Teoria popytu. Popyt indywidualny konsumenta

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Teoria popytu. Popyt indywidualny konsumenta"

Transkrypt

1 Teoria popytu Popyt indywidualny konsumenta

2 Koszyk towarów Definicja 1 Wektor x=(x 1,x 2,x 3,...,x n ) taki, że x i 0 dla każdego i,w którym i-ta współrzędna oznacza ilość towaru nr i, którą konsument może kupić nazywamy koszykiem towarów (wiązka towarów). Każda współrzędna wektora x jest wyrażona w jednostkach naturalnych. X (ozn.) zbiór wszystkich dostępnych koszyków na rynku (przestrzeń towarów).

3 Przykład Rynek oferuje trzy towary A, B, C w ilościach 10,100,1000 odpowiednio. Przykładowe koszyki x=(10,5,1), y=(0,100,0). Przestrzeń towarów X={(x 1,x 2,x 3 ): 0 x 1 10; 0 x 2 100; 0 x }

4 Metryka w przestrzeni towarów Niech x=(x 1,x 2,x 3,...,x n ) oraz y=(y 1,y 2,y 3,...,y n ) będą koszykami towarów z przestrzeni X. Metryki w przestrzeni towarów: d(x,y)=max x i y i i metryka euklidesowa n d(x,y)= i=1 x i y i 2

5 Pojęcie relacji Definicja 0.0 Relacją dwuargumentową określoną w zbiorze X i przyjmująca wartości w zbiorze Y nazywamy (X,Y dowolne zbiory) nazywamy każdy podzbiór iloczynu kartezjańskiego X Y. Oznaczenia: Jeżeli R jest relacją i (x,y)ϵr to mówimy, że element x jest w relacji z elementem y, możliwym jest zapis xry.

6 Właściwości relacji Niech R oznacza relację określoną w zbiorze X X. Relacja R jest 1. zwrotna gdy x X xrx, 2. symetryczna gdy x, y X xry yrx, 3. antysymetryczna gdy x, y X xry yrx x =y, 4. przechodnia gdy x, y, z X xry yrz xrz, 5. zupełna gdy x, y X xry yrx.

7 Relacje porządkujące Def 0.1 Relacja R określona w zbiorze X X jest relacją częściowego porządku gdy jest to relacja zwrotna, przechodnia i antysymetryczna. Def 0.2 Relacja R określona w zbiorze X X, która jest relacją częściowego porządku oraz dodatkowo jest relacją zupełną nazywa się relacją porządku.

8 Relacja preferencji Definicja 2. Relacja jest relacją słabej preferencji jeżeli jest: a) zwrotna, b) przechodnia, c) zupełna. Jeżeli koszyk x y, to koszyk x jest słabo preferowany względem y, inaczej koszyk x jest nie gorszy od koszyka y. Zwrotność relacji słabej preferencji oznacza, że x x.

9 Pole preferencji, silna preferencja. Polem preferencji konsumenta nazywamy parę X przestrzeń towarów oraz relacja słabej preferencji określona w zbiorze X X. Definicja 3. Dwa koszyki x i y są równoważne (inaczej indyferentne) (ozn. x~y) wtedy, gdy x y oraz y x. Koszyk x jest silnie preferowany nad koszyk y wtedy, gdy x y i jednocześnie ~(y x) (ozn. x>y).

10 Zbiory koszyków Niech x oznacza ustalony koszyk w przestrzeni towarów X. Zbiór koszyków nie gorszych niż x: K x ={y: yϵx, y x} (K >x ={y: yϵx, y>x} zbiór koszyków lepszych) Zbiór koszyków nie lepszych niż x K x ={y: yϵx, x y} (K <x ={y: yϵx, y<x} zbiór koszyków gorszych) Zbiór koszyków indyferentnych względem x K ~x ={y: yϵx, x~y} (zbiór obojętności) Właściwości: K x K x =K ~x

11 Monotoniczność relacji preferencji Relację preferencji nazywamy monotoniczną, gdy dla każdych dwóch koszyków x=(x 1,x 2,x 3,...,x n ) oraz y=(y 1,y 2,y 3,...,y n ) z przestrzeni X zachodzi implikacja: x y i x i >y i

12 Definicja 4. Ciągłość relacji preferencji. Relacja słabej preferencji jest ciągła wtedy, gdy dla każdych dwóch koszyków x i y z przestrzeni towarów X takich, że x>y istnieją otoczenia U x oraz U y takie, że dowolny element x z otoczenia U x jest w relacji silnej preferencji z dowolnym elementem y z otoczenia U y czyli x >y.

13 Twierdzenie 1. Relacja słabej preferencji jest ciągła wtedy i tylko wtedy gdy dla każdego koszyka x, zbiory: zbiór koszyków nie gorszych niż x (ozn. K x ) i zbiór koszyków nie lepszych niż x (ozn. K x ) są zbiorami domkniętymi.

14 Przykład relacji preferencji Niech x=(x 1,x 2 ) oraz y=(y 1,y 2 ) oznaczają koszyki towarów z przestrzeni X. Relacja > x>y x 1 >y 1 lub (x 1 =y 1 oraz x 2 >y 2 ) Zbiór koszyków nie gorszych K >x ={y: yϵx, y>x}={(y 1,y 2 ): y 1 >x 1 lub (x 1 =y 1 oraz y 2 >x 2 ) Zbiór koszyków nie lepszych K <x ={y: yϵx, x>y}={(y 1,y 2 ): x 1 >y 1 lub (x 1 =y 1 oraz x 2 >y 2 ) Relacja > zdefiniowana powyżej nie jest ciągła.

15 Relacja wypukła Zbiór A w przestrzeni X nazywamy wypukłym wtedy, gdy x, y A α, β R + α + β = 1 αx + βy A Definicja 5. Relację nazywamy relacją wypukłą w przestrzeni X wtedy, gdy x, y, z X α, β R + α + β = 1 x y y z αx + βy z Twierdzenie 2. Relacja słabej preferencji jest wypukła wtedy i tylko wtedy, gdy zbiór koszyków nie gorszych od koszyka x jest zbiorem wypukłym dla dowolnego koszyka x z przestrzeni towarów X.

16 Koszyk optymalny Niech A oznacza pewien zbiór zawarty w przestrzeni towarów X, (X, ) oznacza pole preferencji konsumenta. Definicja 6. Koszyk x w przestrzeni X nazywamy optymalnym w zbiorze A gdy y A x y

17 Zagadnienie koszyka optymalnego Twierdzenie 3. Jeżeli relacja preferencji (słabej preferencji) jest ciągła w przestrzeni towarów x i zbiór A jest zbiorem zwartym to w zbiorze A istnieje co najmniej jeden optymalny koszyk towarów w zbiorze A. Twierdzenie 4. Jeżeli relacja preferencji jest ciągła i wypukła w wypukłej przestrzeni towarów X a zbiór A jest zwarty i wypukły to w zbiorze A istnieje co najmniej jeden koszyk optymalny. Zbiór wszystkich koszyków optymalnych jest w tym przypadku zwartym i wypukłym podzbiorem zbioru A. Twierdzenie 5. Jeżeli relacja słabej preferencji jest ciągła i wypukła w wypukłej przestrzeni towarów X i zbiór A jest zwarty i wypukły to w zbiorze A istnieje dokładnie jeden optymalny koszyk towarów.

18 Funkcja użyteczności Definicja 6. Funkcję wielu zmiennych U: R n R określoną na przestrzeni towarów X nazywamy funkcją użyteczności konsumenta związaną z relacją > wtedy, gdy 1) x, y X x y U(x) U(y), 2) x, y X x > y U x > U(y). Twierdzenie 6 (Debreu). Jeżeli relacja preferencji jest ciągła, to istnieje ciągła funkcja użyteczności, związana z tą relacją. Twierdzenie 7. Złożenie dowolnej funkcji rosnącej (jednej zmiennej) z funkcją użyteczności związaną z pewną relacją jest także funkcją użyteczności powiązaną z tą relacją.

19 Postulaty dot. funkcji użyteczności Postulat niedosytu Funkcja U(x)=U(x 1,x 2,x 3,...,x n ) traktowana jako funkcja jednej wybranej zmiennej x i jest rosnąca przy ustalonych wartościach pozostałych zmiennych. Dla dowolnego koszyka x z przestrzeni towarów X krańcowa stopa użyteczności towaru x i jest dodatnia (ew. nieujemna). U x i > 0 Postulat lokalnego niedosytu Funkcja U(x)=U(x 1,x 2,x 3,...,x n ) nie ma lokalnych maksimów. W każdym otoczeniu dowolnego punktu x z przestrzeni towarów X istnieje punkt x taki, że U(x )>U(x). Prawo Gossena Krańcowa użyteczność każdego towaru maleje w miarę jak wzrasta jego spożycie. 2 U x i 2 < 0

20 Właściwości funkcji użyteczności Twierdzenie 7. Jeżeli relacja preferencji odpowiadająca funkcji użyteczności U(x) jest wypukła i spełniony jest postulat niedosytu to funkcja użyteczności spełnia prawo Gossena. Dodatkowo lim x i + U x i = 0 oraz lim xi 0 U x i = +.

21 Rachunek marginalny Krańcową stopą użyteczności danego towaru nazywamy wyrażenie postaci MU i (x)= U x i (x) Krańcową stopą substytucji i-tego towaru przez towar j-ty w koszyku nazywamy MRS ij (x)= U x i (x) U x j (x) = MUi(x) MU j (x)

22 Elastycznością substytucji i-tego towaru przez towar j-ty w koszyku nazywamy MRS i (x)= U x i (x) U x j (x) x i x j = MRS ij x i x j

23 Zbiór budżetowy Definicja 7. Niech x oznacza pewien koszyk z przestrzeni towarów X. Niech p i oznacza cenę jednostkową przypisaną do towaru x i z koszyka x. Wartością koszyka x nazywamy liczbę p x określoną jako n i=1 x i p i. Jeżeli I jest liczbą nieujemną, to zbiór koszyków o wartości mniejszej od I nazywamy zbiorem budżetowym (zbiór dopuszczalnych planów konsumpcji - wartość koszyka nie przekracza dochodu I). Oznaczenia: B(p,I)={x: x jest elementem przestrzeni X takim, że p x <I}

24 Zagadnienie Maksymalizacji Użyteczności Konsumenta Koszyk x w przestrzeni towarów X nazywamy optymalnym wtedy gdy spełnione są warunki: U(x )=max U x oraz p x <I x Zatem koszyk x należy do zbioru B(p,I).

25 Wybór optymalnego planu konsumpcji Twierdzenie 7. Jeżeli relacja preferencji odpowiadająca funkcji użyteczności U(x) jest ciągła i wypukła oraz spełniony jest postulat niedosytu to rozwiązaniem zagadnienia optymalizacji użyteczności konsumenta jest każde z rozwiązań układu równań: grad U(x)-λp=0 oraz I- p x =0. W postaci skalarnej: U x i (x)- λ p i =0 przy warunku p x=i.

Metoda mnożników Lagrange a i jej zastosowania w ekonomii

Metoda mnożników Lagrange a i jej zastosowania w ekonomii Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1. Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient. Dla prostoty ograniczymy się do

Bardziej szczegółowo

Metoda mnożników Lagrange a i jej zastosowania w ekonomii

Metoda mnożników Lagrange a i jej zastosowania w ekonomii Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do

Bardziej szczegółowo

Ekonomia. matematyczna. Materia y do çwiczeƒ. Joanna Górka Witold Orzeszko Marcin Wata

Ekonomia. matematyczna. Materia y do çwiczeƒ. Joanna Górka Witold Orzeszko Marcin Wata Ekonomia matematyczna Materia y do çwiczeƒ Joanna Górka Witold Orzeszko Marcin Wata Ekonomia matematyczna Ekonomia matematyczna Materia y do çwiczeƒ Joanna Górka Witold Orzeszko Marcin Wata WYDAWNICTWO

Bardziej szczegółowo

C~A C > B C~C Podaj relacje indyferencji, silnej i słabej preferencji. Zapisz zbiór koszyków indyferentnych

C~A C > B C~C Podaj relacje indyferencji, silnej i słabej preferencji. Zapisz zbiór koszyków indyferentnych ZADANIA EGZAMIN EKONOMIA MATEMATYCZNA TEORIA POPYTU a. Podaj iloczyn kartezjański zbiorów X={,3,4}, Y={,} b. Narysuj iloczyn kartezjański zbiorów X=[,], Y=[,3]. Dane są punkty A(3,4) i B(,). Oblicz odległość

Bardziej szczegółowo

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów *** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów I.1 Przestrze«towarów Podstawowe poj cia Rynek towarów

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

RELACJE I ODWZOROWANIA

RELACJE I ODWZOROWANIA RELACJE I ODWZOROWANIA Definicja. Dwuargumentową relacją określoną w iloczynie kartezjańskim X Y, X Y nazywamy uporządkowaną trójkę R = ( X, grr, Y ), gdzie grr X Y. Zbiór X nazywamy naddziedziną relacji.

Bardziej szczegółowo

Mikroekonomia A.3. Mikołaj Czajkowski

Mikroekonomia A.3. Mikołaj Czajkowski Mikroekonomia A.3 Mikołaj Czajkowski Preferencje Konsumenci mają preferencje wybierają te koszyki, które dają im najwyższe zadowolenie Relacja preferencji umożliwia porównywanie 2 koszyków xy, X x ściśle

Bardziej szczegółowo

Teoria wyboru konsumenta. Marta Lubieniecka Tomasz Szemraj

Teoria wyboru konsumenta. Marta Lubieniecka Tomasz Szemraj Teoria wyboru konsumenta Marta Lubieniecka Tomasz Szemraj Teoria wyboru konsumenta 1) Przedmiot wyboru konsumenta na rynku towarów. 2) Zmienne decyzyjne, parametry rynkowe i preferencje jako warunki wyboru.

Bardziej szczegółowo

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 9 Relacje 9.1 Podstawowe pojęcia 9.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu

Bardziej szczegółowo

Zadania z ekonomii matematycznej Teoria konsumenta

Zadania z ekonomii matematycznej Teoria konsumenta Paweł Kliber Zadania z ekonomii matematycznej Teoria konsumenta Zad Dla podanych niżej funcji użyteczności: (a u (x x = x + x (b u (x x = x x (c u (x x = x x (d u (x x = x x 4 (e u (x x = x + x = x + x

Bardziej szczegółowo

Użyteczność W. W. Norton & Company, Inc.

Użyteczność W. W. Norton & Company, Inc. 4 Użyteczność 2010 W. W. Norton & Company, Inc. Funkcja Użyteczności ufunkcja użyteczności jest sposobem przypisania liczb każdemu koszykowi, bardziej preferowane koszyki otrzymują wyższe liczby. 2010

Bardziej szczegółowo

Wstęp do Matematyki (2)

Wstęp do Matematyki (2) Wstęp do Matematyki (2) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Wstęp do Matematyki (2) Własności relacji 1 / 24 Wprowadzenie

Bardziej szczegółowo

9 Funkcje Użyteczności

9 Funkcje Użyteczności 9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność

Bardziej szczegółowo

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n )

x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n ) *** Elementy teorii popytu *** II. Funkcja popytu konsumenta x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n ) p, x = p 1 x 1 + p 2 x 2 + + p n x n cena koszyka x Zbiór wszystkich koszyków, na jakie sta

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy

Bardziej szczegółowo

RÓWNOWAGA KONSUMENTA PODSTAWOWE ZAŁOŻENIA DECYZJE KONSUMENTA TEORIA UŻYTECZNOŚCI KRAŃCOWEJ TEORIE OPTIMUM KONSUMENTA

RÓWNOWAGA KONSUMENTA PODSTAWOWE ZAŁOŻENIA DECYZJE KONSUMENTA TEORIA UŻYTECZNOŚCI KRAŃCOWEJ TEORIE OPTIMUM KONSUMENTA RÓWNOWAGA KONSMENTA PODSTAWOWE ZAŁOŻENA Celem działalności konsumenta jest maksymalizacja użyteczności (satysfakcji) czerpanej ze spożycia koszyka dóbr oraz z czasu wolnego. DECZJE KONSMENTA Wybór struktury

Bardziej szczegółowo

Spis treści. Wstęp Konstrukcja modelu matematycznego... 1

Spis treści. Wstęp Konstrukcja modelu matematycznego... 1 Spis treści Wstęp........................................................ XI 1. Konstrukcja modelu matematycznego............................. 1 2. Relacje. Teoria preferencji konsumenta...........................

Bardziej szczegółowo

Modelowanie sytuacji decyzyjnej

Modelowanie sytuacji decyzyjnej Modelowanie sytuacji decyzyjnej dr hab. inż. Krzysztof Patan, prof. PWSZ Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa w Głogowie k.patan@issi.uz.zgora.pl Wprowadzenie Systemy wspomagania decyzji

Bardziej szczegółowo

Zbiory wypukłe i stożki

Zbiory wypukłe i stożki Katedra Matematyki i Ekonomii Matematycznej 28 kwietnia 2016 Hiperpłaszczyzna i półprzestrzeń Definicja Niech a R n, a 0, b R. Zbiór H(a, b) = {x R n : (a x) = b} nazywamy hiperpłaszczyzną, zbiory {x R

Bardziej szczegółowo

Decyzje konsumenta I WYBIERZ POPRAWNE ODPOWIEDZI

Decyzje konsumenta I WYBIERZ POPRAWNE ODPOWIEDZI Decyzje konsumenta I WYBIERZ POPRAWNE ODPOWIEDZI 1. Dobrami podrzędnymi nazywamy te dobra: a. które nie mają bliskich substytutów b. na które popyt maleje w miarę wzrostu dochodów konsumenta, przy pozostałych

Bardziej szczegółowo

IX Wojewódzki Konkurs Matematyczny "W Świecie Matematyki im. Prof. Włodzimierza Krysickiego Etap drugi - 21 lutego 2017 r.

IX Wojewódzki Konkurs Matematyczny W Świecie Matematyki im. Prof. Włodzimierza Krysickiego Etap drugi - 21 lutego 2017 r. IX Wojewódzki Konkurs Matematyczny "W Świecie Matematyki im. Prof. Włodzimierza Krysickiego Etap drugi - 21 lutego 2017 r. Maksymalna liczba punktów do zdobycia: 80. 1. Drugi etap Konkursu składa się z

Bardziej szczegółowo

Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

Rynek W. W. Norton & Company, Inc.

Rynek W. W. Norton & Company, Inc. 1 Rynek 2010 W. W. Norton & Company, Inc. Modelowanie Ekonomiczne uco wpływa na co w systemie ekonomicznym? una jakim poziomie uogólnienia możemy modelować zjawisko ekonomiczne? uktóre zmienne są egzogeniczne,

Bardziej szczegółowo

Teoria produkcji pojęcie, prawa, izokwanty. Funkcja produkcji pojęcie, przykłady.

Teoria produkcji pojęcie, prawa, izokwanty. Funkcja produkcji pojęcie, przykłady. Przedmiot: EKONOMIA MATEMATYCZNA Katedra: Ekonomii Opracowanie: dr hab. Jerzy Telep Temat: Matematyczna teoria produkcji Zagadnienia: Teoria produkcji pojęcie, prawa, izokwanty. Funkcja produkcji pojęcie,

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Teoria popytu konsumpcyjnego

Teoria popytu konsumpcyjnego Wykład 1 Teoria popytu konsumpcyjnego 1.1 Podstawowe pojęcia teorii popytu konsumpcyjnego Ekonomia jest studium racjonalnego wyboru(economics is the study of rational choice.) Analiza ekonomiczna wychodzi

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Teoria automatów i języków formalnych. Określenie relacji

Teoria automatów i języków formalnych. Określenie relacji Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego

Bardziej szczegółowo

Logika I. Wykład 3. Relacje i funkcje

Logika I. Wykład 3. Relacje i funkcje Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 3. Relacje i funkcje 1 Już było... Definicja 2.6. (para uporządkowana) Parą uporządkowaną nazywamy zbiór {{x},

Bardziej szczegółowo

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Mikroekonomia. Wykład 5

Mikroekonomia. Wykład 5 Mikroekonomia Wykład 5 Model czystej wymiany Brak produkcji, tylko zasoby początkowe, czyli nie wiadomo jak czynniki produkcji zostały przekształcone w produkt końcowy. Równowaga ogólna: wszystkie rynki

Bardziej szczegółowo

Teoria wyboru konsumenta (model zachowań konsumenta) Gabriela Przesławska Uniwersytet Wrocławski Instytut Nauk Ekonomicznych Zakład Polityki

Teoria wyboru konsumenta (model zachowań konsumenta) Gabriela Przesławska Uniwersytet Wrocławski Instytut Nauk Ekonomicznych Zakład Polityki Teoria wyboru konsumenta (model zachowań konsumenta) Gabriela Przesławska Uniwersytet Wrocławski Instytut Nauk Ekonomicznych Zakład Polityki Gospodarczej Analiza postępowania konsumenta może być prowadzona

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Użyteczność całkowita

Użyteczność całkowita Teoria konsumenta 1.Użyteczność całkowita i krańcowa 2.Preferencje konsumenta, krzywa obojętności i mapa obojętności 3.Równowaga konsumenta, nadwyżka konsumenta 4.Zmiany dochodów i zmiany cen dóbr oraz

Bardziej szczegółowo

Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy. Dla dowolnego zbioru B Y określamy jego przeciwobraz:

Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy. Dla dowolnego zbioru B Y określamy jego przeciwobraz: Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy jego obraz: f(a) = {f(x); x A} = {y Y : x A f(x) = y}. Dla dowolnego zbioru B Y określamy jego przeciwobraz: f 1 (B) = {x X; f(x) B}. 1 Zadanie.

Bardziej szczegółowo

Wstęp do matematyki. Marcin Orchel

Wstęp do matematyki. Marcin Orchel Wstęp do matematyki Marcin Orchel Spis treści 1 Ogólne działy 4 1.1 Logika...................................... 4 2 Metody numeryczne 5 2.1 Wprowadzenie do metod numerycznych................... 5 2.1.1

Bardziej szczegółowo

Mikroekonomia A.4. Mikołaj Czajkowski

Mikroekonomia A.4. Mikołaj Czajkowski Mikroekonomia A.4 Mikołaj Czajkowski Funkcja użyteczności Jeśli preferencje są racjonalne i ciągłe mogą zostać opisane za pomocą funkcji użyteczności Funkcja użyteczności to funkcja, która spełnia warunki:

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem. Zbiory Pojęcie zbioru jest w matematyce pojęciem pierwotnym, którego nie definiujemy. Gdy a jest elementem należacym do zbioru A to piszemy a A. Stosujemy również oznaczenie a / A jeżeli (a A). Będziemy

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje

Bardziej szczegółowo

Relacje. opracował Maciej Grzesiak. 17 października 2011

Relacje. opracował Maciej Grzesiak. 17 października 2011 Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013 Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej

Bardziej szczegółowo

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to:

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to: 1 Rachunek zdań Formuły zdaniowe (lub krócej: zdania) w klasycznym rachunku zdań składają się ze zmiennych zdaniowych nazywanych też zdaniami składowymi (oznaczane są zazwyczaj p, q, r,...) oraz operatorów

Bardziej szczegółowo

Analiza matematyczna - Przykładowe zestawy egzaminacyjne

Analiza matematyczna - Przykładowe zestawy egzaminacyjne Analiza matematyczna - Przykładowe zestawy egzaminacyjne Ogólne informacje Egzamin będzie trwać 90 minut. Zestaw egzaminacyjny składa się z pięciu zadań: czterech praktycznych i jednego teoretycznego.

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Ubezpieczenia majątkowe

Ubezpieczenia majątkowe Funkcje użyteczności a składki Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk Ekonomicznych i Społecznych 2016/2017 Funkcja użyteczności Niech ω wielkość majątku decydenta wyrażona w j.p., u (ω) stopień

Bardziej szczegółowo

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję

Bardziej szczegółowo

FUNKCJE. (odwzorowania) Funkcje 1

FUNKCJE. (odwzorowania) Funkcje 1 FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru

Bardziej szczegółowo

BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH

BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH WSTĘP Zbiór liczb całkowitych można definiować na różne sposoby. Jednym ze sposobów określania zbioru liczb całkowitych jest

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

Metoda mnożników Lagrange'a

Metoda mnożników Lagrange'a Metoda mnożników Lagrange'a Przemysław Ryś 1. Motywacja i założenia W analizie mikroekonomicznej spotykamy się często z problemem znalezienia miejsca, gdzie zadana funkcja przyjmuje największą lub najmniejszą

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

6. Teoria Podaży Koszty stałe i zmienne

6. Teoria Podaży Koszty stałe i zmienne 6. Teoria Podaży - 6.1 Koszty stałe i zmienne Koszty poniesione przez firmę zwykle są podzielone na dwie kategorie. 1. Koszty stałe - są niezależne od poziomu produkcji, e.g. stałe koszty energetyczne

Bardziej szczegółowo

Stosowane modele równowagi. Wykład 1

Stosowane modele równowagi. Wykład 1 Stosowane modele równowagi ogólnej (CGE) Wykład 1 Literatura Horridge M., MINIMAL. A Simplified General Equilibrium Model, 2001, http://www.copsmodels.com/minimal.htm dowolny podręcznik do mikroekonomii

Bardziej szczegółowo

Logika Matematyczna. Jerzy Pogonowski. Własności relacji. Zakład Logiki Stosowanej UAM

Logika Matematyczna. Jerzy Pogonowski. Własności relacji. Zakład Logiki Stosowanej UAM Logika Matematyczna Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Logika Matematyczna Własności relacji 1 / 46 Wprowadzenie

Bardziej szczegółowo

Analiza matematyczna 1

Analiza matematyczna 1 Analiza matematyczna 1 Marcin Styborski Katedra Analizy Nieliniowej pok. 610E (gmach B) marcins@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/marcins () 28 września 2010 1 / 10 Literatura podstawowa R. Rudnicki,

Bardziej szczegółowo

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19 Matematyka dla kierunków ekonomicznych : przykłady i zadania wraz z repetytorium ze szkoły średniej / Henryk Gurgul, Marcin Suder. wyd. 6 uzup. i popr., uwzględniające podstawowy program matematyki również

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Teoria zachowania konsumenta. dr Sylwia Machowska

Teoria zachowania konsumenta. dr Sylwia Machowska Teoria zachowania konsumenta dr Sylwia Machowska Plan wykładu Podstawy teorii zachowania konsumenta Teoria malejącej użyteczności krańcowej Teoria krzywych obojętności Krzywa dochodowo-konsumpcyjna Krzywa

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

ϕ(t k ; p) dla pewnego cigu t k }.

ϕ(t k ; p) dla pewnego cigu t k }. VI. Trajektorie okresowe i zbiory graniczne. 1. Zbiory graniczne. Rozważamy równanie (1.1) x = f(x) z funkcją f : R n R n określoną na całej przestrzeni R n. Będziemy zakładać, że funkcja f spełnia założenia,

Bardziej szczegółowo

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x))

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x)) Weronika Siwek, Metryki i topologie 1 Definicja 1. Załóżmy, że X, ρ: X X [0, ). Funkcja ρ spełnia następujące warunki: 1. x,y X (ρ(x, y) = 0 x = y) 2. 3. (ρ(x, y) = ρ(y, x)) x,y X (ρ(x, y) ρ(x, z) + ρ(z,

Bardziej szczegółowo

Notatki do wykładu z Analizy Matematycznej dla II roku 1 studiów zawodowych z matematyki

Notatki do wykładu z Analizy Matematycznej dla II roku 1 studiów zawodowych z matematyki Notatki do wykładu z nalizy Matematycznej dla II roku 1 studiów zawodowych z matematyki Jarosław Kotowicz Instytut Matematyki Uniwersytet w Białymstoku 23 stycznia 2008 1 c Jarosław Kotowicz 2007 Spis

Bardziej szczegółowo

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii Zjazd 2 Przestrzenia metryczna (X, d) nazywamy parę złożona ze zbioru X i funkcji d : X X R, taka, że 1 d(x, y) 0 oraz d(x, y) = 0 wtedy i tylko wtedy, gdy x = y, 2 d(x, y) = d(y, x), 3 d(x, z) d(x, y)

Bardziej szczegółowo

Całki krzywoliniowe skierowane

Całki krzywoliniowe skierowane Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ

ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ Zestaw 5 1.Narynkuistniejądwajhandlowcyidwatowary,przyczymtowarupierwszegosą3sztuki,adrugiego 2sztuki. a). Jak wygląda zbiór alokacji dopuszczalnych, jeśli towary

Bardziej szczegółowo

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),

Bardziej szczegółowo

Wykład V. Równowaga ogólna

Wykład V. Równowaga ogólna Wykład V Równowaga ogólna Równowaga cząstkowa Równośd popytu i podaży na pojedynczym rynku (założenie: działania na jednym rynku nie mają wpływu, bądź mają bardzo mały wpływ na inne rynki) Równowaga ogólna

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

1 Przestrzeń liniowa. α 1 x α k x k = 0

1 Przestrzeń liniowa. α 1 x α k x k = 0 Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Zagadnienia stacjonarne

Zagadnienia stacjonarne Zagadnienia stacjonarne Karol Hajduk 19 grudnia 2012 Nierówność wariacyjna (u (t), v u(t)) + a(u, v u) + Ψ(v) Ψ(u) (f, v u), v V. Zagadnienie stacjonarne ma postać (u (t) = 0): a(u, v u) + Ψ(v) Ψ(u) (f,

Bardziej szczegółowo

Zagadnienia: 1. Definicje porządku słabego i silnego. 2. Elementy minimalne, maksymalne, kresy, etc.

Zagadnienia: 1. Definicje porządku słabego i silnego. 2. Elementy minimalne, maksymalne, kresy, etc. Zagadnienia: 1. Definicje porządku słabego i silnego. 2. Elementy minimalne, maksymalne, kresy, etc. 3. Porządki liniowe. Porządki gęste, ciągłe i dobre. dradamkolany,mailto:ynalok64@wp.pl,http://kolany.pl,gg:1797933,tel.(+48)602804128...

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach

Bardziej szczegółowo

Zestaw 3 Optymalizacja międzyokresowa

Zestaw 3 Optymalizacja międzyokresowa Zestaw 3 Optymalizacja międzyokresowa W modelu tym rozważamy optymalny wybór konsumenta dotyczący konsumpcji w okresie obecnym i w przyszłości. Zakładając, że nasz dochód w okresie bieżącym i przyszłym

Bardziej szczegółowo

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna

Bardziej szczegółowo

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo