SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5"

Transkrypt

1 SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5 1

2 K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie/Gall, Warszawa 2000/Katowice

3 Obserwacje fazowe satelitów GPS są tym rodzajem pomiarów, który stanowi o współcześnie uzyskiwanej, wysokiej dokładności wyznaczania pozycji tą techniką. Same pomiary pseudoodległości pozwalają na uzyskanie precyzji wyznaczenia pozycji co najwyżej rzędu pojedynczych metrów. Różnicowe pomiary fazowe, z dokładnością rzędu l0-2 cyklu fazowego fali nośnej, umożliwiają wyznaczenie różnic odległości dwóch odbiorników z precyzją milimetrową. 3

4 Podstawy procesu obserwacji fazowych satelitów GPS, czyli pomiarów dotyczących różnic faz częstotliwości fali nośnej satelitów GPS (mierzonych w odbiorniku) i częstotliwości generowanej przez własny oscylator (zegar) odbiornika satelitarnego w momencie pomiaru. Najważniejsza jest geometryczna istota wyników pomiarów fazowych GPS oraz właściwości tych pomiarów. 4

5 Uproszczona postać równania obserwacyjnego pomiarów fazowych Oznaczając z indeksem górnym s ( s ) wielkości odniesione do satelity GPS, a z indeksem dolnym k ( k ) wielkości związane z odbiornikiem satelitarnym, można z pewnym przybliżeniem (pomijając w tym momencie błędy czasu i efekty wpływów środowiska pomiarowego, tzn. refrakcji jonosferycznej i troposferycznej) podać następujący związek: 5

6 Gdybyśmy znali a priori liczbę N, to równanie równoważne z powyższym można by w bardzo prosty sposób powiązać z odległością topocentryczną s r k stacji od satelity: przy czym λ oznacza długość fali odpowiadającą częstotliwości emitowanej przez satelitę. 6

7 Geometryczna interpretacja pomiarów fazowych 7

8 8

9 Charakterystyczne s N k dla konkretnej pary satelita-odbiornik, nie jest wyznaczane bezpośrednio poprzez pomiar. Wartość początkową wyznacza się na podstawie specjalnych kombinacji. Wielkość ta może w trakcie pomiaru ulegać skokowym zmianom na skutek chwilowej utraty łączności pomiędzy satelitą odbiornikiem z powodu przerw w odbiorze (powodowanego przez różnego rodzaju przesłony) lub z powodu osłabień sygnału. Zjawisko skokowych zmian s N k nosi nazwę utraty cykli fazowych (cycle slips). 9

10 Związek pomiędzy fazą sygnału satelitarnego rejestrowanego przez odbiornik fazą sygnału emitowanego przez satelitę i czasem potrzebnym na przebycie przez sygnał drogi s r. k s, em ( t) s (t) Z zasady mówiącej, iż fazy sygnałów emitowanego i odbieranego są sobie równe w momentach emisji i odbioru wynika, że Po rozwinięciu w szereg Taylora względem 10

11 Pierwsza pochodna fazy sygnału emitowanego jest tożsama z emitowaną częstotliwością może być z pewnym przybliżeniem, nieistotnym dla wyjaśnienia zasady obserwacji fazowych, traktowana jako równa częstotliwości oscylatora odbiornika naziemnego Czyli wykorzystując to uproszczenie wzór można zapisać jako 11

12 Uproszczoną postać równania obserwacyjnego pomiarów fazowych można przekształcić podstawiając i uzyskujemy Następnie uwzględniamy związek odległości topocentrycznej satelita-odbiornik z wynikającym z tej odległości opóźnieniem sygnału i prędkością fali elektromagnetycznej (w próżni) c. r s k (t) 12

13 Uproszczone równanie obserwacji fazowych 13

14 Obserwacje fazowe satelity GPS 14

15 Jeżeli we wcześniej podanych wzorach zastąpimy nominalny czas obserwacji t przez rzeczywisty czas obserwacji t r - możemy zapisać: 15

16 Częstotliwość, odpowiadającą pierwszej pochodnej fazy względem czasu, wyrazić możemy bardziej precyzyjnie: 16

17 Faza sygnału emitowanego może być wyrażona, względem pewnej początkowej wartości w epoce poprzez: a całkę możemy zapisać: 17

18 Wcześniejszy wzór na fazę odbieranego sygnału zapisany w rozwinięciu w szereg Taylora: Możliwe jest tutaj też przedstawienie pierwszej i drugiej pochodnej względem czasu fazy emitowanej jako: Wówczas wyrażenie na odbieraną fazę częstotliwości fali nośnej satelity można zapisać: 18

19 Trzeba też rozważyć pewne problemy związane z błędami zegara odbiornika GPS - inaczej mówiąc - błędami oscylatora kwarcowego. Błędy te rzutują bowiem zasadniczo na uzyskiwane dokładności pomiarów. Pomiar fazy powinien być realizowany z dokładnością 0,01 cyklu - odpowiada to dokładności zegara w odbiorniku GPS ~ 0,01 nsec. Wymaganie tak wysokiej dokładności jest jednak niemożliwe do spełnienia w dłuższych interwałach czasu. Aby się zbliżyć do takiej dokładności pomiarów czasu, należy zbudować pewien model błędów zegara, a następnie wyznaczać parametry tego modelu dla niewielkich przedziałów obserwacji. Nawet dla poszczególnych epok obserwacyjnych. Najczęściej jako model chodu zegara odbiornika GPS, czyli różnicy czasu rzeczywistego t r, wyznaczanego przez oscylator odbiornika i nominalnego czasu systemu t przyjmuje się wielomian drugiego stopnia. 19

20 Model chodu zegara odbiornika GPS wielomian 2. stopnia Wielkości q, a i b to pewne współczynniki w równaniu, charakterystyczne dla oscylatora w konkretnym odbiorniku. Biorąc pod uwagę fakt, że zarówno czas rzeczywisty t r, jak i moment początkowy t 0 są wyznaczane przez oscylator odbiornika GPS, możemy rozważać fazę oscylatora odbiornika jako: Przyjęcie w tym wzorze częstotliwości odbiornika f równej częstotliwości nominalnej sygnału satelity stanowi pewne kolejne uproszczenie, które może być dopuszczalne, o ile częstotliwość odbiornika będzie w dostatecznie krótkich interwałach czasu porównywana z częstotliwością nominalną. 20

21 Uwzględnienie modelu chodu zegara odbiornika w ostatnim wyrażeniu prowadzi do następującego zapisu fazy oscylatora odbiornika GPS (przy założeniu stałości częstotliwości nominalnej): 21

22 W powyższym wyrażeniu wprowadzono czas nominalny jako zmienną całkowania, posługując się równaniem: z którego wynika, że: Wykonanie całkowania w: prowadzi do wyrażenia: 22

23 W ten sposób mamy wszystkie składniki wzoru, który z lepszym przybliżeniem niż: uproszczone równanie obserwacji fazowych oddaje istotę obserwacji fazowych w systemie GPS. Jest to wzór wyrażający różnicę faz sygnałów satelity ( s ) i oscylatora odbiornika ( k ) mierzoną przez odbiornik satelitarny. Zbierając poprzednie wzory w jedno wyrażenie, możemy napisać: 23

24 Wyrazy w wierszu oznaczonym *) w powyższym wzorze to faza emitowanego sygnału satelity w epoce początkowej t 0 oraz składniki, z których pierwszy jest funkcją poprawki częstotliwości satelity, zaś drugi funkcją dryftu tej częstotliwości. 24

25 Wyrazy w wierszu oznaczonym **) zależą od opóźnienia sygnału satelitarnego τ, czyli od odległości topocentrycznej satelita-odbiornik. Trzeci z tych wyrazów jest iloczynem kwadratów małego dryftu częstotliwości emitowanej przez satelitę i niewielkiej wartości opóźnienia sygnału. Z tego powodu bywa ten wyraz najczęściej pomijany. 25

26 W wierszu oznaczonym ***) mamy fazę oscylatora odbiornika GPS w epoce początkowej oraz wyrazy równania tego oscylatora. 26

27 W ostatnim wierszu ****) mamy początkową, całkowitą liczbę cykli oraz sumaryczny błąd wyznaczenia różnicy ε r. s N k 27

28 Wyrazy tego równania mogą mieć jeszcze inną interpretację np. G. Wübbena, The GPS Adjustment Software Package -GEONAP- Concepts and Models. Proceedings of the Fifth International Symposium on Satellite Positioning, Las Cruces, New Mexico, 1989,

29 Wyrazy w wierszu *) po podzieleniu przez częstotliwość f stanowią pewien model błędu zegara satelity, który to błąd oznaczać możemy nadal. t s 29

30 Wyrazy w wierszu ***) podzielone również przez f opisują błąd oscylatora odbiornika GPS, który wcześniej wyraziliśmy wzorem: Można go oznaczyć przez t k rozpatrując pomiar pseudoodległości., tak jak oznaczaliśmy błąd oscylatora odbiornika 30

31 Wiersz **) po podzieleniu przez częstotliwość f, oznacza opóźnienie sygnału na drodze s satelita-odbiornik GPS oznaczanej przez r. k 31

32 c / f Wziąwszy pod uwagę związek można też pomnożyć całe równanie przez. Wcześniej niektóre wyrazy równania były dzielone przez f i te wystarczy teraz tylko pomnożyć przez c. s s Lewa strona r k oznacza teraz wyrażoną w jednostkach liniowych różnicę faz sygnałów satelity ( s ) i oscylatora odbiornika ( k ) mierzoną przez odbiornik satelitarny. k ( t ) 32

33 Wówczas całe równanie: można przedstawić w bardzo przejrzystej postaci, uzupełniając je jeszcze wyrazami poprawkowymi refrakcji jonosferycznej r trop i refrakcji troposferycznej. r ion 33

34 Główną zaletą równania zapisanego w tej postaci jest spójność zapisu z równaniem pseudoodległości: 34

35 Realizacja w odbiornikach i programach komputerowych wyznaczania pozycji w systemie GPS Biorąc pod uwagę wyrażenie, które wiąże opóźnienie sygnału z odległością topocentryczną poprzez prędkość fali elektromagnetycznej c, można podać związek różnicy faz z odległością satelity od odbiornika. Wyrażenie to wiąże opóźnienie z odległością w funkcji rzeczywistego czasu odbioru sygnału t r, znacznie łatwiej zrealizować tę zależność, gdy wyrazimy ją poprzez wielkości zawarte w modelowym równaniu oscylatora odbiornika: Wystarczy jeszcze włączyć funkcję odległości topocentrycznej z prędkością zmian tej odległości: 35

36 Uwzględniając 3 wcześniejsze związki w : Otrzymamy równanie obserwacyjne fazy fali nośnej satelity GPS, a ściślej różnicy faz w postaci: 36

37 Nieróżnicowe równanie obserwacyjne fazy Czasami w literaturze przedmiotu np. A. Leick, GPS Satellite Surveying, John Wiley & Sons, 1990 nazywa się ten związek nieróżnicowym równaniem obserwacyjnym fazy, gdyż częściej, gdy obserwacje tego samego satelity GPS wykonują jednocześnie dwa lub więcej odbiorników satelitarnych, mamy do czynienia z równaniami różnicowymi różnic faz. 37

38 LITERATURA K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie, Warszawa B. Hofmann-Wellenhof, H. Lichtenegger, E. Wasl, GNSS Global Navigation Satellite Systems GPS, GLONASS, Galileo and more, Springer, Wien - New York A. Leick, GPS Satellite Surveying, John Wiley & Sons, G. Wübbena, The GPS Adjustment Software Package -GEONAP- Concepts and Models. Proceedings of the Fifth International Symposium on Satellite Positioning, Las Cruces, New Mexico, 1989, J. Lamparski, Navstar GPS: od teorii do praktyki, Wyd. UW-M, Olsztyn

Geodezja i Kartografia I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Geodezja i Kartografia I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Systemy pozycjonowania i nawigacji Nazwa modułu w języku angielskim Navigation

Bardziej szczegółowo

GNSS ROZWÓJ SATELITARNYCH METOD OBSERWACJI W GEODEZJI

GNSS ROZWÓJ SATELITARNYCH METOD OBSERWACJI W GEODEZJI GNSS ROZWÓJ SATELITARNYCH METOD OBSERWACJI W GEODEZJI Dr inż. Marcin Szołucha Historia nawigacji satelitarnej 1940 W USA rozpoczęto prace nad systemem nawigacji dalekiego zasięgu- LORAN (Long Range Navigation);

Bardziej szczegółowo

Przyswojenie wiedzy na temat serwisów systemu GPS i charakterystyk z nimi związanych

Przyswojenie wiedzy na temat serwisów systemu GPS i charakterystyk z nimi związanych C C2 C C C5 C6 C7 C8 C9 C0 C C2 C C C5 C6 C7 C8 C9 I. KARTA PRZEDMIOTU. Nazwa przedmiotu: SATELITARNE SYSTEMY NAWIGACYJNE 2. Kod przedmiotu: Vd. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego.

Bardziej szczegółowo

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO...

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO... Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO....................... XI 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ..................... 1 Z historii geodezji........................................ 1 1.1. Kształt

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Podstawowe pojęcia związane z pomiarami satelitarnymi w systemie ASG-EUPOS

Podstawowe pojęcia związane z pomiarami satelitarnymi w systemie ASG-EUPOS GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Podstawowe pojęcia związane z pomiarami satelitarnymi w systemie ASG-EUPOS Szymon Wajda główny

Bardziej szczegółowo

Dalmierze elektromagnetyczne

Dalmierze elektromagnetyczne Dalmierze elektromagnetyczne Dalmierze elektromagnetyczne klasyfikacja i zasada działania Klasyfikacja dalmierzy może być dokonywana przy założeniu rozmaitych kryteriów. Zazwyczaj przyjmuje się dwa. 1.

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Ultra szybkie pozycjonowanie GNSS z zastosowaniem systemów GPS, GALILEO, EGNOS i WAAS

Ultra szybkie pozycjonowanie GNSS z zastosowaniem systemów GPS, GALILEO, EGNOS i WAAS Ultra szybkie pozycjonowanie GNSS z zastosowaniem systemów GPS, GALILEO, EGNOS i WAAS Jacek Paziewski Paweł Wielgosz Katarzyna Stępniak Katedra Astronomii i Geodynamiki Uniwersytet Warmińsko Mazurski w

Bardziej szczegółowo

Moduły ultraszybkiego pozycjonowania GNSS

Moduły ultraszybkiego pozycjonowania GNSS BUDOWA MODUŁÓW WSPOMAGANIA SERWISÓW CZASU RZECZYWISTEGO SYSTEMU ASG-EUPOS Projekt rozwojowy MNiSW nr NR09-0010-10/2010 Moduły ultraszybkiego pozycjonowania GNSS Paweł Wielgosz Jacek Paziewski Katarzyna

Bardziej szczegółowo

Powierzchniowe systemy GNSS

Powierzchniowe systemy GNSS Systemy GNSS w pomiarach geodezyjnych 1/58 Powierzchniowe systemy GNSS Jarosław Bosy Instytut Geodezji i Geoinformatyki Uniwersytet Przyrodniczy we Wrocławiu e-mail: jaroslaw.bosy@up.wroc.pl Systemy GNSS

Bardziej szczegółowo

Problem testowania/wzorcowania instrumentów geodezyjnych

Problem testowania/wzorcowania instrumentów geodezyjnych Problem testowania/wzorcowania instrumentów geodezyjnych Realizacja Osnów Geodezyjnych a Problemy Geodynamiki Grybów, 25-27 września 2014 Ryszard Szpunar, Dominik Próchniewicz, Janusz Walo Politechnika

Bardziej szczegółowo

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu GEOMATYKA program podstawowy 2017 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu Wyznaczenie pozycji anteny odbiornika może odbywać się w dwojaki sposób: na zasadzie pomiarów

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11; środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18

1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18 : Przedmowa...... 11 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ Z historii geodezji... 13 1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18 1.2.

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego: RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 238 (96) Data i numer zgłoszenia patentu europejskiego: 21.09.09 0981671.4 (13) (1) T3 Int.Cl. G01S 19/44 (.01) G01S 19/07

Bardziej szczegółowo

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) (96) Data i numer zgłoszenia patentu europejskiego:

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) (96) Data i numer zgłoszenia patentu europejskiego: PL/EP 1887379 T3 RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 1887379 Urząd Patentowy Rzeczypospolitej Polskiej (96) Data i numer zgłoszenia patentu europejskiego: 04.07.2007

Bardziej szczegółowo

Nawigacja satelitarna

Nawigacja satelitarna Paweł Kułakowski Nawigacja satelitarna Nawigacja satelitarna Plan wykładu : 1. Zadania systemów nawigacyjnych. Zasady wyznaczania pozycji 3. System GPS Navstar - architektura - zasady działania - dokładność

Bardziej szczegółowo

Wykład 14. Technika GPS

Wykład 14. Technika GPS Wykład 14 Technika GPS Historia GPS Z teoretycznego punktu widzenia 1. W roku 1964, I. Smith opatentował pracę: Satelity emitują kod czasowy i fale radiowe, Na powierzchni ziemi odbiornik odbiera opóźnienie

Bardziej szczegółowo

Janusz Śledziński. Technologie pomiarów GPS

Janusz Śledziński. Technologie pomiarów GPS Janusz Śledziński Technologie pomiarów GPS GPS jest globalnym wojskowym systemem satelitarnym, a jego głównym użytkownikiem są siły zbrojne USA. Udostępniono go również cywilom, ale z pewnymi dość istotnymi

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

TRANSCOMP XV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT

TRANSCOMP XV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT TRANSCOMP XV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT NOWAK Aleksander 1 GNSS, GPS, Dokładność, Błędy wyznaczeń WPŁYW KĄTA ODCIĘCIA HORYZONTU NA DOKŁADNOŚĆ WYZNACZEŃ

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:

Bardziej szczegółowo

Aktualne produkty jonosferyczne dla GNSS

Aktualne produkty jonosferyczne dla GNSS Aktualne produkty jonosferyczne dla GNSS Anna Krypiak-Gregorczyk 1, Paweł Wielgosz 1 Andrzej Borkowski 2 Angela Aragon-Angel 3 Aleksander Nowak 4 1 Uniwersytet Warmińsko-Mazurski w Olsztynie 2 Uniwersytet

Bardziej szczegółowo

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0 Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

Przegląd metod zwiększania precyzji danych GPS. Mariusz Kacprzak

Przegląd metod zwiększania precyzji danych GPS. Mariusz Kacprzak Przegląd metod zwiększania precyzji danych GPS Mariusz Kacprzak Plan prezentacji: 1) Omówienie podstaw funkcjonowania GPS 2) Zasada wyznaczenie pozycji w GPS 3) Błędy wyznaczania pozycji 4) Sposoby korekcji

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

OPRACOWANIE DANYCH GPS CZĘŚĆ I WPROWADZENIE DO GPS

OPRACOWANIE DANYCH GPS CZĘŚĆ I WPROWADZENIE DO GPS OPRACOWANIE DANYCH GPS CZĘŚĆ I WPROWADZENIE DO GPS Bernard Kontny Katedra Geodezji i Fotogrametrii Akademia Rolnicza we Wrocławiu ZAGADNIENIA Ogólny opis systemu GPS Struktura sygnału Pomiar kodowy i fazowy

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Analiza dokładności modeli centrów fazowych anten odbiorników GPS dla potrzeb niwelacji satelitarnej

Analiza dokładności modeli centrów fazowych anten odbiorników GPS dla potrzeb niwelacji satelitarnej Analiza dokładności modeli centrów fazowych anten odbiorników GPS dla potrzeb niwelacji satelitarnej Konferencja Komisji Geodezji Satelitarnej Komitetu Badań Kosmicznych i Satelitarnych PAN Satelitarne

Bardziej szczegółowo

Globalny Nawigacyjny System Satelitarny GLONASS. dr inż. Paweł Zalewski

Globalny Nawigacyjny System Satelitarny GLONASS. dr inż. Paweł Zalewski Globalny Nawigacyjny System Satelitarny GLONASS dr inż. Paweł Zalewski Wprowadzenie System GLONASS (Global Navigation Satellite System lub Globalnaja Nawigacjonnaja Sputnikowaja Sistiema) został zaprojektowany

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..

Bardziej szczegółowo

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego

Bardziej szczegółowo

Global Positioning System (GPS)

Global Positioning System (GPS) Global Positioning System (GPS) Ograniczenia dokładności odbiorników systemu GPS Satellite GPS Antenna Hard Surface 1 Błędy pozycji Niezależne od zasady działania systemu Metodyczne wynikające z zasady

Bardziej szczegółowo

WYZNACZANIE WYSOKOŚCI Z WYKORZYSTANIEM NIWELACJI SATELITARNEJ

WYZNACZANIE WYSOKOŚCI Z WYKORZYSTANIEM NIWELACJI SATELITARNEJ WYZNACZANIE WYSOKOŚCI Z WYKORZYSTANIEM NIWELACJI SATELITARNEJ Karol DAWIDOWICZ Jacek LAMPARSKI Krzysztof ŚWIĄTEK Instytut Geodezji UWM w Olsztynie XX Jubileuszowa Jesienna Szkoła Geodezji, 16-18.09.2007

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

Wykorzystanie nowoczesnych technologii w zarządzaniu drogami wojewódzkimi na przykładzie systemu zarządzania opartego na technologii GPS-GPRS.

Wykorzystanie nowoczesnych technologii w zarządzaniu drogami wojewódzkimi na przykładzie systemu zarządzania opartego na technologii GPS-GPRS. Planowanie inwestycji drogowych w Małopolsce w latach 2007-2013 Wykorzystanie nowoczesnych technologii w zarządzaniu drogami wojewódzkimi na przykładzie systemu zarządzania opartego na technologii GPS-GPRS.

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Systemy przyszłościowe. Global Navigation Satellite System Globalny System Nawigacji Satelitarnej

Systemy przyszłościowe. Global Navigation Satellite System Globalny System Nawigacji Satelitarnej Systemy przyszłościowe Global Navigation Satellite System Globalny System Nawigacji Satelitarnej 1 GNSS Dlaczego GNSS? Istniejące systemy satelitarne przeznaczone są do zastosowań wojskowych. Nie mają

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita

Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita Konrad Słodowicz sk3079 AR Zadanie domowe satelita Współrzędne kartezjańskie Do opisu ruchu satelity potrzebujemy 4 zmiennych stanu współrzędnych położenia i prędkości x =r x =r x 3 = r 3, x 4 = r 4 gdzie

Bardziej szczegółowo

Temat: Geodezyjne pomiary sytuacyjne w budownictwie inwentaryzacja powykonawcza fragmentów obiektów budowlanych. Str. 1.Sprawozdanie techniczne 2-3

Temat: Geodezyjne pomiary sytuacyjne w budownictwie inwentaryzacja powykonawcza fragmentów obiektów budowlanych. Str. 1.Sprawozdanie techniczne 2-3 Rok akademicki 2011/2012 Grupa BD1 LP3 Środa 10.15-13.00 Katedra Geodezji im. Kaspra WEIGLA ĆWICZENIE nr 2 Temat: Geodezyjne pomiary sytuacyjne w budownictwie inwentaryzacja powykonawcza fragmentów obiektów

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

1. Wstęp. 2. Budowa i zasada działania Łukasz Kowalewski

1. Wstęp. 2. Budowa i zasada działania Łukasz Kowalewski 01.06.2012 Łukasz Kowalewski 1. Wstęp GPS NAVSTAR (ang. Global Positioning System NAVigation Signal Timing And Ranging) Układ Nawigacji Satelitarnej Określania Czasu i Odległości. Zaprojektowany i stworzony

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI OBLICZEŃ W PRZYPADKU MODELI NIELINIOWO ZALEŻNYCH OD PARAMETRÓW

WYZNACZANIE NIEPEWNOŚCI OBLICZEŃ W PRZYPADKU MODELI NIELINIOWO ZALEŻNYCH OD PARAMETRÓW WYZNACZANIE NIEPEWNOŚCI OBLICZEŃ W PRZYPADKU MODELI NIELINIOWO ZALEŻNYCH OD PARAMETRÓW TOMASZ PUSTY 1, JERZY WICHER 2 Automotive Industry Institute (PIMOT) Streszczenie W artykule podjęto problem określenia

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku w powietrzu

Wyznaczanie prędkości dźwięku w powietrzu Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Źródła błędów w pomiarach GNSS (na podstawie Bosy J., 2005) dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Źródła błędów w pomiarach GNSS (na podstawie Bosy J., 2005) dr inż. Paweł Zalewski Akademia Morska w Szczecinie Źródła błędów w pomiarach GNSS (na podstawie Bosy J., 2005) dr inż. Paweł Zalewski Akademia Morska w Szczecinie Źródła błędów w pomiarach GNSS: Błędy wyznaczania pozycji w systemach zaliczanych do GNSS

Bardziej szczegółowo

Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki?

Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? 1 Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? Sprawozdania należny oddać na kolejnych zajęciach laboratoryjnych. Każde opóźnienie powoduje obniżenie oceny za sprawozdanie o 0,

Bardziej szczegółowo

Linia pozycyjna. dr inż. Paweł Zalewski. w radionawigacji

Linia pozycyjna. dr inż. Paweł Zalewski. w radionawigacji Linia pozycyjna dr inż. Paweł Zalewski w radionawigacji Wprowadzenie Jednym z zadań nawigacji jest określenie pozycji jednostki ruchomej - człowieka, pojazdu, statku czy samolotu. Pozycję ustala się przez

Bardziej szczegółowo

Skale czasu. 1.1 Dokładność czasu T IE - Time Interval Error

Skale czasu. 1.1 Dokładność czasu T IE - Time Interval Error Skale czasu 1 Dokładność i stabilność zegarów Zegar wytwarza sygnał okresowy (częstotliwościowy), który opisać można prostą funkcją harmoniczną: s(t) = A sin(2πν nom + φ 0 ) (1) ν nom = 9192631770Hz jest

Bardziej szczegółowo

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia

Bardziej szczegółowo

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl 3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar

Bardziej szczegółowo

Podstawą formalną recenzji jest pismo Pana Dziekana Wydziału Inżynierii Lądowej i Geodezji Wojskowej Akademii Technicznej z dnia 7 stycznia 2016 r.

Podstawą formalną recenzji jest pismo Pana Dziekana Wydziału Inżynierii Lądowej i Geodezji Wojskowej Akademii Technicznej z dnia 7 stycznia 2016 r. Dr hab. inż. Paweł Wielgosz, prof. UWM Instytut Geodezji Wydział Geodezji, Inżynierii Przestrzennej i Budownictwa Uniwersytet Warmińsko-Mazurski w Olsztynie Olsztyn, 7.02.2016r. Recenzja rozprawy doktorskiej

Bardziej szczegółowo

POMIAR PRĘDKOŚCI OBROTOWEJ Z UŻYCIEM MIKROKONTROLERA Z RODZINY 8051.

POMIAR PRĘDKOŚCI OBROTOWEJ Z UŻYCIEM MIKROKONTROLERA Z RODZINY 8051. Autor: Piotr Macheta Koło Naukowe Magnesik Opiekun naukowy: dr inż. Tomasz Drabek POMIAR PRĘDKOŚCI OBROTOWEJ Z UŻYCIEM MIKROKONTROLERA Z RODZINY 805.. Pomiar prędkości obrotowej wykonuje się na ogół na

Bardziej szczegółowo

Aplikacje Systemów. Nawigacja inercyjna. Gdańsk, 2016

Aplikacje Systemów. Nawigacja inercyjna. Gdańsk, 2016 Aplikacje Systemów Wbudowanych Nawigacja inercyjna Gdańsk, 2016 Klasyfikacja systemów inercyjnych 2 Nawigacja inercyjna Podstawowymi blokami, wchodzącymi w skład systemów nawigacji inercyjnej (INS ang.

Bardziej szczegółowo

Wykorzystanie systemu EGNOS w nawigacji lotniczej w aspekcie uruchomienia serwisu Safety-of-Life

Wykorzystanie systemu EGNOS w nawigacji lotniczej w aspekcie uruchomienia serwisu Safety-of-Life UNIWERSYTET WARMIŃSKO-MAZURSKI w Olsztynie Wydział Geodezji i Gospodarki Przestrzennej Katedra Geodezji Satelitarnej i Nawigacji Wyższa Szkoła Oficerska Sił Powietrznych w Dęblinie Wykorzystanie systemu

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

KARTA PRZEDMIOTU. definiuje podstawowe potencjały termodynamiczne. wyjaśnia pojęcia równowagi i stabilności faz

KARTA PRZEDMIOTU. definiuje podstawowe potencjały termodynamiczne. wyjaśnia pojęcia równowagi i stabilności faz 1 3 4 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy polski Poziom przedmiotu podstawowy K_W01 3 wiedza Symbole efektów kształcenia K_U01 3 umiejętności K_K01 11 kompetencje

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

Ćwiczenie 6. Symulacja komputerowa wybranych procesów farmakokinetycznych z uwzględnieniem farmakokinetyki bezmodelowej

Ćwiczenie 6. Symulacja komputerowa wybranych procesów farmakokinetycznych z uwzględnieniem farmakokinetyki bezmodelowej Ćwiczenie 6. Symulacja komputerowa wybranych procesów farmakokinetycznych z uwzględnieniem farmakokinetyki bezmodelowej Celem ćwiczenia jest wyznaczenie podstawowych parametrów farmakokinetycznych paracetamolu

Bardziej szczegółowo

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych. msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów

Bardziej szczegółowo

Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego

Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego 1 Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego A. Zasada pomiaru mocy za pomocą jednego i trzech watomierzy Moc czynna układu trójfazowego jest sumą mocy czynnej wszystkich jego faz. W zależności

Bardziej szczegółowo

Wykorzystanie systemu ASG-EUPOS do wykonania prac geodezyjnych i kartograficznych

Wykorzystanie systemu ASG-EUPOS do wykonania prac geodezyjnych i kartograficznych GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII DEPARTAMENT GEODEZJI KARTOGRAFII I SYSTEMÓW INFORMACJI GEOGRAFICZNEJ Wykorzystanie systemu ASG-EUPOS do wykonania prac geodezyjnych i kartograficznych Opracowanie: Ryszard

Bardziej szczegółowo

Naziemne systemy nawigacyjne. Wykorzystywane w nawigacji

Naziemne systemy nawigacyjne. Wykorzystywane w nawigacji Naziemne systemy nawigacyjne Wykorzystywane w nawigacji Systemy wykorzystujące radionamiary (CONSOL) Stacja systemu Consol składała się z trzech masztów antenowych umieszczonych w jednej linii w odległości

Bardziej szczegółowo

TEMATYKA PRAC DYPLOMOWYCH MAGISTERSKICH STUDIA STACJONARNE DRUGIEGO STOPNIA ROK AKADEMICKI 2012/2013

TEMATYKA PRAC DYPLOMOWYCH MAGISTERSKICH STUDIA STACJONARNE DRUGIEGO STOPNIA ROK AKADEMICKI 2012/2013 STUDIA STACJONARNE DRUGIEGO STOPNIA ROK AKADEMICKI 2012/2013 Instytut Geodezji GEODEZJA GOSPODARCZA PROMOTOR Dr hab. Zofia Rzepecka, prof. UWM Dr inż. Dariusz Gościewski Analiza możliwości wyznaczenia

Bardziej szczegółowo

Wykład 14. Termodynamika gazu fotnonowego

Wykład 14. Termodynamika gazu fotnonowego Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej

Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej Krzysztof Karsznia Leica Geosystems Polska XX Jesienna Szkoła Geodezji im Jacka Rejmana, Polanica

Bardziej szczegółowo

Laboratorium z Miernictwa Górniczego

Laboratorium z Miernictwa Górniczego Laboratorium z Miernictwa Górniczego Materiały pomocnicze I Planowanie warunków obserwacji satelitów GPS/GLONASS Opracował dr inż. Jan Blachowski jan.blachowski@pwr.wroc.pl, pok. 505, bud. K-1, tel. 320

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Zastosowanie wysokoczęstotliwościowych odbiorników GNSS do badania scyntylacji sygnałów satelitarnych w jonosferze.

Zastosowanie wysokoczęstotliwościowych odbiorników GNSS do badania scyntylacji sygnałów satelitarnych w jonosferze. Zastosowanie wysokoczęstotliwościowych odbiorników GNSS do badania scyntylacji sygnałów satelitarnych w jonosferze. R. Sieradzki, A. Krankowski, Krypiak-Gregorczyk A., Zakharenkova I., Kapcia J. Uniwersytet

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Wiesław Graszka naczelnik wydziału Szymon Wajda główny specjalista

Wiesław Graszka naczelnik wydziału Szymon Wajda główny specjalista Wiesław Graszka naczelnik wydziału Szymon Wajda główny specjalista Konferencja Satelitarne metody wyznaczania pozycji we współczesnej geodezji i nawigacji Wrocław 02-04. czerwca 2011 r. Wprowadzenie Zakres

Bardziej szczegółowo

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo