Wyznaczanie współrzędnych geocentrycznych odbiornika z rozwiązania nawigacyjnego GPS

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wyznaczanie współrzędnych geocentrycznych odbiornika z rozwiązania nawigacyjnego GPS"

Transkrypt

1 Wyznaczanie współrzędnych geocentrycznych odbiornika z rozwiązania nawigacyjnego GS Wstęp Celem ćwiczenia, jest zaznajomienie z procedurą wyznaczania pozycji odbiornika GS z obserwacji kodowych Niezbędnym do tego celu jest również poznanie struktury pliku obserwacyjnego w formacie wymiany danych pomiarowych RINEX - niezależnym od odbiornika (Receiver INdependent EXchange) Wyznaczenie pozycji punktu odbywa się poprzez pomiar odległości od satelitów do odbiornika na podstawie pomiaru czasu przejścia sygnału od satelity do odbiornika Najczęściej spotykaną formą pomiaru tej odległości jest jej wyznaczenie z tzw pomiarów kodowych Konstrukcja liniowego przestrzennego wcięcia wstecz jest zatem podstawą geometryczną wyznaczania pozycji punktu Rys : rzestrzenne wcięcie wstecz - konstrukcja wyznaczająca współrzędne w rozwiązaniu nawigacyjnym Nazwa pomiary kodowe pochodzi od struktury sygnału GS, gdzie na transmitowaną częstotliwość nośną (f L = 54f 0, f L2 = 20f 0 ; f 0 = 023 MHz) nakładane są binarne kody Dla częstotliwości L są to kody C/A - Coarse/Acquisition oraz - recise) Dla L2 wyłącznie kod Sekwencje kodów powtarzają się co 5 s dla kodu C/A oraz co tydzień ( s) dla kodu omiar odległości następuje poprzez porównanie otrzymanego z satelity w momencie t sygnału kodowego z repliką kodu generowaną przez odbiornik onieważ otrzymany z satelity sygnał kodowy został wygenerowany

2 wcześniej t 0, kody nie pokryją się Znając częstość próbkowania kodu (023 MHz dla C/A oraz 023 MHz dla ) możemy określić czas przebiegu sygnału od satelity do odbiornika: a tym samym odległość: τ S = t t 0 () ρ S = τ S c (2) Mając na uwadze wpływ czynników instrumentalnych, atmosferycznych i geometrycznych wyznaczona w powyższy sposób odległość ρ S satelity S od punktu będzie nosić nazwę pseudoodległości odstawowe równanie obserwacji kodowych jest następujące: S (t) = ρ S + I S + T S + c(dt S (t τ S ) dt (t)) e S (3) I to wpływ jonosfery, T - troposfery, c = [m/s] to prędkość światła w próżni, dt S to błąd zegara satelity, dt - błąd zegara odbiornika, e to pozostałe nieuwzględnione błędy Równanie (3) linearyzujemy po ominięciu wpływów atmosferycznych do postaci: XS X S x Y S Y S y ZS Z S z + (cdt ) = S (obs) S e S = b e S (4) W równaniu tym przyjmuje się początkowe założenie, że S ρs, czyli że prawdziwa odległość od satelity do odbiornika ρ S jest w przybliżeniu równa odległości wyznaczonej z różnic współrzędnych satelitów i przybliżonych współrzędnych odbiornika Układ równań liniowych (4) dla wszystkich obserwowanych satelitów jest rozwiązywany metodą najmniejszych kwadratów przy założeniu nieskorelowania obserwacji kodowych Macierz A ma postać: A = dx ˆ = [ A T A ] A T L ˆx dx ˆ = ŷ ẑ (5) c ˆdt X S X ρ S X S2 X ρ S2 X S3 X ρ S3 X S4 X ρ S4 X Sn X ρ Sn Y S Y ρ S Y S2 Y ρ S2 Y S3 Y ρ S3 Y S4 Y ρ S4 Y Sn Y ρ Sn Z S Z ρ S Z S2 Z ρ S2 Z S3 Z ρ S3 Z S4 Z ρ S4 Z Sn Z ρ Sn Wektor L składa się z różnic pseudoodległości pomierzonych ρ S (pochodzących z pliku RINEX ) oraz odległości obliczonych ze współrzędnych S: S = L = ρ S S (7) (X S X ) 2 + (Y S Y ) 2 + (Z S Z ) 2 (8) Należy tu jednak pamiętać, że pseudoodległości pomierzone ρ S w macierzy A oraz wektorze L należy przy pierwszej iteracji zredukować o błąd zegara satelity wyznaczony w pliku orbit transmitowanych lub precyzyjnych (6) 2

3 ρ S = ρ S c dt S (9) Ostatecznie, współrzędne punktu oblicza się na podstawie współrzędnych przybliżonych [X 0, Y 0, Z 0 ] oraz obliczonych przyrostów [ˆx, ŷ, ẑ] ˆX Ŷ = X0 Y 0 + ˆx ŷ (0) Ẑ Z 0 ẑ 2 Obliczenia w praktyce rzedstawiona w poprzednim rozdziale procedura obliczenia współrzędnych jest wykonywana iteracyjnie, przez cały czas pracy odbiornika ojedyncza iteracja obejmuje zarówno obliczenie współrzędnych satelitów z elementów orbit kepleriańskich, jak i wyznaczenie współrzędnych punktu w jednej procedurze Ma to jeden ważny aspekt praktyczny - bowiem w momencie odbioru sygnału z satelitów i wyznaczenia pseudoodległosci, satelity przemieściły się na swych orbitach oraz Ziemia wykonała pewien obrót Odbiornik zatem potrafi znając pseudoodległości cofnąć satelity na pozycje, które zajmowały w momencie wysłania sygnału Aby nie powtarzać poprzednio wykonanych obliczeń, możemy posłużyć się interpolacją pozycji satelity na orbicie (pamiętając, że nie może być liniowa!!!) z kilku znanych pozycji przed i po momencie wysłania sygnału Do tego celu najlepiej użyć współrzędnych zawartych w plikach orbit precyzyjnych (*S3) Możemy również zaniedbać ten błąd w pozycji satelitów, zostanie on uwzględniony w wartości e w równaniu (4) Dane do ćwiczenia znajdują się w pliku pomiarowym RINEX z obserwacjami GS (przykładowo o nazwie: O) 2 OBSERVATION DATA G (GS) RINEX VERSION / TYE ASHTORIN 20 - MAR :0 GM / RUN BY / DATE COMMENT 000 MARKER NAME 000 MARKER NUMBER BOR OBSERVER / AGENCY 004 ASHTECH Z-XII 3 L00 D04 REC # / TYE / VERS 004 ASH70078B ANT # / TYE AROX OSITION XYZ ANTENNA: DELTA H/E/N WAVELENGTH FACT L/2 7 L L2 C 2 D D2 # / TYES OF OBSERV INTERVAL LEA SECONDS GS TIME OF FIRST OBS GS TIME OF LAST OBS END OF HEADER G20G07G0G29G04G25GG

4 W pierwszej kolejności wybieramy epokę odniesienia - czyli moment, na który chcemy obliczyć pozycję odbiornika (anteny) z rozwiązania nawigacyjnego Tutaj jest to godzina 8:00 czasu uniwesalnego (Greenwich) dla dnia 254 w roku 200, czyli września 200 roku owyżej zamieszczono fragment tego pliku składający się z dwóch części ierwsza to nagłówek pliku, druga rozpoczynająca się po słowach END OF HEADER to część z danymi pomiarowymi Organizacja danych w pliku może być różna i jest zależna od decyzji operatora stacji obserwacyjnej Jest to scharakteryzowane w nagłówku pliku, w linii: 7 L L2 C 2 D D2 # / TYES OF OBSERV Wiersz ten mówi nam, że jeden rekord danych zawiera 7 pomierzonych parametrów, gdzie: L - pomiar fazowy na częstotliwości L, L2 - pomiar fazowy na częstotliwości L2, C - pomiar pseudoodległości z obserwacji kodu C/A (będziemy oznaczać: ρ S ), - pomiar pseudoodległości z obserwacji kodu na L, 2 - pomiar pseudoodległości z obserwacji kodu na L2, D - pomiar dopplerowski na częstotliwości L, D2 - pomiar dopplerowski na częstotliwości L2 Dane są zorganizowane w rekordach w tej właśnie kolejności, dla każdego z obserwowanych satelitów Można również spotkać obserwacje S i S2 będące stosunkiem sygnału do szumu dla obydwu częstotliwości nośnych Dla każdego momentu pomiaru (epoki) zapisywany jest zbiór danych rozpoczynający się wierszem np: G20G07G0G29G04G25GG Trzy początkowe wartości to data , potem godzina 8:00: Następnie interesujący nas zbiór nazw satelitów obserwowanych w danej epoce Rozpoczyna się on zawsze od liczby widocznych satelitów - tutaj 8, a potem są wymienione nazwy satelitów (nie posortowane!) G20, G07, G0, G29, G04, G25, G, G3 Do obliczeń musimy użyć minimum 5 z nich Załóżmy, że jest to 5 pierwszych satelitów i dla nich wypisujemy z pliku 5 pseudoodległości wyznaczone z obserwacji kodu C/A w metrach: ρ S20 = , ρ S07 = , ρ S0 = , ρ S29 = , ρ S04 =

5 Dalej pobieramy z niego informacje o współrzędnych przybliżonych punktu : z linii: X 0 = Y 0 = Z 0 = () AROX OSITION XYZ Do obliczeń użyjemy jednak współrzędnych zaokrąglonych lub zerowych: X 0 = Y 0 = Z 0 = (2) ze względu na potrzebę rozpoczęcia procesu obliczeniowego od współrzędnych mało dokładnych, aby móc zaobserwować zbieżność iteracyjnego procesu wyznaczania współrzędnych 2 onieważ w plikach orbit precyzyjnych podane są oprócz współrzędnych X S, Y S, Z S (w km) poprawki zegarów satelitów dt S (w mikrosekundach - [µs]), należy je do równania podstawić po zamianie na sekundy Dla tego dnia należy użyć właściwego pliku orbit precyzyjnych o nazwie IGS32S3 lub IGS32RE ze strony z zakładki Download roducts Orbits, dla roku 200 i 3 tygodnia GS Następnie w pliku należy odnaleźć godzinę 8:00:00 i skopiować dane dla satelitów wybranych do obliczeń W efekcie obliczenia dx ˆ z równania (5) uzyskamy wektor niewiadomych zawierający przyrosty współrzędnych punktu w jednostkach, w jakich do macierzy A były podstawione współrzędne oraz wartość liniową błędu zegara odbiornika c ˆdt To kończy pierwszą iterację W drugiej iteracji zaczynamy od wyznaczenia nowych współrzędnych punktu: ˆX Ŷ Ẑ i+ = ˆX Ŷ Ẑ i + ˆx ŷ ẑ (3) i wyznaczywszy je obliczamy nowy wektor zgodnie z równaniem (8) Z nowych współrzędnych punktu oraz pseudoodległości ρ S poprawionych o poprawkę zegara odbiornika c ˆdt : [ ] ρ S = [ ρ S ] i+ i + c ˆ dt (4) układamy nową macierz A i wykonujemy obliczenie nowej wartości ˆ dx i nowych współrzędnych zgodnie z procedurą drugiej iteracji Zauważmy, że wszystkie pomiarzone pseudoodległości poprawiamy tu o ten sam błąd - były bowiem obserwowane tym samym odbiornikiem roces iteracyjny należy przerwać, po osiągnięciu zbieżności dla przyrostów współrzędnych Należy tu zauważyć, że współrzędne te pochodzą z długotrwałego uśredniania, są więc dokładniejsze od współrzędnych, które uzyskamy w ćwiczeniu 2 Dla kontroli poprawności procesu obliczeniowego można sprawdzać, czy uzyskiwane w kolejnych iteracjach współrzędne będą zbliżać się do wartości pobranych z nagłówka pliku 5

6 3 arametry dokładnościowe DO - Dilution of recision 3 Wyznaczanie Wychodząc z macierzy kosinusów kierunkowych pseudoodległości: A, definiującej geometryczny układ odbiornika i satelitów, możemy uzyskać macierz kowariancji C x wyznaczanych parametrów dx: ˆ C x = [ A T A ] σx 2 σ XY σ XZ σ Xcdt = σ Y X σy 2 σ Y Z σ Y cdt σ ZX σ ZY σz 2 σ Zcdt (5) σ cdtx σ cdty σ cdtz σcdt 2 w układzie geocentrycznym ECEF Macierz ta, zawiera informację o jakości geometrycznego wyznaczenia współrzędnych punktu Eliminując ostatnią kolumnę i wiersz macierzy C x, zależne od błędu zegara, otrzymujemy macierz C XY Z opisującą wyłącznie dokładność składowych współrzędnych onieważ chcemy uzyskać informację o jakości rozwiązania odniesionej do układu topocentrycznego, zachodzi konieczność przeliczenia macierzy C XY Z : C ENU = F T C XY Z F = σ 2 E σ EN σ EU σ NE σ 2 N σ NU σ UE σ UN σ 2 U (6) zgodnie z prawem propagacji kowariancji Macierz F łączy przyrosty współrzędnych w układzie ECEF z przyrostami w układzie topocentrycznym: sin λ cos λ 0 F T = sin φ cos λ sin φ sin λ cos φ, (7) cos φ cos λ cos φ sin λ sin φ gdzie φ i λ to długość i szerokość wyznaczonego punktu przeliczone z układu ECEF Bezwymiarowe parametry DO przybierają postać: Geometryczny: GDO = σ 2 E + σ2 N + σ2 U + σ2 cdt, ozycyjny: DO = σ 2 E + σ2 N + σ2 U, oziomy: HDO = σ 2 E + σ2 N, ionowy: V DO = σ 2 U, Czasowy: T DO = σ 2 cdt Funkcjonują one samodzielnie, przekazując informację o jakości rozwiązania, jak również służą do wyznaczenia przybliżonych błędów współrzędnych, jako współczynniki mnożne do błędów pomierzonych pseudoodległości 32 Geometryczna interpretacja Zastanówmy się, jaka konfiguracja satelitów względem odbiornika, jest najkorzystniejsza do wyznaczenia jego współrzędnych Z trzech przedstawionych na rysunku 2 przypadków najlepszy jest wariant B W wariancie A satelity są nisko nad horyzontem, sygnał musi więc przejść, przez grubą warstwę atmosfery oraz żle wyznaczona będzie składowa pionowa Z kolei w wariancie C dobrze wyznaczona będzie skladowa pionowa, natomiast składowe horyzontalne żle Wariant pośredni B jest optymalny Związek parametrów DO z wymienionymi przypadkami następuje poprzez objętość bryły o pięciu wierzchołkach - tetrahedronu Zauważmy, że wariant B ma największą objętość Stąd prosta droga do wyrażenia zależności: DO V tetr (8) 6

7 Rys 2: rzestrzenne wcięcie wstecz - różne konfiguracje Im większa objętość bryły, tym parametr DO będzie mniejszy rzybiera on wartości większe od 0, a doświadczenia polowe dowodzą, że udane obserwacje następują przy DO < 5 przy minimum 5 obserwowanych satelitach 3 4 Literatura Lamparski J (200) NAVSTAR GS Od teorii do praktyki Wyd UWM w Olsztynie, Strang G i Borre K (997) Linear Algebra, Geodesy and GS Wellesley-Cambridge ress, 5 Zadania rzypomnij sobie proces linearyzacji, dowiedź, że równanie (3) w połączeniu z równaniem (8), po linearyzacji da równanie (4) 2 Oblicz jak długo trwa przebieg sygnału od satelity do odbiornika, gdy pomierzona pseudoodległość wynosi km, 3 orównaj otrzymane współrzędne ze wzorcowymi, odpowiedz na pytanie, skąd pochodzi różnica, 4 W jaki sposób korzystając ze zbioru danych w twoim pliku obserwacyjnym RINEX, możnaby podnieść dokładność wyznaczenia pozycji Uwagi proszę kierować na adres: kaplon@kgfarwrocpl 3 rzy pięciu satelitach i odbiorniku, bryła ma 6 wierzchołków, więc nie jest to już tetrahedron 7

Pomiary statyczne GNSS i serwisy postprocessingu: POZGEO, POZGEO D i POZGEO DF

Pomiary statyczne GNSS i serwisy postprocessingu: POZGEO, POZGEO D i POZGEO DF GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Pomiary statyczne GNSS i serwisy postprocessingu: POZGEO, POZGEO D i POZGEO DF Szymon Wajda główny

Bardziej szczegółowo

Pomiary statyczne GNSS i serwisy postprocessingu: POZGEO, POZGEO D i POZGEO DF

Pomiary statyczne GNSS i serwisy postprocessingu: POZGEO, POZGEO D i POZGEO DF GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Pomiary statyczne GNSS i serwisy postprocessingu: POZGEO, POZGEO D i POZGEO DF Marcin Ryczywolski

Bardziej szczegółowo

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 6

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 6 SATELITARNE TECHNIKI POMIAROWE WYKŁAD 6 1 K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie/Gall, Warszawa 2000/Katowice 2010. 2 Równanie pseudoodległości odległość geometryczna satelity s s

Bardziej szczegółowo

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 4

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 4 SATELITARNE TECHNIKI POMIAROWE WYKŁAD 4 1 K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie/Gall, Warszawa 2000/Katowice 2010. 2 Można skorzystać z niepełnej analogii do pomiarów naziemnymi

Bardziej szczegółowo

Pomiary statyczne GNSS i serwisy postprocessingu: POZGEO, POZGEO D i POZGEO DF

Pomiary statyczne GNSS i serwisy postprocessingu: POZGEO, POZGEO D i POZGEO DF Pomiary statyczne GNSS i serwisy postprocessingu: POZGEO, POZGEO D i POZGEO DF Marcin Ryczywolski marcin.ryczywolski@gugik.gov.pl Główny Urząd Geodezji i Kartografii Olsztyn, 10-11 października 2013 r.

Bardziej szczegółowo

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5 SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5 1 K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie/Gall, Warszawa 2000/Katowice 2010. 2 Obserwacje fazowe satelitów GPS są tym rodzajem pomiarów, który

Bardziej szczegółowo

Podstawowe pojęcia związane z pomiarami satelitarnymi w systemie ASG-EUPOS

Podstawowe pojęcia związane z pomiarami satelitarnymi w systemie ASG-EUPOS GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Podstawowe pojęcia związane z pomiarami satelitarnymi w systemie ASG-EUPOS Szymon Wajda główny

Bardziej szczegółowo

Rys Szkic sieci kątowo-liniowej. Nr X [m] Y [m]

Rys Szkic sieci kątowo-liniowej. Nr X [m] Y [m] 5.14. Ścisłe wyrównanie sieci kątowo-liniowej z wykorzystaniem programu komputerowego B. Przykłady W prezentowanym przykładzie należy wyznaczyć współrzędne płaskie trzech punktów (1201, 1202 i 1203) sieci

Bardziej szczegółowo

Precyzyjne pozycjonowanie w oparciu o GNSS

Precyzyjne pozycjonowanie w oparciu o GNSS Precyzyjne pozycjonowanie w oparciu o GNSS Załącznik nr 2 Rozdział 1 Techniki precyzyjnego pozycjonowania w oparciu o GNSS 1. Podczas wykonywania pomiarów geodezyjnych metodą precyzyjnego pozycjonowania

Bardziej szczegółowo

3 Współrzędne satelity w płaszczyźnie orbity

3 Współrzędne satelity w płaszczyźnie orbity 1 Wprowadzenie W geodezji satelitarnej funkcjonują dwa układy współrzędnych związane z ruchem obrotowym Ziemi Earth Centered Earth Fixed (ECEF), oraz układ ekwinokcjalny. Ze względu na prostą formę matematyczną

Bardziej szczegółowo

Differential GPS. Zasada działania. dr inż. Stefan Jankowski

Differential GPS. Zasada działania. dr inż. Stefan Jankowski Differential GPS Zasada działania dr inż. Stefan Jankowski s.jankowski@am.szczecin.pl DGPS koncepcja Podczas testów GPS na początku lat 80-tych wykazano, że błędy pozycji w dwóch blisko odbiornikach były

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku w powietrzu

Wyznaczanie prędkości dźwięku w powietrzu Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania

Bardziej szczegółowo

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu GEOMATYKA program podstawowy 2017 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu Wyznaczenie pozycji anteny odbiornika może odbywać się w dwojaki sposób: na zasadzie pomiarów

Bardziej szczegółowo

GPSz2 WYKŁAD 15 SZCZEGÓŁOWA WYSOKOŚCIOWA OSNOWA GEODEZYJNA

GPSz2 WYKŁAD 15 SZCZEGÓŁOWA WYSOKOŚCIOWA OSNOWA GEODEZYJNA GPSz2 WYKŁAD 15 SZCZEGÓŁOWA WYSOKOŚCIOWA OSNOWA GEODEZYJNA 1 STANDARD TECHNICZNY ZAŁACZNIK NR 1 DO ROZPORZĄDZENIA 2 3 4 5 TO TZW. POŚREDNIE WYMAGANIA DOKŁADNOŚCIOWE 6 Przy niwelacji w druku dziennika pomiaru

Bardziej szczegółowo

WYBRANE ELEMENTY GEOFIZYKI

WYBRANE ELEMENTY GEOFIZYKI WYBRANE ELEMENTY GEOFIZYKI Ćwiczenie 3: Wyznaczanie współczynników TEC (Total Electron Content) i ZTD (Zenith Total Delay) z obserwacji GNSS. prof. dr hab. inż. Janusz Bogusz Zakład Geodezji Satelitarnej

Bardziej szczegółowo

Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego

Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego Uniwersytet Rolniczy w Krakowie Wydział InŜynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Funkcje IV. Wymagania egzaminacyjne:

Funkcje IV. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) określa funkcję za pomocą wzoru, tabeli, wykresu, opisu słownego, b) odczytuje z wykresu funkcji: dziedzinę i zbiór wartości, miejsca zerowe, maksymalne przedziały, w których

Bardziej szczegółowo

Skale czasu. 1.1 Dokładność czasu T IE - Time Interval Error

Skale czasu. 1.1 Dokładność czasu T IE - Time Interval Error Skale czasu 1 Dokładność i stabilność zegarów Zegar wytwarza sygnał okresowy (częstotliwościowy), który opisać można prostą funkcją harmoniczną: s(t) = A sin(2πν nom + φ 0 ) (1) ν nom = 9192631770Hz jest

Bardziej szczegółowo

Laboratorium z Miernictwa Górniczego

Laboratorium z Miernictwa Górniczego Laboratorium z Miernictwa Górniczego Materiały pomocnicze I Planowanie warunków obserwacji satelitów GPS/GLONASS Opracował dr inż. Jan Blachowski jan.blachowski@pwr.wroc.pl, pok. 505, bud. K-1, tel. 320

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

WYZNACZANIE WYSOKOŚCI Z WYKORZYSTANIEM NIWELACJI SATELITARNEJ

WYZNACZANIE WYSOKOŚCI Z WYKORZYSTANIEM NIWELACJI SATELITARNEJ WYZNACZANIE WYSOKOŚCI Z WYKORZYSTANIEM NIWELACJI SATELITARNEJ Karol DAWIDOWICZ Jacek LAMPARSKI Krzysztof ŚWIĄTEK Instytut Geodezji UWM w Olsztynie XX Jubileuszowa Jesienna Szkoła Geodezji, 16-18.09.2007

Bardziej szczegółowo

8. PODSTAWY ANALIZY NIELINIOWEJ

8. PODSTAWY ANALIZY NIELINIOWEJ 8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:

Bardziej szczegółowo

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 12

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 12 SATELITARNE TECHNIKI POMIAROWE WYKŁAD 12 1 Redukcje obserwacji GPS i zaawansowane pakiety programów redukcyjnych Etapy procesu redukcji obserwacji GPS Procesy obliczeniowe prowadzące od zbiorów obserwacji

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Numeryczne rozwiązywanie równań różniczkowych ( )

Numeryczne rozwiązywanie równań różniczkowych ( ) Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 2019/02/14 13:21 1/5 Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 1. Cel ćwiczenia Wyznaczenie przyspieszenia

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1 1 Z jaką prędkością porusza się satelita na orbicie geostacjonarnej? 2 Wiedząc, że doba gwiazdowa na planecie X (stała grawitacyjna µ = 500 000 km 3 /s 2 ) trwa 24 godziny, oblicz promień orbity satelity

Bardziej szczegółowo

WSPÓŁCZESNE TECHNIKI I DANE OBSERWACYJNE

WSPÓŁCZESNE TECHNIKI I DANE OBSERWACYJNE WSPÓŁCZESNE TECHNIKI I DANE OBSERWACYJNE TECHNIKI OBSERWACYJNE Obserwacje: - kierunkowe - odległości - prędkości OBSERWACJE KIERUNKOWE FOTOGRAFIA Metody fotograficzne używane były w 1964 do 1975. Dzięki

Bardziej szczegółowo

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Wstęp do metod numerycznych Zadania numeryczne 2016/17 1

Wstęp do metod numerycznych Zadania numeryczne 2016/17 1 Wstęp do metod numerycznych Zadania numeryczne /7 Warunkiem koniecznym (nie wystarczającym) uzyskania zaliczenia jest rozwiązanie co najmniej 3 z poniższych zadań, przy czym zadania oznaczone literą O

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 8

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 8 SATELITARNE TECHNIKI POMIAROWE WYKŁAD 8 1 J. Lamparski, Navstar GPS: od teorii do praktyki, Wyd. UW-M, Olsztyn 2001. K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie/Gall, Warszawa 2000/Katowice

Bardziej szczegółowo

ciężkości. Długości celowych d są wtedy jednakowe. Do wstępnych i przybliżonych analiz dokładności można wykorzystywać wzór: m P [cm] = ± 0,14 m α

ciężkości. Długości celowych d są wtedy jednakowe. Do wstępnych i przybliżonych analiz dokładności można wykorzystywać wzór: m P [cm] = ± 0,14 m α ciężkości. Długości celowych d są wtedy jednakowe. Do wstępnych i przybliżonych analiz dokładności można wykorzystywać wzór: m [cm] = ±,4 m α [cc] d [km] * (9.5) β d 9.7. Zadanie Hansena β d Rys. 9.7.

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej

Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej Krzysztof Karsznia Leica Geosystems Polska XX Jesienna Szkoła Geodezji im Jacka Rejmana, Polanica

Bardziej szczegółowo

1. Przed rozpoczęciem sprawdzić kompletność pomiarów, właściwe nazewnictwo mierzonych punktów. 2. Ustawienie opcji: Systemopcje (ctrl+p)

1. Przed rozpoczęciem sprawdzić kompletność pomiarów, właściwe nazewnictwo mierzonych punktów. 2. Ustawienie opcji: Systemopcje (ctrl+p) Wyrównanie swobodne w programie Winkalk: 1. Przed rozpoczęciem sprawdzić kompletność pomiarów, właściwe nazewnictwo mierzonych punktów. 2. Ustawienie opcji: Systemopcje (ctrl+p) 3. Kasujemy punkty zgrane

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:

Bardziej szczegółowo

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wiesław Miczulski* W artykule przedstawiono wyniki badań ilustrujące wpływ nieliniowości elementów układu porównania napięć na

Bardziej szczegółowo

Ustawienia trybu pomiarów statycznych (Static) w oprogramowaniu Spectrum Survey Field dla odbiornika Sokkia GRX-1

Ustawienia trybu pomiarów statycznych (Static) w oprogramowaniu Spectrum Survey Field dla odbiornika Sokkia GRX-1 Ustawienia trybu pomiarów statycznych (Static) w oprogramowaniu Spectrum Survey Field dla odbiornika Sokkia GRX-1 (Opracowanie: I.Romanyszyn) Czynność Wyświetlacz 1. Włączamy odbiornik. Czekamy na załadowanie

Bardziej szczegółowo

Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.

Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych. Ćwiczenia nr 2 metody połowienia, regula falsi i siecznych. Sformułowanie zagadnienia Niech będzie dane równanie postaci f (x) = 0, gdzie f jest pewną funkcją nieliniową (jeżeli f jest liniowa to zagadnienie

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS AKUSTYCZNY

ĆWICZENIE 3 REZONANS AKUSTYCZNY ĆWICZENIE 3 REZONANS AKUSTYCZNY W trakcie doświadczenia przeprowadzono sześć pomiarów rezonansu akustycznego: dla dwóch różnych gazów (powietrza i CO), pięć pomiarów dla powietrza oraz jeden pomiar dla

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii (2018) Autor prezentacji :dr hab. Paweł Korecki dr Szymon Godlewski e-mail: szymon.godlewski@uj.edu.pl

Bardziej szczegółowo

Ultra szybkie pozycjonowanie GNSS z zastosowaniem systemów GPS, GALILEO, EGNOS i WAAS

Ultra szybkie pozycjonowanie GNSS z zastosowaniem systemów GPS, GALILEO, EGNOS i WAAS Ultra szybkie pozycjonowanie GNSS z zastosowaniem systemów GPS, GALILEO, EGNOS i WAAS Jacek Paziewski Paweł Wielgosz Katarzyna Stępniak Katedra Astronomii i Geodynamiki Uniwersytet Warmińsko Mazurski w

Bardziej szczegółowo

Ustawienia trybu pomiarów statycznych (Static) w oprogramowaniu TopSURV dla odbiornika Topcon GRS-1

Ustawienia trybu pomiarów statycznych (Static) w oprogramowaniu TopSURV dla odbiornika Topcon GRS-1 Ustawienia trybu pomiarów statycznych (Static) w oprogramowaniu TopSURV dla odbiornika Topcon GRS-1 (Opracowanie: I.Romanyszyn) Czynność Wyświetlacz 1. Włączamy odbiornik. Czekamy na załadowanie się systemu.

Bardziej szczegółowo

Aerotriangulacja. 1. Aerotriangulacja z niezależnych wiązek. 2. Aerotriangulacja z niezależnych modeli

Aerotriangulacja. 1. Aerotriangulacja z niezależnych wiązek. 2. Aerotriangulacja z niezależnych modeli Aerotriangulacja 1. Aerotriangulacja z niezależnych wiązek 2. Aerotriangulacja z niezależnych modeli Definicja: Cel: Kameralne zagęszczenie osnowy fotogrametrycznej + wyznaczenie elementów orientacji zewnętrznej

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

Lista 6. Kamil Matuszewski 13 kwietnia D n =

Lista 6. Kamil Matuszewski 13 kwietnia D n = Lista 6 Kamil Matuszewski 3 kwietnia 6 3 4 5 6 7 8 9 Zadanie Mamy Pokaż, że det(d n ) = n.... D n =.... Dowód. Okej. Dla n =, n = trywialne. Załóżmy, że dla n jest ok, sprawdzę dla n. Aby to zrobić skorzystam

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

Wyrównanie ciągu poligonowego dwustronnie nawiązanego metodą przybliżoną.

Wyrównanie ciągu poligonowego dwustronnie nawiązanego metodą przybliżoną. Wyrównanie ciągu poligonowego dwustronnie nawiązanego metodą przybliżoną. Uwagi wstępne należy przeczytać przed przystąpieniem do obliczeń W pierwszej kolejności należy wpisać do dostarczonego formularza

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

Serwisy postprocessingu POZGEO i POZGEO D

Serwisy postprocessingu POZGEO i POZGEO D GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Serwisy postprocessingu POZGEO i POZGEO D Marcin Ryczywolski specjalista Szkolenie Służby Geodezyjnej

Bardziej szczegółowo

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie Obliczanie pozycji obiektu na podstawie znanych elementów orbity Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie a - wielka półoś orbity e - mimośród orbity i - nachylenie orbity

Bardziej szczegółowo

Systemy nawigacji satelitarnej. Przemysław Bartczak

Systemy nawigacji satelitarnej. Przemysław Bartczak Systemy nawigacji satelitarnej Przemysław Bartczak Zniekształcenia i zakłócenia Założenia twórców systemu GPS było, żeby pozycja użytkownika była z dokładnością 400-500 m. Tymczasem po uruchomieniu systemu

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

1. Wstęp. 2. Budowa i zasada działania Łukasz Kowalewski

1. Wstęp. 2. Budowa i zasada działania Łukasz Kowalewski 01.06.2012 Łukasz Kowalewski 1. Wstęp GPS NAVSTAR (ang. Global Positioning System NAVigation Signal Timing And Ranging) Układ Nawigacji Satelitarnej Określania Czasu i Odległości. Zaprojektowany i stworzony

Bardziej szczegółowo

Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.

Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. 2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie Cel ćwiczenia: Obserwacja swobodnego spadania z wykorzystaniem elektronicznej rejestracji czasu przelotu kuli przez punkty pomiarowe. Wyznaczenie

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

Moduły ultraszybkiego pozycjonowania GNSS

Moduły ultraszybkiego pozycjonowania GNSS BUDOWA MODUŁÓW WSPOMAGANIA SERWISÓW CZASU RZECZYWISTEGO SYSTEMU ASG-EUPOS Projekt rozwojowy MNiSW nr NR09-0010-10/2010 Moduły ultraszybkiego pozycjonowania GNSS Paweł Wielgosz Jacek Paziewski Katarzyna

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej

Bardziej szczegółowo

Rozwiązania przykładowych zadań

Rozwiązania przykładowych zadań Rozwiązania przykładowych zadań Oblicz czas średni i czas prawdziwy słoneczny na południku λ=45 E o godzinie 15 00 UT dnia 1 VII. Rozwiązanie: RóŜnica czasu średniego słonecznego T s w danym miejscu i

Bardziej szczegółowo

Wykorzystanie serwisu ASG-EUPOS do badania i modyfikacji poprawek EGNOS na obszarze Polski

Wykorzystanie serwisu ASG-EUPOS do badania i modyfikacji poprawek EGNOS na obszarze Polski Wykorzystanie serwisu ASG-EUPOS do badania i modyfikacji poprawek EGNOS na obszarze Polski Leszek Jaworski Anna Świątek Łukasz Tomasik Ryszard Zdunek Wstęp Od końca 2009 roku w Centrum Badań Kosmicznych

Bardziej szczegółowo

System 1200 Newsletter Nr 54 Sieci RTK - Przykłady studialne

System 1200 Newsletter Nr 54 Sieci RTK - Przykłady studialne NEWSLETTERY SIECI RTK - PRZYPOMNIENIE Niniejszy numer Newslettera kończy trzyczęściową serię dotyczącą sieci RTK. Zanim zagłębimy się w szczegóły tego numeru przypomnimy tematy dwóch poprzednich numerów.

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

OPRACOWANIE DANYCH GPS CZĘŚĆ I WPROWADZENIE DO GPS

OPRACOWANIE DANYCH GPS CZĘŚĆ I WPROWADZENIE DO GPS OPRACOWANIE DANYCH GPS CZĘŚĆ I WPROWADZENIE DO GPS Bernard Kontny Katedra Geodezji i Fotogrametrii Akademia Rolnicza we Wrocławiu ZAGADNIENIA Ogólny opis systemu GPS Struktura sygnału Pomiar kodowy i fazowy

Bardziej szczegółowo

FastStatic czyli jak wykonać pomiar statyczny

FastStatic czyli jak wykonać pomiar statyczny FastStatic czyli jak wykonać pomiar statyczny POMIAR W TERENIE Aby wykonać pomiar statyczny nie ma potrzeby uprzedniego nawiązywania połączenia internetowego, ani rozpoczynania procedury podłączenia do

Bardziej szczegółowo

1 Równania nieliniowe

1 Równania nieliniowe 1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych. Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach

Bardziej szczegółowo

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie

Bardziej szczegółowo

W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku.

W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku. W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku. Nie wolno dzielić przez zero i należy sprawdzić, czy dzielna nie jest równa zeru. W dziedzinie liczb

Bardziej szczegółowo

Janusz Śledziński. Technologie pomiarów GPS

Janusz Śledziński. Technologie pomiarów GPS Janusz Śledziński Technologie pomiarów GPS GPS jest globalnym wojskowym systemem satelitarnym, a jego głównym użytkownikiem są siły zbrojne USA. Udostępniono go również cywilom, ale z pewnymi dość istotnymi

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

Graficzne opracowanie wyników pomiarów 1

Graficzne opracowanie wyników pomiarów 1 GRAFICZNE OPRACOWANIE WYNIKÓW POMIARÓW Celem pomiarów jest bardzo często potwierdzenie związku lub znalezienie zależności między wielkościami fizycznymi. Pomiar polega na wyznaczaniu wartości y wielkości

Bardziej szczegółowo