którego suma odległości od wierzchołków trójkąta jest najmniejsza z możliwych. Pierwszy raz problem konstrukcji takiego punktu został rozwiązany przez Fermata w prywatnym liście. W przypadku, gdy wszystkie kąty trójkąta mają miary mniejsze niż 120 o, punkt Fermata jest punktem przecięcia odcinków łączących wierzchołki trójkąta z tymi wierzchołkami trójkątów równobocznych zbudowanych na przeciwległych bokach, które nie są wierzchołkami wyjściowego trójkąta. Punkt Fermata
41 Gdy jeden z kątów ma miarę co najmniej 120 o, łatwo zauważyć (z nierówności trójkąta), że wierzchołek przy kącie rozwartym ma mniejszą sumę odległości od wierzchołków, niż punkt otrzymany w powyższej konstrukcji. Wierzchołek ten ma wtedy najmniejszą możliwą z takich sum. Punkt Fermata jest jednocześnie punktem przecięcia okręgów opisanych na trójkątach równobocznych Z punktu Fermata każdy bok widać pod tym samym kątem 120 o. Odcinki zaznaczone na rysunku na czerwono mają równe długości.
42 twierdzenie geometrii euklidesowej dotyczące trójkątów prostokątnych, równoważne w istocie jest piątemu pewnikowi Euklidesa o prostych równoległych Treść: W dowolnym trójkącie prostokątnym suma kwadratów długości przyprostokątnych jest równa kwadratowi długości przeciwprostokątnej tego trójkąta W zachodnioeuropejskim kręgu kulturowym przypisuje się je żyjącemu w VI wieku p.n.e. greckiemu matematykowi i filozofowi Pitagorasowi, jednak odkrycia dokonali Babilończycy, którzy znali dodatkowo dwie prostsze metody, przy których błąd jest niewielki. Zapewne znali je przed Pitagorasem starożytni Egipcjanie. Wiadomo też, że jeszcze przed nim znano je w starożytnych Chinach i Indiach.
43 Nie musi być ono prawdziwe dla rzeczywistych trójkątów mierzonych we wszechświecie, w geometrii nieeuklidesowej. Jednym z pierwszych matematyków, którzy zdali sobie z tego sprawę był Carl Friedrich Gauss, który bardzo starannie mierzył wielkie trójkąty w swoich badaniach geograficznych, aby sprawdzić prawdziwość twierdzenia. Na powierzchni kuli twierdzenie to nie jest spełnione, gdyż obowiązuje tam geometria sferyczna będąca szczególnym przypadkiem nieeuklidesowej geometrii Riemanna. Ogólna teoria względności mówi, że w polach grawitacyjnych twierdzenie jest fałszywe, gdyż tam także obowiązuje zmodyfikowana geometria Riemanna. Również w olbrzymich skalach kosmicznych to twierdzenie może być nie spełnione w związku z krzywizną przestrzeni w wielkiej skali problem krzywizny jest jednym z otwartych problemów.
44 Liczba różnych dowodów twierdzenia Pitagorasa jest bardzo duża Euklides w Elementach podaje ich osiem, kolejne pojawiały się na przestrzeni wieków i pojawiają aż po dni dzisiejsze. Niektóre z dowodów są czysto algebraiczne (jak dowód z podobieństwa trójkątów), inne mają formę układanek geometrycznych (prawdopodobny dowód Pitagorasa), jeszcze inne oparte są o równości pól pewnych figur.
45 Dowód układanka Dany jest trójkąt prostokątny o bokach długości a, b i c jak rysunku z lewej. Konstruujemy kwadrat o boku długości c w sposób ukazany na rysunku z lewej, a następnie z prawej. Z jednej strony pole kwadratu równe jest sumie pól czterech trójkątów prostokątnych i kwadratu zbudowanego na ich przeciwprostokątnych, z drugiej zaś równe jest ono sumie pól tych samych czterech trójkątów i dwóch mniejszych kwadratów zbudowanych na ich przyprostokątnych. Stąd wniosek, że pole kwadratu zbudowanego na przeciwprostokątnej jest równe sumie pól kwadratów zbudowanych na przyprostokątnych. Szczepan Jeleński Śladami Pitagorasa
46 Dowód podobieństwo trójkątów Oznaczmy Trójkąty ABC, ACD i CBA są podobne (cecha bbb). Prawdziwe są proporcje: czyli: Dodajemy stronami i otrzymujemy:
47 Dowód Garfilda Autorem innego dowodu twierdzenia Pitagorasa jest James Garfield, dwudziesty prezydent Stanów Zjednoczonych. Dowód ten jest równoważny dowodowi podanemu wyżej (Dowód układanka). Pochodzi z roku 1876.
48
49 Dowód Euklidesa BCF ABH (bkb) i Pole(ABFG) = 2 Pole BCF oraz Pole(BJKH) = 2 Pole ABH więc Pole(BJKH) = Pole(ABFG) analogicznie: Pole(CJKI) = Pole(ACED) więc Pole(ABFG) + Pole(ACED) = Pole(BJKI) + Pole(CJKI) = Pole(BCIH) czyli: a 2 + b 2 =c 2
50 Treść: Jeśli dane są trzy dodatnie liczby a, b, c i takie, że a 2 + b 2 = c 2, to istnieje trójkąt o bokach długości a, b, c i a kąt między bokami o długości a i b jest prosty. Jeżeli w trójkącie kwadrat jednego z boków równa się sumie kwadratów dwóch boków pozostałych, to trójkąt jest prostokątny.
51 Założenie: a 2 + b 2 = c 2 Teza: Kąt ACB jest prosty Dowód: a 2 = c 2 b 2 =(c b)(c + b) skąd: a c b c b a Na boku c = AB odkładamy odcinek AD = AE = b. Wówczas DB = c b. Z proporcji wynika, że trójkąty DBC i EBC ( B jest wspólny) są podobne(bkb), więc ECA = CEA = DCB = =1/2 CAD, ACD=(180 CAD) 2=90 1/2 CAD=90. Zatem: ACB= ACD + DCB=(90 )+ =90 ACB=90 Co należało dowieść.
52 W trójkątach prostokątnych pole figury zbudowanej na przeciwprostokątnej jest równe sumie pól figur zbudowanych na przyprostokątnych, podobnych do siebie. Kiedy na bokach trójkąta prostokątnego zbudujemy półokręgi tak, by średnicą były boki trójkąta, to suma pól półokręgów zbudowanych na przyprostokątnych będzie równa polu półokręgu zbudowanemu na przeciwprostokątnej. Tak samo jest z trójkątami równobocznymi oraz prostokątami.
53 Suma pól równoległoboków zbudowanych na krótszych bokach dowolnego trójkąta równa się polu prostokąta zbudowanego na najdłuższym boku.
54 KB = GH oraz NBK NEP Pole BNME = Pole EJHG Pole DLOB = Pole GHID więc Pole BNME + Pole DLOB= Pole EDIJ
55 są to figury geometryczne w kształcie księżyców, suma ich pól jest równa polu trójkąta prostokątnego ABC. Dowód: Suma pól księżyców jest równa: 0,5π(0,5c)²+0,5π(0,5b)²- [0,5π(0,5a)²-(bc)/2]=0,125π(c²+b²a²)+(bc)/2 Z twierdzenia Pitagorasa wiadomo, że: a²=b²+c², więc: 0,125π(c²+b²-a²)+(bc)/2= =0,125π(a²-a²)+(bc)/2=(bc)/2 Możemy zatem stwierdzić, że suma księżyców jest równa polu trójkąta ABC.
56 Konstrukcja geometryczna pozwalająca stworzyć odcinek o długości równej pierwiastkowi z liczby naturalnej. Przyprostokątne pierwszego trójkąta mają długość 1. Konstrukcja złożona jest z trójkątów prostokątnych. Każdy kolejny trójkąt zbudowany jest z przyprostokątnej o długości 1 i z przyprostokątnej równej długości przeciwprostokątnej poprzedniego trójkąta. Nazwa konstrukcji pochodzi od greckiego matematyka i filozofa Teodorosa z Cyreny.
57 Trójki pitagorejskie trzy liczby całkowite dodatnie spełniające równanie Pitagorasa. W tabeli przedstawiono kilka pierwszych trójek pitagorejskich Jeżeli trójka (a, b, c) jest pitagorejska, to jest nią też (da, db, dc), dla dowolnej liczby całkowitej dodatniej d. Trójkę pitagorejską nazywamy pierwotną, jeśli a, b i c nie mają wspólnego dzielnika większego od 1. a b c Trójkąt, którego długości boków stanowią trójkę pitagorejską, nazywany jest trójkątem pitagorejskim. Z kolei trójkąt o bokach długości 3, 4 i 5 nazywa się trójkątem egipskim.
58 Treść: Ortocentra trójkątów równobocznych zbudowanych na bokach dowolnego trójkąta są wierzchołkami trójkąta równobocznego. Tradycyjnie przypisuje się je Napoleonowi Bonaparte, choć nie ma żadnych dowodów na jego wkład w sformułowanie bądź udowodnienie twierdzenia.
59 Dowód: Ponieważ trójkąty zbudowane na bokach trójkąta ABC są równoboczne, to kąty zaznaczone na rysunku na czerwono mają miarę 60 oraz Stąd Ponieważ więc trójkąty AMN i ACZ są podobne. Zatem Analogicznie pokazujemy, że BLN i BCZ są podobne, więc Stąd. Analogicznie pokazujemy, że, więc jest równoboczny.
60 twierdzenie geometrii płaskiej pochodzące od Menelaosa z Aleksandrii, choć znane było już wcześniej Jest przydatne przy wykazywaniu współliniowości pun któw (tzn. że leżą one na wspólnej prostej). Dowolna poprzeczna wyznacza na dwóch bokach trójkąta ABC i przedłużeniu trzeciego boku (lub na przedłużeniach wszystkich boków) punkty D, E, F w ten sposób, że
61 Dowód: Niech X będzie punktem przecięcia prostej równoległej do AC przechodzącej przez punkt B z poprzeczną. Trójkąty XBF i EAF są podobne. Z tw. Talesa: czyli Trójkąty CED i BXD są podobne, zatem czyli Po pomnożeniu stronami powyższych równości otrzymujemy W przypadku, gdy wszystkie punkty D, E, F leżą na przedłużeniach boków trójkąta, rozumowanie jest analogiczne
62 figura niemożliwa wymyślona przez szwedzkiego grafika Oscara Reutersvärda w 1936 roku. Nazwa figury pochodzi od matematyka Rogera Penrose a, który niezależnie odkrył i spopularyzował ją w latach 50. XX wieku, opisując jako niemożliwość w jej najczystszej postaci. Jest to ważna figura w twórczości holenderskiego grafika Mauritsa Cornelisa Eschera.
63 Trójkąt Penrose a objawia się jako przedmiot utworzony z trzech równych belek o kwadratowym przekroju, których końce są połączone, tworząc kąty proste, a cała figura ma kształt trójkątny. Belki mogą być od siebie oddzielone jako sześciany lub prostopadłościany i jedynie ułożone w kształt trójkąta Penrose a. Taki układ cech nie może być zrealizowany przez żaden trójwymiarowy obiekt w zwykłej przestrzeni euklidesowej. Istnieją trójwymiarowe przedmioty, które obserwowane z odpowiedniej pozycji przedstawiają się jak dwuwymiarowy widok trójkąta Penrose a. Termin trójkąt Penrose a może oznaczać zarówno dwuwymiarowe odwzorowanie figury, jak i samą figurę niemożliwą.
64 Litografia Eschera Waterfall przedstawia wodę, która spływa zygzakowatym kanałem umieszczonym na dwóch bokach trójkątów Penrose a i kończy bieg dwa piętra wyżej nad początkiem kanału. W efekcie końcowy wodospad tworzy trzeci bok obu trójkątów, napędzając ponadto koło wodne. Escher podkreślił także, iż aby utrzymać koło w ruchu, należy co jakiś czas uzupełnić ubytek wody spowodowany parowaniem.
65 Rzeźba niemożliwego trójkąta jako złudzenie optyczne, Perth, Australia Zachodnia By Bjørn Christian Tørrissen - Own work by uploader, CC BY-SA 3.0,
66 Farma Iluzji Sp. z o.o., Mościska 9, Trojanów
67 Jest możliwe tworzenie analogicznych figur jak trójkąt Penrose a, wykorzystując inne wielokąty foremne, efekt wizualny nie jest jednak tak uderzający. Wraz ze wzrostem liczby boków figury wydają się być bardziej krzywe i poskręcane.
Twierdzenie Pitagorasa
Imię Nazwisko: Paweł Rogaliński Nr indeksu: 123456 Grupa: wtorek 7:30 Data: 10-10-2012 Twierdzenie Pitagorasa Tekst artykułu jest skrótem artykułu Twierdzenie Pitagorasa zamieszczonego w polskiej edycji
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
Podstawowe pojęcia geometryczne
PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych
Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy
Artykuł pobrano ze strony eioba.pl Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy Trójkąt jest wielokątem o trzech bokach Suma miar kątów wewnętrznych trójkąta jest równa 180. +
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
Ćwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje
Matematyka podstawowa VII Planimetria Teoria
Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma
Mini tablice matematyczne. Figury geometryczne
Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3
DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).
Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria
Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria Definicja 1. Mówimy, że odcinki i CD są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli CD = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli
PLANIMETRIA pp 2015/16. WŁASNOŚCI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego)
PLNIMETRI pp 2015/16 WŁSNOŚI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego) Zad.1 Wyznacz kąty trójkąta jeżeli stosunek ich miar wynosi 5:3:1. Zad.2 Znajdź
IX Olimpiada Matematyczna Gimnazjalistów
IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1.
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąt wypukły miara każdego kąt wewnętrznego jest mniejsza od 180 o. Liczba przekątnych: n*(n-2) Suma kątów wewnętrznych wielokąta
2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.
1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria
1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona
Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria
Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria efinicja 1. Mówimy, że odcinki i są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli ramiona
KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:
KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).
Geometria. Planimetria. Podstawowe figury geometryczne
Geometria Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Aksjomaty
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Planimetria: 5.
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Planimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
VIII Olimpiada Matematyczna Gimnazjalistów
VIII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (18 października 01 r.) Rozwiązania zadań testowych 1. Miary α, β, γ kątów pewnego trójkąta spełniają warunek
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć
Kartka papieru i własności trójkątów. Ćwiczenie 1 Uczniowie ustalają ile znają rodzajów trójkątów. Podział ze względu na miary kątów Podział ostrokątny prostokątny rozwartokątny ze względu na długości
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
LX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
Zadania otwarte krótkiej odpowiedzi na dowodzenie
Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest
Regionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 16 (27.02.2010) Twierdzenia evy i Menelaosa 1.
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści
X Olimpiada Matematyczna Gimnazjalistów
www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot
KURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
Geometria. Rodzaje i własności figur geometrycznych:
Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni
V Międzyszkolny Konkurs Matematyczny
V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Zadania zamknięte (jedna poprawna odpowiedź) 1 punkt Wyrażenia algebraiczne Zadanie 1. Wartość wyrażenia 3 x 3x
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2016 rok SZCZYRK 2016 Pierwsze zawody indywidualne Treści
Stereometria bryły. Wielościany. Wielościany foremne
Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni
Praca klasowa nr 2 - figury geometryczne (klasa 6)
Praca klasowa nr 2 - figury geometryczne (klasa 6) MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Dany jest równoległobok ABCD. Narysuj za pomocą linijki i ekierki odcinek BF prostopadły do odcinka
LXI Olimpiada Matematyczna
1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2015 rok SZCZYRK 2015 Treści zadań Pierwsze zawody indywidualne
Jarosław Wróblewski Matematyka Elementarna, zima 2014/15
Kolokwium nr 3: 27.01.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Kolokwium nr 4: 3.02.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Ćwiczenia 13,15,20,22.01.2015 (wtorki, czwartki) 266.
Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY
Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.
MATEMATYKA DLA CIEKAWSKICH. Twierdzenie Pitagorasa inaczej cz. 2
Renata Nowak MATEMATYKA DLA CIEKAWSKICH Twierdzenie Pitagorasa inaczej cz. 2 Wróćmy do twierdzenia Pitagorasa, które dobrze znamy. Mówi ono o związkach między bokami w trójkącie prostokątnym. Może w jego
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria
1 Pomimo, że ten dział, to typowa geometria wydawałoby się trudny dział to paradoksalnie troszkę tu odpoczniemy, jeśli chodzi o teorię. Dlaczego? Otóż jak zapewne doskonale wiesz, na maturze otrzymasz
Nawi zanie do gimnazjum Planimetria Trójk Rysujemy Rysujemy Rysujemy Zapisujemy t zewn trzny trójk ta, Trójk ty ze wzgl du na miary k tów Trójk
PLANIMETRIA Lekcja 102-103. Miary kątów w trójkącie str. 222-224 Nawiązanie do gimnazjum Planimetria to., czy planimetria zajmuje się. (Dział geometrii, który zajmuje się badaniem płaskich figur geometrycznych)
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Lang: Długość okręgu. pole pierścienia będę chciał znaleźć inne wyrażenie na pole pierścienia. oszacowanie
Tomasz Zamek-Gliszczyński. Zadania powtórkowe przed maturą. Zakres podstawowy. Matematyka. atematyka
atematyka Tomasz Zamek-Gliszczyński Matematyka Zadania powtórkowe przed maturą Zakres podstawowy Spis treści Wstęp 4 1 Liczby 5 2 Algebra 24 3 Funkcje 31 4 Ciągi 61 5 Geometria na płaszczyźnie 69 6 Trygonometria
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka
XI Olimpiada Matematyczna Gimnazjalistów
XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a
Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7
Geometria Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 W tym przypadku możemy wykonać szkic pięciokąta i policzyć przekątne: Zadanie. Promień okręgu opisanego na kwadracie
Jarosław Wróblewski Matematyka Elementarna, zima 2011/12
168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =
Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)
Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 TWIERDZENIE PONCELETA-STEINERA W roku 1833, Szwajcarski matematyk Jakob Steiner udowodnił, że wszystkie klasyczne konstrukcje (za pomocą cyrkla i linijki)
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi
ZADANIA PRZED EGZAMINEM KLASA I LICEUM
ZADANIA PRZED EGZAMINEM KLASA I LICEUM + 7. Równanie = 0 : + A. ma tylko jedno rozwiązanie równe 7 B. ma tylko jedno rozwiązania równe 7 C. ma tylko jedno rozwiązanie równe D. nie ma rozwiązań.. Do przedziału,
ZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków?
PLANIMETRIA 2 ZADANIE 1 W rombie jedna z przekatnych jest dłuższa od drugiej o 3 cm. Dla jakich długości przekatnych pole rombu jest większe od 5cm 2? 1 ZADANIE 2 Czy istnieje taki wielokat, który ma 2
SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o
SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Średnica koła jest o 4 cm dłuższa od promienia. Pole tego koła jest równe 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych
Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM
Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW SZCZYRK 2017
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Obóz Naukowy OMJ Poziom OMJ 207 rok SZCZYRK 207 Olimpiada Matematyczna Juniorów jest wspó³finansowana ze œrodków
Rysunek 1. Udowodnij, że AB CD = BC DA. Rysunek 2. Po inwersji o środku w punkcie E. Rysunek 3. Po inwersji o środku w punkcie A
g H e D c H' E g' h e' O d A C' d' C A' F' f' I' G' B' G I F f INWERSJA Inwersją o środku O i promieniu r nazywamy takie przekształcenie płaszczyzny (bez punktu O), które każdemu punktowi X O przyporządkowuje
Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1
Zadanie. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S i S 2 obliczyć pole trapezu ABCD. Zadanie 2. Mamy trapez, w którym suma kątów przy dłuższej podstawie
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,
Cztery punkty na okręgu
Tomasz Szymczyk V LO w ielsku-iałej ztery punkty na okręgu Przydatne fakty: (1) kąty wpisane w okrąg oparte na łukach przystających są równe, (2) czworokąt jest wpisany w okrąg wtedy i tylko wtedy, gdy
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
Dział I FUNKCJE TRYGONOMETRYCZNE
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:
Kształcenie w zakresie podstawowym. Klasa 3
Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Czworościany ortocentryczne zadania
Czworościany ortocentryczne zadania 1. Wykazać, że nastepujące warunki są równoważne: a) istnieje przecięcie wysokości czworościanu, b) przeciwległe krawędzie są prostopadłe, c) sumy kwadratów długości
Wielokąty i Okręgi- zagadnienia
Wielokąty i Okręgi- zagadnienia 1. Okrąg opisany na trójkącie. na każdym trójkącie można opisać okrąg, środkiem okręgu opisanego na trójkącie jest punkt przecięcia symetralnych boków tego trójkąta, jeżeli
Jarosław Wróblewski Matematyka dla Myślących, 2008/09
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (dokończenie).
PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:
PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12
Geometria płaska - matura 010 1. Przyprostokątne trójkąta prostokątnego mają ługości 7cm i 4 7cm. Wysokość poprowazona z wierzchołka kąta prostego ma ługość: 1 5 A. 7cm B. cm C. 8 7cm D. 7 7cm 5 7. Miara
Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki
Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego
Klasówka gr. A str. 1/3
Klasówka gr. A str. 1/3 1. Boki trójkąta ABC mają długości 9 cm, 7cm, 8 cm. Boki trójkąta podobnego A B C w skali 1 2 mają długości: A. 18 cm, 14 cm, 16 cm B. 4 1 2 cm, 3 1 2 cm, 4 cm C. 4 1 2 cm, 7 cm,
Jednokładność i podobieństwo
Jednokładność i podobieństwo Adrian Łydka Bernadeta Tomasz Teoria Definicja 1. Iloczynem niezerowego wektora u przez liczbę rzeczywistą s 0 nazywamy wektor v spełniający następujące dwa warunki: 1) v =
Treści zadań Obozu Naukowego OMJ
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Treści zadań Obozu Naukowego OMJ Poziom OM 2017 rok SZCZYRK 2017 Olimpiada Matematyczna Juniorów jest wspó³finansowana
ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA
ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest
Regionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 2 (14-19.10.2009) nalogie i różnice miedzy trójkątem
ETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE
LAMBDA Zespół Szkół w Chełmży ul. Hallera 23, 87 140 Chełmża tel./fax. 675 24 19 Konkurs matematyczny dla uczniów klas III gimnazjum www.lamdba.neth.pl ETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a
ZADANIA NA DOWODZENIE GEOMETRIA, cz. II Wojciech Guzicki
ZNI N OWOZNI GOMTRI, cz. II Wojciech Guzicki W arkuszach maturalnych w ostatnich dwóch latach znalazły się zadania geometryczne na dowodzenie. Za poprawne rozwiązanie takiego zadania w arkuszu podstawowymzdającymógłotrzymać2pkt,warkuszurozszerzonym4pktlub3pkt.przy