Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha."

Transkrypt

1 Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Generator liczb losowych o rozkładzie Rayleigha.

2 Generator liczb losowych o rozkładzie Rayleigha. 1. Cel ćwiczenia Celem tego ćwiczenia jest opracowanie generatora liczb pseudolosowych [1] podlegających rozkładowi Rayleigha. W ramach tego ćwiczenia należy napisać program w dowolnym języku programowania i dla dowolnego systemu operacyjnego, program ten ma generować liczby pseudolosowe (ich ilość należy programowi zadawać, nie powinna być ona większa niż 500) dla zadanych parametrów rozkładu, następnie przeprowadzać dla wygenerowanych liczb dwa dowolne testy losowości oraz zapisywać te liczby do zbioru tekstowego w formie kolumny liczb. Można zastosować dowolną z metod opisanych np. w książkach [1] i []. Do sprawozdania należy dołączyć plik źródłowy programu, plik wykonywalny programu, niestandardowe biblioteki użyte przy kompilacji programu oraz cztery zestawy danych dla których przeprowadzono testy losowości (wyniki tych testów i histogramy sporządzone dla tych zbiorów oraz wypływające z nich wnioski muszą się znaleźć w sprawozdaniu).. Wstęp Mówimy, że zmienna losowa Y ma rozkład Rayleigha, jeżeli gęstość jej rozkładu prawdopodobieństwa wyraża się wzorem: x x exp dla x > 0 f ( x) = λ λ 0 dla x 0 wartość przeciętna dla tego rozkładu jest dana zależnością: zaś wariancja wynosi: 1 µ = σ λπ 4 π = λ Metody generowania rozkładu i testowania losowości Jest kilka sposobów generowania liczb losowych o rozkładzie Rayleigha, opisy ich można znaleźć w literaturze [1-], jednym z nich jest metoda odwracania dystrybuanty [1], gdy z uprzednio wygenerowane zbioru liczb o rozkładzie równomiernym (który dobrze jest

3 sprawdzić za pomocą testu losowości) otrzymujemy rozkład Rayleigha opisany funkcją gęstości prawdopodobieństwa postaci: y y exp dla y > 0 f ( y) = σ σ 0 dla y 0 na podstawie bardzo prostej zależności: Y = σ ln R gdzie R oznacza zmienną o rozkładzie równomiernym na przedziale (0,1). Wygenerowany przez program zbiór liczb podlega dwóm dowolnym testom na losowość, mogą to być na przykład test serii oraz test graficzny. W teście serii aby określić czy serie występujące w zbiorze są losowe należy obliczyć wartość średnią, a następnie wszystkim wartością nie większym niż średnia przyporządkować znak minus, a większym znak plus. Ilość serii N ob. jest równa liczbie zmian znaku powiększonej o 1. Przewidywana ilość serii w zbiorze n liczb losowych dana jest wzorem: 1 N sp = ( n 1) 3 odchylenie standardowe dla liczby serii jest równe: ( 16n 9) S = 90 Obliczamy stosunek: r = N ob S N sp Jeżeli r < r kr zbiór wygenerowanych licz przeszedł test pomyślnie, jako r kr możemy przyjąć wartość odczytaną z tablic lub dla zgrubnego oszacowania wartość. Test graficzny przeprowadzamy w następujący sposób: w układzie współrzędnych XY zaznaczamy punkty, których współrzędnymi są kolejne liczby (Z i, Z i+1 ) wygenerowane przez program. Jeżeli punkty te są rozmieszczone równomiernie w kwadracie o wierzchołkach (Z min, Z min ), (Z max, Z min ), (Z max,z max ) i (Z min, Z max ) to zbiór wygenerowanych liczb świadczy o tym, że rozkład liczb jest równomierny, w przypadku innych rozkładów zestaw przechodzi pozytywnie test jeśli zachowana jest symetria względem środka tak powstałego kwadratu. 4. Sprawozdanie W sprawozdaniu przygotowanym w formie elektronicznej lub papierowej nie zamieszczamy całości lub fragmentów listingu programu, program źródłowy powinien być natomiast dobrze opisany za pomocą komentarzy. W sprawozdaniu nie zamieszczamy liczb otrzymanych za pomocą generatora oraz tablic z których korzystamy w ewentualnym teście 3

4 losowości, natomiast powinna znaleźć się informacja w postaci odnośnika literaturowego do tychże. W sprawozdaniu powinny koniecznie znaleźć się poniższe elementy: 4.1. Wstęp teoretyczny Wstęp teoretyczny powinien zawierać podstawowe informacje na temat generatorów liczb losowych oraz metody zastosowanej do otrzymania rozkładu będącego przedmiotem tego ćwiczenia. Powinny w nim się znaleźć wszystkie wzory stosowane w programie wraz z objaśnieniami wielkości w nich występujących. 4.. Dane techniczne Dane techniczne powinny zawierać spis plików programu oraz plików z testowanymi danymi taki jak w poniższym przykładzie: Przykład Plik: Rozmiar: Opis: GenRay.exe 74 kb Plik wykonywalny. Do skompilowania programu wykorzystaliśmy kompilator Borland C++ Version 3.1. Program należy uruchamiać w systemie MS- DOS lub w systemach Windows 3.1/3.11/9x. GenRay.cpp 1 kb Plik z kodem źródłowym programu. GenRay.obj 9 kb Plik z zapisanymi bibliotekami. hist.h 7,3 kb Biblioteka obliczająca i wyświetlająca histogram. R01.txt 1, kb Plik tekstowy z przykładowymi liczbami losowymi z rozkładu Rayleygha dla σ=1. Ilość liczb n = 100. R03.txt 600 B Plik tekstowy z przykładowymi liczbami losowymi z rozkładu Rayleygha dla σ=3. Ilość liczb n = 50. R31.txt 0,3 kb Plik tekstowy z przykładowymi liczbami losowymi z rozkładu Rayleygha dla σ=3,1. Ilość liczb n = 0. R3.txt 8 B Plik tekstowy z przykładowymi liczbami losowymi z rozkładu Rayleygha dla σ=3,. Ilość liczb n = Instrukcja obsługi programu W sprawozdaniu należy umieścić instrukcję obsługi programu pozwalającą na wygenerowanie liczb przez osobę nie znającą programu i przebiegu testów. Powinien się tu znaleźć opis formatu zbioru danych zapisywanych przez program oraz objaśnienia komunikatów wyświetlanych przez program. Przykład: W przypadku prawidłowego wczytania danych zostanie wyświetlony komunikat: Dane zostaly pomyslnie wczytane W pliku n_pliku.txt znajduje się n liczb W przypadku gdy wystąpi błąd podczas zapisywania danych, 4

5 zostanie wyświetlony komunikat: Nie mogę utworzyć pliku i nastąpi zamknięcie programu. 4.5.Wnioski W sprawozdaniu należy zamieścić wyniki testowania programu na podstawie co najmniej czterech wygenerowanych zbiorów liczb pseudolosowych, przygotowanych za pomocą generatora. Na podstawie tych wyników testowania należy wysnuć wnioski na temat przydatności i zakresu stosowalności generatora oraz funkcjonalności Państwa programu Literatura Spis literatury wykorzystanej przy opracowywaniu sprawozdania oraz pisaniu i testowaniu programu. 5. Literatura [1] R. Zieliński, Generatory liczb losowych, WNT, Warszawa [] R. Wieczorkowski, R. Zieliński.: Komputerowe generatory liczb losowych, WNT, Warszawa

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Opracował Jan T. Biernat

Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Opracował Jan T. Biernat Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Program, to lista poleceń zapisana w jednym języku programowania zgodnie z obowiązującymi w nim zasadami. Celem programu jest przetwarzanie

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się.

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się. 1 Wstęp Będziemyrozważaćgeneratorytypux n+1 =f(x n,x n 1,...,x n k )(modm). Zakładamy,żeargumentamifunkcjifsąliczbycałkowitezezbioru0,1,...,M 1. Dla ustalenia uwagi mogą to być generatory liniowe typu:

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka

Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka 1. Kompilacja aplikacji konsolowych w środowisku programistycznym Microsoft Visual Basic. Odszukaj w menu startowym systemu

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka

Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka 1. Kompilacja aplikacji konsolowych w środowisku programistycznym Microsoft Visual Basic. Odszukaj w menu startowym systemu

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek: 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Forex PitCalculator INSTRUKCJA UŻYTKOWNIKA

Forex PitCalculator INSTRUKCJA UŻYTKOWNIKA Forex PitCalculator Forex PitCalculator jest aplikacją służącą do obliczania podatku należnego z tytułu osiągniętych na rynku walutowym zysków. Jest to pierwsze tego typu oprogramowanie na polskim rynku.

Bardziej szczegółowo

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze

Bardziej szczegółowo

ALGORYTMY I PROGRAMY

ALGORYTMY I PROGRAMY ALGORYTMY I PROGRAMY Program to ciąg instrukcji, zapisanych w języku zrozumiałym dla komputera. Ten ciąg instrukcji realizuje jakiś algorytm. Algorytm jest opisem krok po kroku jak rozwiązać problem, czy

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut

EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

Metody numeryczne. Wykład nr 12. Dr Piotr Fronczak

Metody numeryczne. Wykład nr 12. Dr Piotr Fronczak Metody numeryczne Wykład nr 1 Dr Piotr Fronczak Generowanie liczb losowych Metody Monte Carlo są oparte na probabilistyce działają dzięki generowaniu liczb losowych. W komputerach te liczby generowane

Bardziej szczegółowo

3 Przygotował: mgr inż. Maciej Lasota

3 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 3 1/8 Język C Instrukcja laboratoryjna Temat: Instrukcje warunkowe, pętle. 3 Przygotował: mgr inż. Maciej Lasota 1) Instrukcje warunkowe. Instrukcje warunkowe pozwalają zdefiniować warianty

Bardziej szczegółowo

Delphi podstawy programowania. Środowisko Delphi

Delphi podstawy programowania. Środowisko Delphi Delphi podstawy programowania Środowisko Delphi Olsztyn 2004 Delphi Programowanie obiektowe - (object-oriented programming) jest to metodologia tworzeniu programów komputerowych definiująca je jako zbiór

Bardziej szczegółowo

1 Wskaźniki i zmienne dynamiczne, instrukcja przed zajęciami

1 Wskaźniki i zmienne dynamiczne, instrukcja przed zajęciami 1 Wskaźniki i zmienne dynamiczne, instrukcja przed zajęciami Celem tych zajęć jest zrozumienie i oswojenie z technikami programowania przy pomocy wskaźników w języku C++. Proszę przeczytać rozdział 8.

Bardziej szczegółowo

Niezawodność diagnostyka systemów laboratorium. Ćwiczenie 2

Niezawodność diagnostyka systemów laboratorium. Ćwiczenie 2 dr inż. Jacek Jarnicki doc. PWr Niezawodność diagnostyka systemów laboratorium Ćwiczenie 2 1. Treść ćwiczenia Generowanie realizacji zmiennych losowych i prezentacja graficzna wyników losowania. Symulacja

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Internetowy system administrowania pracami dyplomowymi na Politechnice Opolskiej. Instrukcja dla studenta.

Internetowy system administrowania pracami dyplomowymi na Politechnice Opolskiej. Instrukcja dla studenta. Internetowy system administrowania pracami dyplomowymi na Politechnice Opolskiej. Instrukcja dla studenta. http://www.jokasta.we.po.opole.pl:8081/isapd/ 1. Strona główna. Strona główna znajduje się pod

Bardziej szczegółowo

Programowanie I. O czym będziemy mówili. Plan wykładu nieco dokładniej. Plan wykładu z lotu ptaka. Podstawy programowania w językach. Uwaga!

Programowanie I. O czym będziemy mówili. Plan wykładu nieco dokładniej. Plan wykładu z lotu ptaka. Podstawy programowania w językach. Uwaga! Programowanie I O czym będziemy mówili Podstawy programowania w językach proceduralnym ANSI C obiektowym Java Uwaga! podobieństwa w podstawowej strukturze składniowej (zmienne, operatory, instrukcje sterujące...)

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Ćwiczenie 1. Przygotowanie środowiska JAVA

Ćwiczenie 1. Przygotowanie środowiska JAVA Ćwiczenie 1 Przygotowanie środowiska JAVA 1. Wprowadzenie teoretyczne Instalacja JDK (Java Development Kit) NaleŜy pobrać z java.sun.com środowisko i zainstalować je. Następnie naleŝy skonfigurować środowisko.

Bardziej szczegółowo

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji.

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. 1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. Matematyczna funkcja f ma być określona w programie w oddzielnej funkcji języka C (tak, aby moŝna było łatwo ją zmieniać). Przykładowa funkcja to:

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Instrukcja automatycznego tworzenia pozycji towarowych SAD na podstawie danych wczytywanych z plików zewnętrznych (XLS).

Instrukcja automatycznego tworzenia pozycji towarowych SAD na podstawie danych wczytywanych z plików zewnętrznych (XLS). Instrukcja automatycznego tworzenia pozycji towarowych SAD na podstawie danych wczytywanych z plików zewnętrznych (XLS). W programie FRAKTAL SAD++ istnieje moŝliwość automatycznego wczytywania danych z

Bardziej szczegółowo

Ćwiczenie: JavaScript Cookies (3x45 minut)

Ćwiczenie: JavaScript Cookies (3x45 minut) Ćwiczenie: JavaScript Cookies (3x45 minut) Cookies niewielkie porcje danych tekstowych, które mogą być przesyłane między serwerem a przeglądarką. Przeglądarka przechowuje te dane przez określony czas.

Bardziej szczegółowo

WOJEWÓDZTWO PODKARPACKIE

WOJEWÓDZTWO PODKARPACKIE WOJEWÓDZTWO PODKARPACKIE UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO Instrukcja instalacji generatora wniosku o dofinansowanie projektu ze środków EFRR w ramach I osi priorytetowej Regionalnego

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Podstawy programowania 2. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 2 Podstawy programowania 2 Temat: Zmienne dynamiczne tablica wskaźników i stos dynamiczny Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1 Tablice wskaźników Tablice

Bardziej szczegółowo

PRYWATNA WYŻSZA SZKOŁA BUSINESSU, ADMINISTRACJI I TECHNIK KOMPUTEROWYCH S Y L A B U S

PRYWATNA WYŻSZA SZKOŁA BUSINESSU, ADMINISTRACJI I TECHNIK KOMPUTEROWYCH S Y L A B U S PRYWATNA WYŻSZA SZKOŁA BUSINESSU, ADMINISTRACJI I TECHNIK KOMPUTEROWYCH ZATWIERDZAM Prorektor ds. dydaktyki i wychowania S Y L A B U S 1 Tytuł (stopień) naukowy oraz imię i nazwisko wykładowcy: dr hab.,

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY ARKUSZ II STYCZEŃ 2012 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron (zadania 4 6) i czy dołączony jest do niego

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Metoda Monte Carlo, przykład symulacji statycznej (brak czynnika czasowego). Część I

Metoda Monte Carlo, przykład symulacji statycznej (brak czynnika czasowego). Część I Metoda Monte Carlo, przykład symulacji statycznej (brak czynnika czasowego). Część I Krok I. Zebranie danych wejściowych (liczba kompletów opon) Częstość (liczba dni) 0 10 1 20 2 40 3 60 4 40 5 30 Razem:

Bardziej szczegółowo

Dokumentacja końcowa projektu z ZPR

Dokumentacja końcowa projektu z ZPR Dokumentacja końcowa projektu z ZPR Temat projektu: Prowadzący projekt: Zespół projektowy: Losowe przeszukiwanie stanów dr inż. Robert Nowak Piotr Krysik Kamil Zabielski 1. Opis projektu Projekt ma za

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

MS Excel cz.1 funkcje zaawansowane

MS Excel cz.1 funkcje zaawansowane MS Excel cz.1 funkcje zaawansowane Spis zagadnień: Funkcje daty i czasu, dzięki którym możemy manipulować danymi typu data i czas i np. wstawić do arkusza aktualną datę. Funkcje warunkowe, które pozwalają

Bardziej szczegółowo

Wprowadzenie do formuł i funkcji

Wprowadzenie do formuł i funkcji Wprowadzenie do formuł i funkcji Wykonywanie obliczeń, niezależnie od tego, czy są one proste czy złożone, może być nużące i czasochłonne. Przy użyciu funkcji i formuł programu Excel można z łatwością

Bardziej szczegółowo

Metodyki i Techniki Programowania 1 1 1. MECHANIZM POWSTAWANIA PROGRAMU W JĘZYKU C PODSTAWOWE POJĘCIA

Metodyki i Techniki Programowania 1 1 1. MECHANIZM POWSTAWANIA PROGRAMU W JĘZYKU C PODSTAWOWE POJĘCIA Metodyki i Techniki Programowania 1 1 ZAJ CIA 3. 1. MECHANIZM POWSTAWANIA PROGRAMU W JĘZYKU C PODSTAWOWE POJĘCIA IDE zintegrowane środowisko programistyczne, zawierające kompilator, edytor tekstu i linker,

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Wstęp do Programowania, laboratorium 02

Wstęp do Programowania, laboratorium 02 Wstęp do Programowania, laboratorium 02 Zadanie 1. Napisać program pobierający dwie liczby całkowite i wypisujący na ekran największą z nich. Zadanie 2. Napisać program pobierający trzy liczby całkowite

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

MS Excel 2007 Kurs zaawansowany Obsługa baz danych. prowadzi: Dr inż. Tomasz Bartuś. Kraków: 2008 04 25

MS Excel 2007 Kurs zaawansowany Obsługa baz danych. prowadzi: Dr inż. Tomasz Bartuś. Kraków: 2008 04 25 MS Excel 2007 Kurs zaawansowany Obsługa baz danych prowadzi: Dr inż. Tomasz Bartuś Kraków: 2008 04 25 Bazy danych Microsoft Excel 2007 udostępnia szereg funkcji i mechanizmów obsługi baz danych (zwanych

Bardziej szczegółowo

SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego

SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego 1 SKRYPTY Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego z = 1 y + 1+ ( x + 2) 3 x 2 + x sin y y + 1 2 dla danych wartości x = 12.5 i y = 9.87. Zadanie to można rozwiązać: wpisując dane i wzór wyrażenia

Bardziej szczegółowo

Prezentacja i udostępnianie wyników sprzedaży drewna. Ver. 01

Prezentacja i udostępnianie wyników sprzedaży drewna. Ver. 01 Prezentacja i udostępnianie wyników sprzedaży drewna Ver. 01 Zespół zadaniowy do spraw budowy, utrzymania i rozwoju internetowego systemu sprzedaży drewna w Lasach Państwowych marzec 2013 A. Wprowadzenie

Bardziej szczegółowo

Ćwiczenia laboratoryjne. Oprogramowanie i badanie prostych metod sortowania w tablicach

Ćwiczenia laboratoryjne. Oprogramowanie i badanie prostych metod sortowania w tablicach Ćwiczenia laboratoryjne Oprogramowanie i badanie prostych metod sortowania w tablicach Sprawozdanie Na każdym zajęciu laboratoryjnym sporządza się za pomocą edytora Word sprawozdanie. Bazowa zawartość

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Opracowała: Joanna Kisielińska 1 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i σ (średnia i odchylenie standardowe), jeśli jej

Bardziej szczegółowo

INTERFEJ SYSTEMU MIZAR-4

INTERFEJ SYSTEMU MIZAR-4 INTERFEJ SYSTEMU MIZAR-4 Ogólne uwagi MIZAR-4 został wprowadzony w Ŝycie w 1986 r. jako nowy projekt implementacji systemu MIZAR wywodzący się z systemu MIZAR-2, ale wykorzystano takŝe wszystkie poprzednie

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

Procedura zgłaszania problemów z obsługą oraz nieprawidłowości w funkcjonowaniu systemu PEFS 2007 w zakresie Programu Operacyjnego Kapitał Ludzki

Procedura zgłaszania problemów z obsługą oraz nieprawidłowości w funkcjonowaniu systemu PEFS 2007 w zakresie Programu Operacyjnego Kapitał Ludzki Procedura zgłaszania problemów z obsługą oraz nieprawidłowości w funkcjonowaniu systemu PEFS 2007 w zakresie Programu Operacyjnego Kapitał Ludzki (Wsparcie techniczne dla użytkowników Help Desk) Wersja

Bardziej szczegółowo

Scenariusz lekcji. rozpoznać prawidłową deklarację tablicy; podać odwołanie do określonego elementu tablicy.

Scenariusz lekcji. rozpoznać prawidłową deklarację tablicy; podać odwołanie do określonego elementu tablicy. Scenariusz lekcji 1 TEMAT LEKCJI: Zmienne tablicowe 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać definicję tablicy; podać definicję indeksu; wymienić cechy tablicy w VB.NET; podać postać deklaracji

Bardziej szczegółowo

Naukę zaczynamy od poznania interpretera. Interpreter uruchamiamy z konsoli poleceniem

Naukę zaczynamy od poznania interpretera. Interpreter uruchamiamy z konsoli poleceniem Moduł 1 1. Wprowadzenie do języka Python Python jest dynamicznym językiem interpretowanym. Interpretowany tzn. że kod, który napiszemy możemy natychmiast wykonać bez potrzeby tłumaczenia kodu programistycznego

Bardziej szczegółowo

Narzędzie informatyczne wspomagające dokonywanie ocen pracowniczych w służbie cywilnej

Narzędzie informatyczne wspomagające dokonywanie ocen pracowniczych w służbie cywilnej Narzędzie informatyczne wspomagające dokonywanie ocen pracowniczych w służbie cywilnej elektroniczne formularze arkuszy ocen okresowych i pierwszej oceny Instrukcja użytkownika Wersja 1.0 DSC KPRM 2015

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Język programowania PASCAL

Język programowania PASCAL Język programowania PASCAL (wersja podstawowa - standard) Literatura: dowolny podręcznik do języka PASCAL (na laboratoriach Borland) Iglewski, Madey, Matwin PASCAL STANDARD, PASCAL 360 Marciniak TURBO

Bardziej szczegółowo

Programowanie obiektowe. Literatura: Autor: dr inŝ. Zofia Kruczkiewicz

Programowanie obiektowe. Literatura: Autor: dr inŝ. Zofia Kruczkiewicz Programowanie obiektowe Literatura: Autor: dr inŝ. Zofia Kruczkiewicz Java P. L. Lemay, Naughton R. Cadenhead Java Podręcznik 2 dla kaŝdego Języka Programowania Java Linki Krzysztof Boone oprogramowania

Bardziej szczegółowo

Tom 6 Opis oprogramowania

Tom 6 Opis oprogramowania Część 4 Narzędzie do wyliczania wielkości oraz wartości parametrów stanu Diagnostyka stanu nawierzchni - DSN Generalna Dyrekcja Dróg Krajowych i Autostrad Warszawa, 30 maja 2012 Historia dokumentu Nazwa

Bardziej szczegółowo

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3 Matlab, zajęcia 3. Pętle c.d. Przypomnijmy sobie jak działa pętla for Możemy podać normalnie w Matlabie t=cputime; for i=1:20 v(i)=i; e=cputime-t UWAGA: Taka operacja jest bardzo czasochłonna i nieoptymalna

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

elektroniczna Platforma Usług Administracji Publicznej

elektroniczna Platforma Usług Administracji Publicznej elektroniczna Platforma Usług Administracji Publicznej Instrukcja użytkownika Instrukcja korzystania z certyfikatu wersja 7.6 Ministerstwo Spraw Wewnętrznych i Administracji ul. Batorego 5, 02-591 Warszawa

Bardziej szczegółowo

Programowanie niskopoziomowe

Programowanie niskopoziomowe W. Complak, J.Kniat, M. Antczak, K. Kwarciak, G. Palik, A. Rybarczyk, Ł. Wielebski Materiały Programowanie niskopoziomowe http://www.cs.put.poznan.pl/arybarczyk/c_w_0.pdf Spis treści 1. Instalacja środowiska

Bardziej szczegółowo

Instrukcja użytkowania

Instrukcja użytkowania Instrukcja użytkowania Aby skutecznie pracować z programem Agrinavia Map należy zrozumieć zasadę interfejsu aplikacji. Poniżej można odszukać zasady działania Agrinavia Map. Szczegółowe informacje na temat

Bardziej szczegółowo

WYKONANIE APLIKACJI OKIENKOWEJ OBLICZAJĄCEJ SUMĘ DWÓCH LICZB W ŚRODOWISKU PROGRAMISTYCZNYM. NetBeans. Wykonał: Jacek Ventzke informatyka sem.

WYKONANIE APLIKACJI OKIENKOWEJ OBLICZAJĄCEJ SUMĘ DWÓCH LICZB W ŚRODOWISKU PROGRAMISTYCZNYM. NetBeans. Wykonał: Jacek Ventzke informatyka sem. WYKONANIE APLIKACJI OKIENKOWEJ OBLICZAJĄCEJ SUMĘ DWÓCH LICZB W ŚRODOWISKU PROGRAMISTYCZNYM NetBeans Wykonał: Jacek Ventzke informatyka sem. VI 1. Uruchamiamy program NetBeans (tu wersja 6.8 ) 2. Tworzymy

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

MS EXCEL KURS DLA ZAAWANSOWANYCH Z WYKORZYSTANIEM VBA

MS EXCEL KURS DLA ZAAWANSOWANYCH Z WYKORZYSTANIEM VBA COGNITY Praktyczne Skuteczne Szkolenia i Konsultacje tel. 12 421 87 54 biuro@cognity.pl www.cognity.pl MS EXCEL KURS DLA ZAAWANSOWANYCH Z WYKORZYSTANIEM VBA C O G N I T Y SZKOLENIE MS EXCEL KURS ZAAWANSOWANYCH

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY CZĘŚĆ II Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 6 stron

Bardziej szczegółowo

Program testujący powinien testować możliwości wszystkich klas posiadających minimum jedną metodę, zastosowania STL-a i obsługę sytuacji wyjątkowych.

Program testujący powinien testować możliwości wszystkich klas posiadających minimum jedną metodę, zastosowania STL-a i obsługę sytuacji wyjątkowych. Zadanie 1: Statki : Stworzyć prostą grę w statki dla dwóch graczy w trybie graficznym, wykorzystując bibliotekę ncurses. 1. możliwość grania jednocześnie dwóch graczy 2. możliwość konfiguracji rozmiaru

Bardziej szczegółowo

Scenariusz lekcji. Scenariusz lekcji 1 TEMAT LEKCJI: 2 CELE LEKCJI: 2.1 Wiadomości: 2.2 Umiejętności: 3 METODY NAUCZANIA: 4 ŚRODKI DYDAKTYCZNE:

Scenariusz lekcji. Scenariusz lekcji 1 TEMAT LEKCJI: 2 CELE LEKCJI: 2.1 Wiadomości: 2.2 Umiejętności: 3 METODY NAUCZANIA: 4 ŚRODKI DYDAKTYCZNE: Praca z projektemi w MS VB.NET Scenariusz lekcji Scenariusz lekcji 1 TEMAT LEKCJI: Praca z projektami w MS VB.NET. 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać definicje podstawowych pojęć związanych

Bardziej szczegółowo

Programowanie w C/C++ Instrukcje - konstrukcje powtórka. LABORKA Piotr Ciskowski

Programowanie w C/C++ Instrukcje - konstrukcje powtórka. LABORKA Piotr Ciskowski Programowanie w C/C++ Instrukcje - konstrukcje powtórka LABORKA Piotr Ciskowski zadanie 1. Licz się ze sobą Napisz funkcję bez argumentów i bez wyniku, która za każdym wywołaniem będzie podawała, ile razy

Bardziej szczegółowo

PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW

PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW Grzegorz Migut, StatSoft Polska Sp. z o.o. Teresa Topolnicka, Instytut Chemicznej Przeróbki Węgla Wstęp Zasady przeprowadzania eksperymentów zmierzających

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Generacja liczb pseudolosowych

Generacja liczb pseudolosowych Generacja liczb pseudolosowych Zapis liczb w komputerze Generatory liczb pseudolosowych Liniowe kongruentne Liniowe mutiplikatywne kongruentne Jakość generatorów Test widmowy Generowanie liczb losowych

Bardziej szczegółowo

Wykład II PASCAL - podstawy składni i zmienne, - instrukcje wyboru, - iteracja, - liczby losowe

Wykład II PASCAL - podstawy składni i zmienne, - instrukcje wyboru, - iteracja, - liczby losowe Podstawy programowania Wykład II PASCAL - podstawy składni i zmienne, - instrukcje wyboru, - iteracja, - liczby losowe 1 I. Składnia Składnia programu Program nazwa; Uses biblioteki; Var deklaracje zmiennych;

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

INSTRUKCJA UŻYTKOWNIKA GENERATORA WNIOSKÓW O DOFINANSOWANIE DLA WNIOSKODAWCÓW

INSTRUKCJA UŻYTKOWNIKA GENERATORA WNIOSKÓW O DOFINANSOWANIE DLA WNIOSKODAWCÓW INSTRUKCJA UŻYTKOWNIKA GENERATORA WNIOSKÓW O DOFINANSOWANIE DLA WNIOSKODAWCÓW Historia zmian dokumentu Nr wersji Data wersji Komentarz/Uwagi/Zakres zmian 1.0 2015-11-19 Utworzenie dokumentu 1 Spis treści

Bardziej szczegółowo

Podstawy programowania - 1

Podstawy programowania - 1 Podstawy programowania - 1 doc. dr inż. Tadeusz Jeleniewski Wykład: sobota B, godz. 10.30 12.55 sala 12 Laboratorium: sobota B, godz. 13.00 15.25 sala 2 sobota B, godz. 15.30-17.55 sala 2 e-mail: tadeusz.jeleniewski@pwr.wroc.pl

Bardziej szczegółowo

Platforma.NET. Laboratorium nr 1 Podstawy języka C#

Platforma.NET. Laboratorium nr 1 Podstawy języka C# Platforma.NET Laboratorium nr 1 Podstawy języka C# Ćwiczenie 1 1. Utwórz nowy projekt a. Z menu File wybierz New/Project b. W oknie dialogowym New Project określ następujące właściwości: typu projektu:

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo

Java Podstawy. Michał Bereta www.michalbereta.pl mbereta@pk.edu.pl

Java Podstawy. Michał Bereta www.michalbereta.pl mbereta@pk.edu.pl Prezentacja współfinansowana przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach projektu Wzmocnienie znaczenia Politechniki Krakowskiej w kształceniu przedmiotów ścisłych i propagowaniu

Bardziej szczegółowo

Instrukcja standardowa Writeln

Instrukcja standardowa Writeln Instrukcja standardowa Writeln Instrukcja Writeln umożliwia wprowadzenie danych na ekran monitora powodując automatycznie późniejsze przejście kursora do nowej linii. Jest to ustawienie domyślne w działaniu

Bardziej szczegółowo

Data wydania: 2013-06-12. Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

Data wydania: 2013-06-12. Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Wersja 1.0 Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Tytuł dokumentu: Dokumentacja dla administratora strony

Bardziej szczegółowo

Wprowadzenie do Scilab: funkcje i wykresy

Wprowadzenie do Scilab: funkcje i wykresy Wprowadzenie do Scilab: funkcje i wykresy Magdalena Deckert, Izabela Szczęch, Barbara Wołyńska, Bartłomiej Prędki Politechnika Poznańska, Instytut Informatyki Narzędzia Informatyki Narzędzia Informatyki

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Programowanie, algorytmy i struktury danych

Programowanie, algorytmy i struktury danych 1/44 Programowanie, algorytmy i struktury danych materiały do wykładu: http://cez.wipb.pl/moodle/ email: m.tabedzki@pb.edu.pl strona: http://aragorn.pb.bialystok.pl/~tabedzki/ Marek Tabędzki Wymagania

Bardziej szczegółowo

INFORMATYKA POZIOM ROZSZERZONY CZĘŚĆ II PRZYKŁADOWY ZESTAW ZADAŃ. Czas pracy 150 minut

INFORMATYKA POZIOM ROZSZERZONY CZĘŚĆ II PRZYKŁADOWY ZESTAW ZADAŃ. Czas pracy 150 minut Miejsce na naklejkę z kodem szkoły OKE JAWORZNO CKE INFORMATYKA POZIOM ROZSZERZONY CZĘŚĆ II PRZYKŁADOWY ZESTAW ZADAŃ Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

REFERAT PRACY DYPLOMOWEJ Temat pracy: SUDOKU - Algorytmy tworzenia i rozwiązywania

REFERAT PRACY DYPLOMOWEJ Temat pracy: SUDOKU - Algorytmy tworzenia i rozwiązywania REFERAT PRACY DYPLOMOWEJ Temat pracy: SUDOKU - Algorytmy tworzenia i rozwiązywania Autor: Anna Nowak Promotor: dr inż. Jan Kowalski Kategorie: gra logiczna Słowa kluczowe: Sudoku, generowanie plansz, algorytmy,

Bardziej szczegółowo

Zadanie 1. Plik Nowy Kod. lub naciskając ikonę Nowy kod (jak na rysunku) Tworzymy bibliotekę o nazwie lab wpisując instrukcję

Zadanie 1. Plik Nowy Kod. lub naciskając ikonę Nowy kod (jak na rysunku) Tworzymy bibliotekę o nazwie lab wpisując instrukcję Zadanie 1 Plik Nowy Kod lub naciskając ikonę Nowy kod (jak na rysunku) Tworzymy bibliotekę o nazwie lab wpisując instrukcję libname nazwa biblioteki lokalizacja na dysku ; np. libname lab 'N:\sas2007\';

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Zasady programowania Dokumentacja

Zasady programowania Dokumentacja Marcin Kędzierski gr. 14 Zasady programowania Dokumentacja Wstęp 1) Temat: Przeszukiwanie pliku za pomocą drzewa. 2) Założenia projektu: a) Program ma pobierać dane z pliku wskazanego przez użytkownika

Bardziej szczegółowo

Generatory Liczb Losowych

Generatory Liczb Losowych Generatory Liczb Losowych Metody deterministyczne w niedeterministycznym świecie. Paweł Jamer Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska 30 kwietnia 2011 Rysunek: demotywatory.pl

Bardziej szczegółowo

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że

Bardziej szczegółowo

FAQ. Kwiecień 2010. Generator Wniosków Płatniczych (GWP) Wersja 1.0

FAQ. Kwiecień 2010. Generator Wniosków Płatniczych (GWP) Wersja 1.0 Kwiecień 2010 Generator Wniosków Płatniczych (GWP) Historia dokumentu: Wersja Data ostatniej modyfikacji 1.0 26.04.2010 r. 2 S t r o n a Pytania i odpowiedzi do generatora wniosków płatniczych: 1. [GWP]

Bardziej szczegółowo

Instrukcja laboratoryjna cz.3

Instrukcja laboratoryjna cz.3 Języki programowania na platformie.net cz.2 2015/16 Instrukcja laboratoryjna cz.3 Język C++/CLI Prowadzący: Tomasz Goluch Wersja: 2.0 I. Utworzenie projektu C++/CLI z interfejsem graficznym WPF 1 Cel:

Bardziej szczegółowo

NIEZAWODNE ROZWIĄZANIA SYSTEMÓW AUTOMATYKI. asix. Aktualizacja pakietu asix 4 do wersji 5 lub 6. Pomoc techniczna

NIEZAWODNE ROZWIĄZANIA SYSTEMÓW AUTOMATYKI. asix. Aktualizacja pakietu asix 4 do wersji 5 lub 6. Pomoc techniczna NIEZAWODNE ROZWIĄZANIA SYSTEMÓW AUTOMATYKI asix Aktualizacja pakietu asix 4 do wersji 5 lub 6 Pomoc techniczna Dok. Nr PLP0016 Wersja:08-12-2010 ASKOM i asix to zastrzeżony znak firmy ASKOM Sp. z o. o.,

Bardziej szczegółowo

PILNA KOREKTA URZĄDZENIA MEDYCZNEGO PILNE ZAWIADOMIENIE DOTYCZĄCE BEZPIECZEŃSTWA

PILNA KOREKTA URZĄDZENIA MEDYCZNEGO PILNE ZAWIADOMIENIE DOTYCZĄCE BEZPIECZEŃSTWA Temat: Prawdopodobieństwo uzyskania niepoprawnych wyników w przypadku skonfigurowania wiązki emc (electron Monte Carlo) z wykorzystaniem nierównoodległych punktów danych w profilach w systemie Eclipse

Bardziej szczegółowo

Kurs walut. Specyfikacja projektu. Marek Zając 2013-12-16

Kurs walut. Specyfikacja projektu. Marek Zając 2013-12-16 Kurs walut Specyfikacja projektu Marek Zając 2013-12-16 Spis treści 1. Podsumowanie... 2 1.1 Wstęp... 2 1.2 Projekt interfejsu... 2 1.2.1 Rozmiar głównego okna... 2 2. Słownik pojęć... 2 2.1 Definicja

Bardziej szczegółowo