Twierdzenie geometryzacyjne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Twierdzenie geometryzacyjne"

Transkrypt

1 Jest to tekst związany z odczytem wygłoszonym na XLV Szkole Matematyki Poglądowej, Co mi się podoba, Jachranka, sierpień Twierdzenie geometryzacyjne Zdzisław POGODA, Kraków Pod koniec lat siedemdziesiątych XX stulecia William Thurston postawił hipotezę nazwaną hipotezą geometryzacyjną, którą z dużym uproszczeniem można sformułować na przykład tak: Każda trójwymiarowa rozmaitość zamknięta może być kanonicznie rozłożona na prostsze cegiełki podrozmaitości, z których każda jest wyposażona w jedną z ośmiu kanonicznych geometrii. Postawienie tej hipotezy oraz wkład Thurstona w próby jej udowodnienia zostały uznane przez świat matematyczny za istotny przełom w rozwiązaniu problemu klasyfikacji trójwymiarowych rozmaitości (nazywanych w specjalistycznym żargonie 3 rozmaitościami) w szczególności w podejściu do słynnej już hipotezy Poincarégo. W latach 2002 i 2003 Grisha Perelman umieścił w Internecie preprinty trzech artykułów, w których między innymi przedstawił dowód hipotezy geometryzacyjnej. Teksty napisane są bardzo hermetycznym językiem z pominięciem wielu szczegółów, a autor nie chciał odpowiadać na pytania specjalistów próbujących przebrnąć przez labirynt jego technicznych rozumowań. W końcu jednak po ponad czterech latach pracy stwierdzono, że wyniki Perelmana są poprawne i hipoteza geometryzacyjna stała się twierdzeniem. Tym samym również rozstrzygnięta została klasyczna hipoteza Poincargo. Spróbujmy wyjaśnić, na czym polega problem rozważany przez Thurstona i jakie jest jego znaczenie. Obiektami, których dotyczy hipoteza geometryzacyjna, są rozmaitości, a dokładniej rozmaitości trójwymiarowe. Pojęcie rozmaitości nie raz pojawiało się już w Zeszytach MSN 1. Przypomnijmy więc krótko, że rozmaitość topologiczna wymiaru n jest to obiekt (przestrzeń topologiczna), który lokalnie wygląda jak przestrzeń R n. A zatem rozmaitość trójwymiarowa, dokładniej rozmaitość bez brzegu, lokalnie przypomina przestrzeń trójwymiarową. Gdy dopuścimy brzeg (taka przecież jest na przykład kula domknięta B 3 ), to jego punkty mają otoczenia wyglądające lokalnie jak półprzestrzeń domknięta. Idea zapoczątkowana przez Riemanna, zyskała sobie prawo obywatelstwa w matematyce, choć nie stało się to od razu. Rozwijana i uściślana przez wielu matematyków znalazła zastosowania nie tylko w różnych działach matematyki, lecz także w fizyce. Szczególnie powstanie Ogólnej Teorii Względności i jej zastosowanie w kosmologii pokazało wielką przydatność pojęcia rozmaitości. Jednym z najważniejszych problemów od samego początku był problem klasyfikacji. Matematykom udało się sklasyfikować rozmaitości dwuwymiarowe, czyli powierzchnie. Zrobili to w pełni, wykorzystując wcześniejsze wyniki Möbiusa, Jordana i Dycka, w 1907 roku Max Dehn i Poul Heegaard. Po tym sukcesie kolej przyszła na trójwymiarowe. Wydawało się, że odpowiednio uogólniając i rozszerzając metody, które doskonale sprawdziły się w przypadku dwuwymiarowym, uda się opisać przestrzenie trójwymiarowe, jak wtedy często nazywano 3 rozmaitości. Naturalnie matematycy mieli świadomość, że nie będzie to tylko proste uogólnienie. Nie spodziewali się jednak, że trudności okażą się aż tak ogromne. Świat rozmaitości trójwymiarowych jest niezwykle bogaty. Pojawiły się też nowe zaskakujące, trudne do uchwycenia efekty. Już sama sfera trójwymiarowa sprawiała ogromne kłopoty. Potrzebna była jej prosta charakteryzacja jako obiektu odgrywającego, jak słusznie przypuszczano, kluczową rolę w klasyfikacji. Chcąc, między innymi, uchwycić istotne cechy topologiczne sfery Poinacaré zdefiniował bardzo użyteczne narzędzie pozwalające badać obiekty topologiczne. Jest to grupa podstawowa albo inaczej grupa fundamentalna. Używa się też określenia pierwsza grupa homotopii. Opisana jest za pomocą pętli na 1 Z. Pogoda, Problemy z 3 rozmaitościami, Zeszyty MSN 40 (I 2008) 39

2 rozmaitości zaczepionych w pewnym punkcie. Przy czym zakłada się, że pętle nie różnią się istotnie, gdy jedna da się w sposób ciągły zdeformować do drugiej z zachowaniem punktu zaczepienia mówimy wtedy o pętlach homotopijnych. Na sferze wszystkie pętle są homotopijne i dają się ściągnąć do punktu obiekty o tej własności nazywamy jednospójnymi. Na torusie jest już inaczej, południka nie da się zdeformować do równoleżnika i żadnej z tych wzorcowych pętli nie można ściągnąć do punktu. Rys. 1. Pętle na rozmaitościach W przypadku rozmaitości wybór punktu zaczepienia pętli jest nieistotny. Wprowadza się w dość naturalne działanie na pętlach (niezależne od deformacji) i mamy grupę, zawierającą istotne informacje o rozmaitości. Ważna jest własność, że jeśli rozmaitości są homeomorficzne, to ich grupy podstawowe są izomorficzne. Niestety stwierdzenie odwrotne nie zachodzi. Grupa podstawowa znakomicie się spisała przy klasyfikacji powierzchni. Poincaré miał nadzieję, że również w przypadku trójwymiarowym przyda się bardzo. Nie pomylił się, choć sprawa nie przedstawiała się już tak prosto, co ujawniło się właśnie przy charakteryzacji sfery trójwymiarowej. Jest to słynna hipoteza Poincarégo, którą w języku grupy podstawowej można sformułować następująco: Trójwymiarowa rozmaitość zamknięta, z trywialną grupą podstawową jest homeomorficzna z S 3. Propozycja przedstawiona przez Poincarégo okazała się wyjątkowo trudną hipotezą, nierozstrzygniętą przez prawie sto lat, chociaż jej sformułowanie było stosunkowo bardzo proste: trójwymiarowa rozmaitość spójna 2, zwarta i bez brzegu (te cechy określa się krótko: rozmaitość zamknięta) oraz jednospójna jest homeomorficzna ze sferą trójwymiarową. Hipoteza po pewnych koniecznych modyfikacjach została uogólniona na n wymiarów i dla n > 3 z ogromnym wysiłkiem rozstrzygnięta pozytywnie. Klasyczny przypadek bronił się jednak bardzo skutecznie mimo usilnych ataków. Niezależnie matematycy próbowali opisać konstrukcje 3 rozmaitości i sklasyfikować pewne wybrane ich rodziny. Do takich należą przestrzenie soczewkowe (soczewki) pierwszy raz opisane przez Tietzego. Jest to pierwsza rodzina 3 rozmaitości całkowicie opisanych i sklasyfikowanych. Soczewki można opisać na wiele sposobów, jeden z nich wygląda tak: wybieramy dwie liczby naturalne względnie pierwsze p i q. Na powierzchni kuli (czyli oczywiście na sferze) zaznaczamy równik. Teraz każdy punkt górnej półsfery obracamy o kąt 2πq/p i odbijamy symetrycznie względem równika, a następnie tak otrzymany sklejamy z wyjściowym. Powstaje właśnie przestrzeń soczewkowa oznaczana L(p, q). Udało się w pełni scharakteryzować soczewki w zależności od p i q. 2 Często założenie spójności jest pomijane, gdyż na wstępie zakłada się, że jeśli nie zaznaczono inaczej, to rozważa się tylko rozmaitości spójne. 40

3 Rys. 2. Powstawanie przestrzeni soczewkowej Pierwszą ogólną konstrukcję dla 3 rozmaitości zaproponował wspomniany już Heegaard. Każdą rozmaitość trójwymiarową można otrzymać przez sklejenie brzegiem dwóch n krotnych pełnych torusów nazywanych torusami genusu n. Pełny torus genusu 1 jest to zwykły pełny torus, który można bardziej formalnie przedstawić jako iloczyn kartezjański koła i okręgu B 2 S 1 (przypomnijmy: klasyczny torus powierzchnia to S 1 S 1 ), czyli mamy tu do czynienia z jedną dziurą. Rys. 3. Torusy genusu 1, 2, 3,..., n W przypadku torusa genusu n mamy tych dziur właśnie n. Sklejanie torusów może odbywać się na różne sposoby; możemy żądać, żeby charakterystyczne krzywe na powierzchni (np. odpowiedniki południków) jednego sklejać z innymi na drugiej poprowadzonymi w wymyślny sposób. Często bardzo różne sklejenia prowadzą do jednej i tej samej rozmaitości trójwymiarowej. Problem klasyfikacji 3 rozmaitości można sprowadzić do klasyfikacji sklejeń, ale to wcale nie okazało się ułatwieniem zadania. Już opisanie wszystkich sklejeń prowadzących do zwykłej sfery trójwymiarowej jest poważnym problemem. Jedyny zadowalający rezultat uzyskano dla typów sklejania zwykłych torusów, co prowadzi do wspomnianych już przestrzeni soczewkowych. 41

4 Inny pomysł podsunął Max Dehn w 1910 roku proponując wycinanie ze sfery trójwymiarowej otoczek tabularnych węzłów lub splotów (czyli obiektów topologicznie identycznych z torusami lub sumami mnogościowymi torusów) i ponowne ich wklejanie, tylko w inny sposób. Takie procedury nazwano chirurgiami Dehna. W tym przypadku znów okazało się, że można tak skonstruować każdą 3 rozmaitość, lecz pozostał problem z jednoznacznością 3. Gdy przyjrzymy się bliżej klasyfikacji powierzchni, to zauważymy, że każdą można zbudować z kilku, a dokładnie trzech, prostszych cegiełek. Tymi najprostszymi powierzchniami są: sfera, torus (tym razem powierzchnia) i płaszczyzna rzutowa, a operacją łączącą jest suma spójna. Polega ona na tym, że z każdej powierzchni wycinamy kawałki homeomorficzne z kołami, a następnie sklejamy brzegiem. Rys. 4. Suma spójna Pomysł rozkładu rozmaitości trójwymiarowych na bardziej elementarne składniki podjął Hellmuth Kneser, który przedstawił w 1929 roku twierdzenie: Każda trójwymiarowa rozmaitość zamknięta może być rozłożona jednoznacznie, z dokładnością do kolejności składników, na sumę spójną rozmaitości pierwszych. Sumę spójną dla rozmaitości trójwymiarowych konstruujemy podobnie jak w przypadku powierzchni, tylko zamiast kół wycinamy kule i sklejenia dokonujemy wzdłuż sfer. Przypomnijmy jeszcze raz, że przez rozmaitości zamknięte rozumie się rozmaitości spójne, zwarte i bez brzegu. Natomiast rozmaitości pierwsze są w pewnym sensie odpowiednikiem liczb pierwszych: rozmaitość pierwsza nie da się rozłożyć na sumę spójną prostszych składników. Inaczej, jeśli rozmaitość pierwszą przedstawimy jako sumę dwóch innych rozmaitości, to jedną z nich jest sfera trójwymiarowa, która w tym działaniu (gdy sumę spójną uznamy za działanie) pełni rolę elementu neutralnego. Twierdzenie Knesera sprowadza więc problem klasyfikacji do spisania kompletnej listy rozmaitości pierwszych. Jednak inaczej niż w przypadku dwuwymiarowym tych rozmaitości jest znacznie więcej i nie znano dobrej metody ich wyszukiwania. Kneser opisał możliwość rozkładu, lecz nie pokazał jak powinny wyglądać cegiełki rozkładu. Rozmaitości: S 3, S 2 S 1, przestrzeń 3 Więcej o chirurgiach Dehna: Z. Pogoda O chirurgiach konkretnie i abstrakcyjnie, Zeszyty MSN 42 (I 2009), str

5 rzutowa RP 3, przestrzenie soczewkowe są przykładami rozmaitości pierwszych, ale istnieje jeszcze wiele innych wymyślnych konstrukcji, jak choćby poprzez odpowiednie sklejanie ścian różnych wielościanów. Tak między innymi powstaje ciekawy przypadek jedna ze sfer homologicznych, obiekt skonstruowany przez Poincarégo: sklejamy przeciwległe ściany dwunastościanu foremnego wcześniej przekręcając je nieco. Otrzymana rozmaitość ma pewne cechy sfery trójwymiarowej, choć, jak stwierdził, testując przy okazji użyteczność grupy podstawowej, sam Poincaré, ewidentnie nią nie jest. W każdym razie ostatecznie stwierdzono, że rozkład rozmaitości M na sumę spójną może wyglądać następująco M = (K 1 #... #K p )#(L 1 #... #L q )#(S 2 S 1 #... #S 2 S 1 ) Rys. 5. Idea rozkładu na rozmaitości pierwsze Kryterium wyróżnienia poszczególnych rodzin w sumie spójnej zadaje grupa podstawowa. Dla rozmaitości S 2 S 1 grupa jest cykliczna i nieskończona (wiadomo, że są to jedyne rozmaitości spełniające ten warunek). Rozmaitości z rodziny L i mają grupę podstawową skończoną, a K j nieskończoną i niecykliczną. Ponadto przedstawiciele obu tych rodzin spełniają jeszcze warunek nieredukowalności, co oznacza, że każda sfera umieszczona w rozmaitości ogranicza kulę. Może to się wydawać dziwne, bo jesteśmy przyzwyczajeni, że tak jest zawsze. Jeśli jednak przypomnimy sobie, że na torusie istnieją okręgi niebędące brzegiem koła, to zrozumiemy, iż nieredukowalność wcale nie musi być oczywista. Można udowodnić zresztą, że wszystkie rozmaitości pierwsze są nieredukowalne z jednym jedynym wyjątkiem S 2 S 1. Tu każda sfera postaci S 2 {p} nie ogranicza kuli. Obiekty typu L i zostały zbadane dość dobrze. Już w latach trzydziestych XX wieku Karl Seifert opisał i w pełni sklasyfikował rozmaitości sferyczne. Są to rozmaitości powstające w wyniku działania pewnych grup skończonych (grup izometrii) na sferze S 3. Wygląda to mniej więcej tak. Rozważmy skończoną grupę (na przykład obroty o wielokrotności kąta 2π p, gdzie p jest liczbą całkowitą) działającą na S 3. Każdy z punktów sfery jest przekształcany na kilka punktów za pomocą przekształceń tej grupy. Jeśli przekształcenia zachowują się porządnie, to sklejając punkty wraz z ich obrazami (orbity), dostaniemy właśnie rozmaitość sferyczną. Rozmaitości sferyczne mają tę sympatyczną własność, że ich grupą podstawowa jest identyczna z właśnie działającą grupą skończoną. Ze względu na fakt, iż jedynymi znanymi rozmaitościami z grupą skończoną są rozmaitości sferyczne, postawiono naturalną hipotezę, że to nie przypadek i innych rozmaitości z grupą skończoną nie ma. Gdyby hipoteza okazała się prawdziwa, to problem rozmaitości L i byłby rozwiązany. Dzielnie jednak broniła się przed wymyślnymi atakami specjalistów. A i tak pozostała ogromna rodzina rozmaitości pierwszych z nieskończoną i niecykliczną grupą podstawową czyli K j. 43

6 W latach sześćdziesiątych XX wieku zauważono 4, że do rozkładu 3 rozmaitości na mniejsze składniki można wykorzystać nie tylko sfery, lecz również inne powierzchnie. Pierwszym kandydatem naturalnie stał się torus najprostsza po sferze powierzchnia zamknięta. I odniesiono pewien sukces: analogicznie do twierdzenia Knesera prawdziwe jest twierdzenie o rozkładzie rozmaitości nieredukowalnej za pomocą torusów. Nie wchodząc w szczegóły twierdzenie to, często nazywane twierdzeniem JSJ 5, mówi, że w zamkniętej nieredukowalnej 3 rozmaitości można znaleźć skończoną rodzinę odpowiednio położonych torusów rozdzielających tę rozmaitość na zwarte 3 rozmaitości torusowo nieredukowalne i tak zwane rozmaitości włókniste Seiferta. Torusowa nieredukowalność jest odpowiednikiem zwykłej sferycznej nieredukowalności. Rozmaitości włókniste Seiferta pojawiły się w tym samym czasie co rozmaitości sferyczne. Mówiąc znów niezbyt precyzyjnie są to rozmaitości, które dadzą się przedstawić jako sumy okręgów, a każdy z tych okręgów ma otoczenie torusowe spełniające ewentualnie dodatkowe warunki. Wiele rozmaitości ma tę cechę, a wśród nich sfera S 3, znana już S 2 S 1 i przestrzenie soczewkowe. Seifert podał pełny układ niezmienników charakteryzujących rozmaitości włókniste nazwane jego imieniem. Taką sytuację zastał William Thurston pod koniec lat siedemdziesiątych. Przyjrzał się wnikliwie twierdzeniom o rozkładzie, sklasyfikowanym już rodzinom 3 rozmaitości i wykorzystał pewien stary pomysł pochodzący z czasów Poincarégo i Kleina. Mianowicie Poincaré i Klein zauważyli, że każdą z dwuwymiarowych powierzchni można jednoznacznie wyposażyć w jeden z trzech typów geometrii gwarantujący pewne porządne przedstawienie tejże powierzchni (stałą krzywiznę). Z punktu widzenia tych geometrii powierzchnia w każdym punkcie lokalnie wygląda jednakowo tak się zachowuje zwykła płaszczyzna lub sfera. Wyróżnione geometrie to: geometria lokalnie euklidesowa (paraboliczna), hiperboliczna (nawiązująca do geometrii łobaczewskiego) i sferyczna (eliptyczna). Lokalnie euklidesowo wyglądają torus i butelka Kleina (płaszczyznę pomijamy jako niezwartą), sferycznie naturalnie sfera i płaszczyzna rzutowa, a wszystkie pozostałe mogą być wyposażone w strukturę hiperboliczną. W przypadku trójwymiarowym taka sytuacja jest możliwa. Nie da się każdej 3 rozmaitości wyposażyć w tak porządne geometrie. Thurston zauważył jednak, że wiele sklasyfikowanych rozmaitości z różnych rodzin dopuszcza jedną z, tym razem, ośmiu typów wzorcowych geometrii tak, że w otoczeniu każdego punktu rozmaitość wygląda jednakowo z punktu widzenia tych wyróżnionych geometrii nazywa się to jednorodnością geometrii. Pojawił się więc pomysł, że może tylko te osiem typów wystarczy, gdy zastosujemy rozkład na sumę spójną, a następnie wzdłuż torusów. Thurston rzeczywiście udowodnił, że dla 3 rozmaitości istnieje dokładnie osiem typów geometrii spełniających warunek jednorodności. Tak narodziła się hipoteza geometryzacyjna, która, mimo oczywistych analogii do przypadku dwuwymiarowego, zaskoczyła matematyków zmagających się z problemem klasyfikacji. Nikt nie spodziewał się, że metody geometryczne mogą okazać się przydatne w problemach topologicznych. Próby klasyfikacji 3 rozmaitości sprowadzały się głównie do wyszukiwania coraz to bardziej subtelnych narzędzi (niezmienników), przede wszystkim na gruncie topologii. Hipoteza geometryzacyjna, jeśli tylko jest prawdziwa, to rozstrzyga wiele starych problemów, między innymi klasyczną hipotezę Poincarégo 6 a także pytanie o rozmaitości sferyczne. Thurstonowi udało się rozstrzygnąć hipotezę dla licznej rodziny 3 rozmaitości, wiele jednak broniło się skutecznie. W szczególności rozmaitości dopuszczające strukturę hiperboliczną (powstające między innymi przez odpowiednie sklejanie 4 Ogromne zasługi w tej dziedzinie należą do Wolfganga Hakena, znanego przede wszystkim z dowodu twierdzenia o czterech barwach. 5 Od nazwisk autorów Jaco, Shalen, Johansson 6 Z. Pogoda, Tensory, Zeszyty MSN 45 (VII 2010) 44

7 ścian wielościanów) okazały się wyjątkowo oporne. Obecnie (2012 r.) już wiemy, że hipoteza geometryzacyjna jest twierdzeniem. Dzięki oryginalnym pomysłom Richarda Hamiltona, wyjątkowo lakonicznym pracom Perelmana oraz wysiłkom wielu matematyków udało się pokonać jeden z najważniejszych problemów topologii rozmaitości trójwymiarowych. Możemy stwierdzić, że sporo wiadomo o 3 rozmaitościach, nie znaczy to jednak, że wiemy już wszystko... 45

Grupa klas odwzorowań powierzchni

Grupa klas odwzorowań powierzchni Grupa klas odwzorowań powierzchni Błażej Szepietowski Uniwersytet Gdański Horyzonty matematyki 2014 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki 2014 1 / 36 Grupa klas odwzorowań

Bardziej szczegółowo

ELEMENTY TEORII WĘZŁÓW

ELEMENTY TEORII WĘZŁÓW Łukasz Janus 10B2 ELEMENTY TEORII WĘZŁÓW Elementarne deformacje węzła Równoważność węzłów Węzły trywialne Ruchy Reidemeistera Twierdzenie o równoważności węzłów Grafy Powtórzmy Diagram węzła Węzły reprezentuje

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Topologia kombinatoryczna zadania kwalifikacyjne

Topologia kombinatoryczna zadania kwalifikacyjne Topologia kombinatoryczna zadania kwalifikacyjne Piotr Suwara 9 czerwca 2013 Nie ma wyznaczonego progu na kwalifikację na zajęcia. Gorąco zachęcam do wysyłania rozwiązań dużo przed terminem wtedy będzie

Bardziej szczegółowo

TWIERDZENIE TALESA W PRZESTRZENI

TWIERDZENIE TALESA W PRZESTRZENI TWIERDZENIE TALESA W PRZESTRZENI PRACA BADAWCZA autor Agnieszka Duszeńko Uniwersytet Wrocławski Wydział Matematyki i Informatyki 2005 Na płaszczyźnie: Najpopularniejsza, powszechnie znana wersja twierdzenia

Bardziej szczegółowo

MATEMATYKA DLA CIEKAWSKICH. Dowodzenie twierdzeń przy pomocy kartki. Część I

MATEMATYKA DLA CIEKAWSKICH. Dowodzenie twierdzeń przy pomocy kartki. Część I MATEMATYKA DLA CIEKAWSKICH Dowodzenie twierdzeń przy pomocy kartki. Część I Z trójkątem, jako figurą geometryczną, uczeń spotyka się już na etapie nauczania początkowego. W czasie dalszego procesu kształcenia

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,

Bardziej szczegółowo

MATEMATYKA DLA CIEKAWSKICH

MATEMATYKA DLA CIEKAWSKICH MATEMATYKA DLA CIEKAWSKICH Dowodzenie twierdzeń przy pomocy kartki. Część II Na rysunku przedstawiony jest obszar pewnego miasta wraz z zaznaczonymi szkołami podstawowymi. Wyobraźmy sobie, że mamy przydzielić

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

Matematyka 2 wymagania edukacyjne

Matematyka 2 wymagania edukacyjne Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH

W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH ul. Konarskiego 2, 30-049 Kraków tel. 12 633 13 83 lub 12 633 02 47 W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH Arkadiusz Biel Kraków 2011 Wielokąty gwiaździste są ciekawym przypadkiem wielokątów, gdyż posiadają

Bardziej szczegółowo

Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły

Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 2 obiektów

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013 Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 013 3.4.1 Inwersja względem okręgu. Inwersja względem okręgu jest przekształceniem płaszczyzny

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

Przestrzenne układy oporników

Przestrzenne układy oporników Przestrzenne układy oporników Bartosz Marchlewicz Tomasz Sokołowski Mateusz Zych Pod opieką prof. dr. hab. Janusza Kempy Liceum Ogólnokształcące im. marsz. S. Małachowskiego w Płocku 2 Wstęp Do podjęcia

Bardziej szczegółowo

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro 6 Na dobry start do liceum 8Piotr Drozdowski 6 Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA Zadania Oficyna Edukacyjna * Krzysztof Pazdro Piotr Drozdowski MATEMATYKA. Na dobry

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV I SEMESTR a) Wymagania konieczne (na ocenę dopuszczającą) Obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez

Bardziej szczegółowo

Równania miłości. autor: Tomasz Grębski

Równania miłości. autor: Tomasz Grębski Równania miłości autor: Tomasz Grębski Tytuł pewnie trochę dziwnie brzmi, bo czy miłość da się opisać równaniem? Symbolem miłości jest niewątpliwie Serce, a zatem spróbujmy opisać kształt serca równaniem

Bardziej szczegółowo

INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny: informatyka matematyka Rozmaitości matematyczne

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

Geometria. Rodzaje i własności figur geometrycznych:

Geometria. Rodzaje i własności figur geometrycznych: Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

1 Równania rekurencyjne. 2 Ciekawe czworościany

1 Równania rekurencyjne. 2 Ciekawe czworościany 1 Równania rekurencyjne Co to są równania rekurencyjne i teorię tych równań możemy poznać z książki [2]. Rozwiązaniem równania rekurencyjnego jest ciąg. Najprostszymi równaniami rekurencyjnymi są równania

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2009 POZIOMY WYMAGAŃ

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08

Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1. Oprocentowanie lokat i kredytów - zna pojęcie procentu prostego i składanego; - oblicza

Bardziej szczegółowo

1.Funkcja logarytmiczna

1.Funkcja logarytmiczna Kryteria oceniania z matematyki dla klasy IV TI poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1.Funkcja logarytmiczna -potrafi obliczyć logarytm liczby dodatniej; -zna i potrafi stosować

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki

Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Zadanie (matura z informatyki, 2009) Dane: dodatnia liczba całkowita R.

Bardziej szczegółowo

Wprowadzenie do rysowania w 3D. Praca w środowisku 3D

Wprowadzenie do rysowania w 3D. Praca w środowisku 3D Wprowadzenie do rysowania w 3D 13 Praca w środowisku 3D Pierwszym krokiem niezbędnym do rozpoczęcia pracy w środowisku 3D programu AutoCad 2010 jest wybór odpowiedniego obszaru roboczego. Można tego dokonać

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Efekt motyla i dziwne atraktory

Efekt motyla i dziwne atraktory O układzie Lorenza Wydział Matematyki i Informatyki Uniwersytet Mikołaja kopernika Toruń, 3 grudnia 2009 Spis treści 1 Wprowadzenie Wyjaśnienie pojęć 2 O dziwnych atraktorach 3 Wyjaśnienie pojęć Dowolny

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY PIERWSZEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY PIERWSZEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY PIERWSZEJ POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJĄCE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH 5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.

Bardziej szczegółowo

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Ćwiczenie laboratoryjne 2 Temat: Modelowanie powierzchni swobodnych 3D przy użyciu programu Autodesk Inventor Spis treści 1.

Bardziej szczegółowo

Matematyka, kl. 5. Konieczne umiejętności

Matematyka, kl. 5. Konieczne umiejętności Matematyka, kl. 5 Liczby i działania Program Matematyka z plusem Ocena Konieczne umiejętności Opanowane algorytmy pisemnego dodawania, odejmowania, mnożenia i dzielenia liczb naturalnych. Prawidłowe wykonywanie

Bardziej szczegółowo

Podzielność liczb; iloczyn i suma dzielników

Podzielność liczb; iloczyn i suma dzielników Podzielność liczb; iloczyn i suma dzielników Liczba dzielników Postać (rozkład) kanoniczna każdej liczby N = p α1 1 pα2 2... pαr 1 pαr r. Każdy dzielnik d naszej liczby ma swojego partnera d 1 : N = d

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI WPISUJE ZDAJĄCY IMIĘ I NAZWISKO UCZNIA NUMER UCZNIA W DZIENNIKU PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). Ewentualny

Bardziej szczegółowo

Twierdzenie o n-kanapce

Twierdzenie o n-kanapce Twierdzenie o n-kanapce Jacek J. Łakis Naukowe Koło Matematyki PG 24 marca 204. Wprowadzenie Twierdzenie o n-kanapce jest jednym z tych twierdzeń, które pokazują niezwykłe własności i zastosowania funkcji

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Zbiór zadań z geometrii przestrzennej. Michał Kieza

Zbiór zadań z geometrii przestrzennej. Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania

Bardziej szczegółowo

Weryfikacja geometrii wypraski oraz jej modyfikacja z zastosowaniem Technologii Synchronicznej systemu NX

Weryfikacja geometrii wypraski oraz jej modyfikacja z zastosowaniem Technologii Synchronicznej systemu NX Weryfikacja geometrii wypraski oraz jej modyfikacja z zastosowaniem Technologii Synchronicznej systemu NX Projektowanie i wytwarzanie form wtryskowych, przeznaczonych do produkcji wyprasek polimerowych,

Bardziej szczegółowo

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra)

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena

Bardziej szczegółowo

2. Kryteria oceniania

2. Kryteria oceniania 2. Kryteria oceniania OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe Umiejętności ponadpodstawowe Konieczne

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a

Bardziej szczegółowo

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego

Bardziej szczegółowo

Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22.

Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22. Omnibus matematyczny 1. Cele lekcji a) Wiadomości Uczeń: zna pojęcia matematyczne z zakresu szkoły podstawowej i gimnazjum. b) Umiejętności Uczeń: potrafi podać odpowiednie pojęcie matematyczne na podstawie

Bardziej szczegółowo

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1 KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1 Przedstawiamy, jakie umiejętności z danego działu powinien zdobyć uczeń, aby uzyskać poszczególne stopnie. Na ocenę dopuszczający uczeń

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki

Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania z matematyki w Gimnazjum im. św. Franciszka z Asyżu w Teresinie I. Obszary aktywności Na lekcjach oceniane będą następujące obszary aktywności uczniów: 1. Stopień rozumienia

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI (PSO)

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI (PSO) PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI (PSO) Przedmiotowy System Oceniania ( PSO) jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 21.03.2001 r. w sprawie oceniania, klasyfikowania

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

DZIAŁ 1. LICZBY NATURALNE I DZIESIĘTNE. DZIAŁANIA NA LICZBACH NATURALNYCH I DZIESIĘTNYCH (40 GODZ.)

DZIAŁ 1. LICZBY NATURALNE I DZIESIĘTNE. DZIAŁANIA NA LICZBACH NATURALNYCH I DZIESIĘTNYCH (40 GODZ.) Matematyka w otaczającym nas świecie Gra tabliczka mnożenia Karta pracy 1 Po IV klasie szkoły podstawowej Ślimak gra edukacyjna z tabliczką mnożenia 1. Zastosowania matematyki w sytuacjach praktycznych

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie... Imię i Nazwisko... Klasa... Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY...... Liczba punktów...... Wynik procentowy Informacje dla ucznia

Bardziej szczegółowo

ZASADY OCENIANIA Z MATEMATYKI. Liceum Ogólnokształcące Nr X im. Stefanii Sempołowskiej we Wrocławiu

ZASADY OCENIANIA Z MATEMATYKI. Liceum Ogólnokształcące Nr X im. Stefanii Sempołowskiej we Wrocławiu ZASADY OCENIANIA Z MATEMATYKI Liceum Ogólnokształcące Nr X im. Stefanii Sempołowskiej we Wrocławiu Zasady oceniania z matematyki są zgodne z Wewnątrzszkolnym Ocenianiem w Liceum Ogólnokształcącym nr X

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

NOWOŚCI W CABRI 3D v2.

NOWOŚCI W CABRI 3D v2. NOWOŚCI W CABRI 3D v2. Narzędzie mierzenia: pozwala dokonać pomiaru odległości, długości i kąta. Narzędzie mierzenia i obliczeń: obliczanie pola powierzchni (kula, wielościan). obliczanie objętości (kula,

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Topologia i geometria różniczkowa

Topologia i geometria różniczkowa Topologia i geometria różniczkowa Andrzej Nowicki Uniwersytet Mikołaja Kopernika, Wydział Matematyki i Informatyki, ul. Chopina 12 18, 87 100 Toruń (e-mail: anow@mat.uni.torun.pl) Marzec 1995 Spis treści

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie

Bardziej szczegółowo

ZADANIA NA DOWODZENIE GEOMETRIA, cz. II Wojciech Guzicki

ZADANIA NA DOWODZENIE GEOMETRIA, cz. II Wojciech Guzicki ZNI N OWOZNI GOMTRI, cz. II Wojciech Guzicki W arkuszach maturalnych w ostatnich dwóch latach znalazły się zadania geometryczne na dowodzenie. Za poprawne rozwiązanie takiego zadania w arkuszu podstawowymzdającymógłotrzymać2pkt,warkuszurozszerzonym4pktlub3pkt.przy

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy

Bardziej szczegółowo

Podstawowe pojęcia geometryczne

Podstawowe pojęcia geometryczne PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych

Bardziej szczegółowo

Modele symulacyjne PyroSim/FDS z wykorzystaniem rysunków CAD

Modele symulacyjne PyroSim/FDS z wykorzystaniem rysunków CAD Modele symulacyjne PyroSim/FDS z wykorzystaniem rysunków CAD Wstęp Obecnie praktycznie każdy z projektów budowlanych, jak i instalacyjnych, jest tworzony z wykorzystaniem rysunków wspomaganych komputerowo.

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny w klasie pierwszej gimnazjum.

Wymagania edukacyjne na poszczególne oceny w klasie pierwszej gimnazjum. Wymagania edukacyjne na poszczególne oceny w klasie pierwszej gimnazjum. Ustalając kryteria poszczególnych ocen, uwzględniono poziomy oraz kategorie celów nauczania oraz poziomy wymagań edukacyjnych. I.

Bardziej szczegółowo