Modelowanie komputerowe
|
|
- Kinga Skiba
- 1 lat temu
- Przeglądów:
Transkrypt
1 Modelowanie komputerowe wykład 1- Generatory liczb losowych i ich wykorzystanie dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 5,12 października 2016 r.
2 PLAN WYKŁADU 1 Generatory liczb pseudolosowych i ich wykorzystanie 2 Generowanie ciągów liczb losowych- metody odwracania dystrybuanty, superpozycji i eliminacji 3 Symulacje komputerowe. Metoda następnego zdarzenia 4 Charakterystyka klasycznych systemów kolejkowych (systemów obsługi masowej) 5 Analiza symulacyjna prostych jednoliniowych i wieloliniowych systemów kolejkowych 6 Systemy informatyczne o stochastycznym charakterze działania, charakterystyka i klasyfikacja 7 Analizy symulacyjne systemów obsługi zgłoszeń o losowej objętości, przykłady systemów priorytetowych
3 LITERATURA [1] R. Wieczorkowski, R. Zieliński. Komputerowe generatory liczb losowych. WNT, Warszawa, [2] O. Tikhonenko. Metody probabilistyczne analizy systemów informacyjnych. EXIT, Warszawa, 2006.
4 GENERATORY LICZB PSEUDOLOSOWYCH- WPROWADZENIE W wielu praktycznych zastosowaniach komputery służą dziś jako urządzenia, które symulują realne procesy techniczne, demograficzne, ekonomiczne, medyczne itp. Człowiek wykorzystuje duże prędkości procesorów komputera oraz jego zasoby pamięciowe, aby w szybki sposób poznać przebieg pewnych losowych zjawisk w czasie. Procesy, które faktycznie mogą przebiegać w długim okresie czasowym można modelować, wykorzystując odpowiednie programy komputerowe nazywane programami symulacyjnymi. Programy takie tworzy się po to, aby poznać przebieg danych zjawisk oraz przewidzieć pewne prawidłowości.
5 GENERATORY LICZB PSEUDOLOSOWYCH- WPROWADZENIE Prowadzi to albo do znalezienia ogólnego przepisu(wzoru) określającego przebieg danego zjawiska lub w trudniejszych sytuacjach(gdy rozwiązanie ogólne jest niemożliwe do znalezienia) do znalezienia pewnych średnich charakterystyk zjawiska lub do stworzenia narzędzia, które może pozwolić przewidzieć wartości zjawiska w określonej chwili czasu. Ponieważ wiele przebiegających zjawisk ma charakter procesów losowych zależnych często od wielu czynników, więc naturalne jest, że podstawowym problemem jest umiejętność mądrego wykorzystania komputera jako maszyny losującej, za pomocą której można losować ciągi liczb losowych o zadanym rozkładzie prawdopodobieństwa.
6 GENERATORY LICZB PSEUDOLOSOWYCH- WPROWADZENIE Od początku istnienia komputerów kompilatory języków programowania są wyposażone w funkcje losujące. Jeśli chodzi o ścisłość, do losowania wykorzystywane są pewne algorytmy matematyczne wykorzystujące czas systemowy komputera(np. liczbę sekund, która upłynęła od 1 stycznia 1970 roku). Uzależnienie losowanej liczby od zmieniającego się czasu pozwala na uzyskiwanie różnych ciągów w zależności od chwili losowania, zatem ciągi te w krótkich odstępach czasowych są niezależne. Trzebamiećjednaknauwadze,żealgorytmyteopierająsięo pewne formuły matematyczne, które przy długiej serii losowań stają się cykliczne, to znaczy generatory losowe mają własność okresowości, co powoduje, że uzyskane ciągi liczb nie są losowe, nazywamy je częściej pseudolosowymi.
7 ZMIENNE LOSOWE- PRZYPOMNIENIE ZMIENNA LOSOWA- DEFINICJA Zmienną losową X nazywamy dowolną funkcję(mierzalną) odwzorowującą przestrzeń zdarzeń elementarnych Ω w zbiór liczb rzeczywistych R. Najważniejsze rodzaje zmiennych losowych to: zmienne losowe dyskretne, czyli takie, które przyjmują skończonąlubprzeliczalnąliczbęwartości x i z prawdopodobieństwami p i, i p i =1.Zespółliczb p i jest nazywany rozkładem zmiennej losowej dyskretnej. zmienne losowe absolutnie ciągłe, czyli takie, które przyjmują nieprzeliczalną liczbę wartości. Dla takich zmiennych losowych często podana jest tzw. funkcja gęstości prawdopodobieństwa f, która w ogólnym przypadku jest funkcjąnieujemnąorazspełniawarunek: f(x)dx =1.
8 ZMIENNE LOSOWE DYSTRYBUANTA, WARTOŚĆ OCZEKIWANA Dodatkowo przypomnijmy, że dla każdego rodzaju zmiennej losowej X można wprowadzić funkcję F określoną następująco: F(x) = P{X< x}, nazywaną DYSTRYBUANTĄ ZMIENNEJ LOSOWEJ X. W przypadku zmiennych losowych dyskretnych dystrybuantę obliczamy ze wzoru: F(x) = i<xp i. Natomiast w przypadku zmiennych losowych absolutnie ciągłych: F(x) = x f(u)du.
9 ZMIENNE LOSOWE DYSTRYBUANTA, WARTOŚĆ OCZEKIWANA Przypomnimy jeszcze podstawowe charakterystyki liczbowe zmiennych losowych oraz sposoby ich obliczania. POJĘCIE WARTOŚCI OCZEKIWANEJ Wartością oczekiwaną zmiennej losowej X nazywamy liczbę określoną następująco: EX = xdf(x).
10 WARTOŚĆ OCZEKIWANA, WARIANCJA W przypadku zmiennej losowej dyskretnej wartość oczekiwaną obliczamy ze wzoru: EX = i x i p i. W przypadku zmiennej losowej absolutnie ciągłej wartość oczekiwaną obliczamy ze wzoru: EX = xf(x)dx. POJĘCIE WARIANCJI Wariancją zmiennej losowej X nazywamy liczbę określoną następująco: DX = E(X EX) 2 = EX 2 (EX) 2.
11 WARIANCJA W przypadku zmiennej losowej dyskretnej wariancję obliczamy ze wzoru: DX = xi 2 p i (EX) 2. i W przypadku zmiennej losowej absolutnie ciągłej wariancję obliczamy ze wzoru: DX = x 2 f(x)dx (EX) 2.
12 GENEROWANIE LICZB LOSOWYCH- ROZKŁAD JEDNOSTAJNY W większości kompilatorów podstawową instrukcją losującą jest instrukcja rand(), której wynikiem jest wylosowana w oparciu o pewienalgorytmliczbanaturalnazzakresu [0,RAND MAX ],gdzie wartośćstała RAND MAX jestpewnągranicznąwartościąbędącą na przykład wartością największą typu całkowitego(int). Wykorzystanie tej komendy pozwala więc na losowanie wyłącznie liczbnaturalnychzograniczonegozbioru{0,1,2,...,rand MAX }. Powstaje naturalne pytanie, w jaki sposób wykorzystać tą komendę do losowania liczb z innych dyskretnych oraz ciągłych rozkładów prawdopodobieństwa.
13 ROZKŁAD JEDNOSTAJNY Bardzo szczególną rolę w modelowaniu komputerowym odgrywa rozkład jednostajny określony na przedziale [0, 1]. Jest to ciągły rozkład prawdopodobieństwa określony następującą funkcją gęstości: f(x) = 1 dla x [0,1].Okazujesiębowiem,żewykorzystująctenrozkładmożna w oparciu o matematyczne metody budować generatory liczb losowych dla wielu innych grup ciągłych rozkładów prawdopodobieństwa. Naturalne jest pytanie, w jaki sposób z generatora, który losuje liczby dyskretnezprzedziału [0,RAND MAX ]uzyskaćgeneratorrozkładu ciągłego- jednostajnego określonego na przedziale [0, 1]. Odpowiedź jest dość prosta- wystarczy otrzymane wylosowane liczby z analizowanego przedziałupodzielićprzezwartość RAND MAX.Wtensposóbwylosowane 1 2 liczbynależądozbioru{0, RAND MAX, RAND MAX,...,1}.Zauważmyjednak, że dalej jest to rozkład dyskretny. Jednak jego podstawowe charakterystyki są zbliżone do charakterystyk rozkładu jednostajnego. Oznacza to, że w szczególności wartość oczekiwana oraz wariancja takiego rozkładu są prawie identyczne, jak charakterystyki rozkładu jednostajnegonaprzedziale [0,1],któresąrówne-EX = 1 2,DX = 1 12.
14 Generator rozkładu jednostajnego- C++ #include<iostream> #include<cstdlib> using namespace std; intmain() { float x; srand(time(0)); for(int i=0;i<100;i++){ x=(float)rand()/rand_max; cout<<x<<","; } cout<<endl; return 0; }
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Prawdopodobieństwo i statystyka
Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze
Modelowanie komputerowe
Modelowanie komputerowe wykład 5- Klasyczne systemy kolejkowe i ich analiza dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 16,23listopada2015r. Analiza
zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.
Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl
Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Wstęp do programowania
wykład 6 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2017/2018 Losowanie liczb całkowitych Dostępne biblioteki Najprostsze losowanie liczb całkowitych można wykonać za pomocą funkcji
Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych
Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Plan laboratorium Generatory liczb pseudolosowych dla rozkładów dyskretnych: Generator liczb o rozkładzie równomiernym Generator
Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Rachunek Prawdopodobieństwa i Statystyka
Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Zmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
Metody numeryczne. Wykład nr 12. Dr Piotr Fronczak
Metody numeryczne Wykład nr 1 Dr Piotr Fronczak Generowanie liczb losowych Metody Monte Carlo są oparte na probabilistyce działają dzięki generowaniu liczb losowych. W komputerach te liczby generowane
Elementy Rachunek prawdopodobieństwa
Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych
Algorytmy zrandomizowane
Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
KARTA PRZEDMIOTU. 12. Przynależność do grupy przedmiotów: Prawdopodobieństwo i statystyka
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: RACHUNEK PRAWDOPODOBIEŃSTWA 2. Kod przedmiotu: RPr 3. Karta przedmiotu ważna od roku akademickiego: 20152016 4. Forma
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:
II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15
II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.0 Definicje Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Bolek, Lolek i Tola wstąpili do kasyna. (A) Bolek postawił na czerwone, (B)
STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach.
Wykład 3 Generatory liczb losowych o dowolnych rozkładach.. Metoda odwracania Niech X oznacza zmienna losowa o dystrybuancie F. Oznaczmy F (t) = inf (x : t F (x)). Uwaga Zauważmy, że t [0, ] : F ( F (t)
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.
Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.
Prawdopodobieństwo i statystyka
Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.
(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008
STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa; zajmuje się badaniem zbiorów na podstawie analizy ich części. Nauka, której przedmiotem zainteresowania są metody
Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha.
Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Generator liczb losowych o rozkładzie Rayleigha. Generator liczb losowych o rozkładzie Rayleigha. 1. Cel ćwiczenia
Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:
Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie
Statystyka. Magdalena Jakubek. kwiecień 2017
Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
Przestrzeń probabilistyczna
Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty
Wstęp do rachunku prawdopodobieństwa
Wstęp do rachunku prawdopodobieństwa Rozdział 06: Zmienne losowe. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Wprowadzenie Przykład 6.1 Adam, Bolek i Czesiu wstąpili do kasyna. Postanowili
4,5. Dyskretne zmienne losowe (17.03; 31.03)
4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie
RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA
Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,
Opis przedmiotu: Probabilistyka I
Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca
Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej
Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie
Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
Liczby pseudolosowe. #include #include int main() { printf("%d\n", RAND_MAX); return 0; }
Liczby pseudolosowe Standardowa biblioteka języka C w pliku nagłówkowym posiada zadeklarowane dwie funkcje służące do generowania liczb pseudolosowych: rand i srand. Funkcja srand() jako parametr
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
wykład V uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C++ klasy i obiekty wykład V dr Jarosław Mederski Spis Język C++ - klasy
i obiekty Programowanie i obiekty uzupełnienie notatek: dr Jerzy Białkowski i obiekty 1 2 3 4 i obiekty Obiektowość języka C++ Na tym wykładzie poznamy: ˆ Klasa (w języku C++ rozszerzenie struktury, typ
Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,
P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Wprowadzenie Przykład 1 Bolek, Lolek i Tola
3. Generacja liczb losowych o różnych rozkładach
3. Generacja liczb losowych o różnych rozkładach 1. Jak uzyskać liczby pseudolosowe za pomocakomputera?[zieliński] nieliniowe sprzężenie zwrotne x k = F(x k 1,x k 2,..., x k q ) Postulaty dotyczace F:
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Wstęp do programowania
wykład 7 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2016/2017 Losowanie liczb całkowitych Dostępne biblioteki Najprostsze losowanie liczb całkowitych można wykonać za pomocą funkcji
Pojęcie przestrzeni probabilistycznej
Pojęcie przestrzeni probabilistycznej Definicja (przestrzeni probabilistycznej) Uporządkowany układ < Ω, S, P> nazywamy przestrzenią probabilistyczną jeśli (Ω) Ω jest niepustym zbiorem zwanym przestrzenia
Metoda Monte Carlo i jej zastosowania
i jej zastosowania Tomasz Mostowski Zajęcia 31.03.2008 Plan 1 PWL 2 3 Plan PWL 1 PWL 2 3 Przypomnienie PWL Istnieje wiele wariantów praw wielkich liczb. Wspólna ich cecha jest asymptotyczne zachowanie
Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)
MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Zmienne losowe skokowe
Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.
POLITECHNIKA WROCŁAWSKA STUDIA DOKTORANCKIE JEDNOSTKA ZGŁASZAJĄCA/REALIZUJĄCA KURS: WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO / STUDIUM DOKTORANCKIE
JEDNOSTKA ZGŁASZAJĄCA/REALIZUJĄCA KURS: WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO / STUDIUM DOKTORANCKIE KARTA PRZEDMIOTU Nazwa w języku polskim: Symulacje Monte Carlo w obliczeniach inżynierskich Nazwa w
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona
Rozkłady zmiennych losowych
Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład
Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących
Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Cezary Dendek Wydział Matematyki i Nauk Informacyjnych PW Plan prezentacji Plan prezentacji Wprowadzenie
Statystyka i eksploracja danych
Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura
ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.
Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Diagramy Venna. Uwagi:
Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo
Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe
Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa
Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2015 2016 Doświadczenie losowe Doświadczenie
3 MODELE PROCESÓW STOCHASTYCZNYCH 3
3 MODELE PROCESÓW STOCHASTYCZNYCH 3 3.1. Wprowadzenie Prawdopodobieństwo i procesy stochastyczne służą do opisu i reprezentacji niepewności lub niejednoznaczności. Podejście probabilistyczne nie jest w
Wykład 3: Prawdopodobieństwopodstawowe
Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo
Wprowadzenie do metod numerycznych Wykład 13 Metody statystyczne
Wprowadzenie do metod numerycznych Wykład 13 Metody statystyczne Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści 1 2 Generowanie ciągów liczb losowych na
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
Systemy kolejkowe z histerezą- wprowadzenie
Systemy kolejkowe z histerezą- wprowadzenie dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 25 kwietnia 2014 r. System kolejkowy z histerezą System kolejkowy
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 0/5 () Nazwa Rachunek prawdopodobieństwa i statystyka () Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot ()
σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;
Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia
Statystyka i eksploracja danych
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja
SYMULACJA MONTE CARLO JAKO NARZĘDZIE PROGNOZOWANIA WYBRANYCH ASPEKTÓW RYNKU NIERUCHOMOŚCI
Dr inż. Tomasz Bartłomowicz Uniwersytet Ekonomiczny we Wrocławiu Katedra Ekonometrii i Informatyki SYMULACJA MONTE CARLO JAKO NARZĘDZIE PROGNOZOWANIA WYBRANYCH ASPEKTÓW RYNKU NIERUCHOMOŚCI. Wprowadzenie
Prawdopodobieństwo i statystyka
Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:
Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.
Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.
Matematyka 2. dr inż. Rajmund Stasiewicz
Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia
Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń
Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:
Wykład 14. Testowanie hipotez statystycznych - test zgodności chi-kwadrat. Generowanie liczb losowych.
Wykład 14 Testowanie hipotez statystycznych - test zgodności chi-kwadrat. Generowanie liczb losowych. Rozkład chi-kwadrat Suma kwadratów n-zmiennych losowych o rozkładzie normalnym standardowym ma rozkład
Sterowanie wielkością zamówienia w Excelu - cz. 3
Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej