6. OBWODY PRĄDU ZMIENNEGO - WIADOMOŚCI PODSTAWOWE Klasyfikacja prądów ze względu na zmienność w czasie

Wielkość: px
Rozpocząć pokaz od strony:

Download "6. OBWODY PRĄDU ZMIENNEGO - WIADOMOŚCI PODSTAWOWE. 6.1. Klasyfikacja prądów ze względu na zmienność w czasie"

Transkrypt

1 . OBWODY PRĄDU ZMENNEGO - WADOMOŚC PODSAWOWE.. Klasyfikacja prądów ze względu na zmienność w czasie Prąd zmienny jest to taki prąd, którego natężenie zmienia się w czasie. Podstawowymi parametrami służącymi do opisywania podobnych, zależnych od czasu zjawisk fizycznych, są wartości charakteryzujących je wielkości w konkretnej, rozważanej chwili czasowej, zwane wartościami chwilowymi. W technice przyjęto jako normę, że wartości chwilowe oznacza się małymi literami (np.: i, u, v, e, j). stnieją jednak zwyczajowe wyjątki od tej reguły. Na przykład wartości chwilowe wielkości opisujących pole magnetyczne oznacza się dużymi literami H (natężenie), B (indukcja), Φ (strumień magnetyczny). Aby uniknąć ewentualnych nieporozumień (możliwych zwłaszcza wtedy, gdy wartość chwilowa oznaczona jest dużą literą) zastosowany symbol można uzupełnić literą t w nawiasie (np.: i(t), u(t), v(t), e(t), j(t), H(t), B(t), Φ(t)). Otrzymany w ten sposób symbol jest jednocześnie symbolem wartości chwilowej (w chwili czasowej t ) oraz symbolem zależności funkcyjnej danej wielkości od czasu. Klasyfikację prądów elektrycznych ze względu na zmienność w czasie ich wartości chwilowych pokazuje rysunek.. Prąd elektryczny jest prądem stałym wtedy gdy wartości chwilowe jego natężenia (w tym Rys... Klasyfikacja prądów ze względu na zmienność w czasie znak, a więc zwrot prądu) pozostają niezmienne w czasie. Dotyczy to wszystkich innych charakteryzujących go wielkości (napięć, potencjałów, sił elektromotorycznych, sił prądomotorycznych, itp.). Wielkości charakteryzujące prądy stałe oznacza się dużymi literami (np.:, U, V, E, J). Dla natężenia prądu stałego słuszne jest zatem: i = = const. Prąd zmienny to prąd o takim natężeniu, którego wartości chwilowe zmieniają się w funkcji czasu (zmienność może przy tym polegać wyłącznie na zmianie znaku, co odpowiada zmianie zwrotu prądu). Wśród prądów zmiennych wyróżnia się szczególną klasę prądów - prądy okresowe. Prąd jest prądem okresowym jeżeli istnieje dla niego taki przedział czasowy, że słuszna jest zależność: Rys... Prąd okresowy o okresie i ( t + ) = i( t ) (.) to okres przebiegu okresowego. Odwrotność okresu to częstotliwość: f = (.) Jednostką okresu jest sekunda ( [ ] = s ), jednostką częstotliwości jest herc ( [ f ] = Hz ). Okresowymi mogą być także napięcia, a także siły elektro i prądomotoryczne. - -

2 Prąd przemienny to taki prąd zmienny okresowy, którego natężenie przyjmuje wartości dodatnie i ujemne (płynie raz w jedną raz w drugą stronę) i dla którego słuszna jest zależność: i ( t )dt = (.).. Wartość średnia, wartość skuteczna Dla przebiegów okresowych można zdefiniować wartości opisujące przebieg całościowo, za cały okres. akimi wartościami są wartości średnie i wartości skuteczne danych wielkości (natężeń, napięć, potencjałów, itp). Wartość średnia wielkości okresowej jest to średnia arytmetyczna przebiegu czasowego tej wielkości za okres. Dla prądu, fizycznie jest to natężenie takiego umyślonego prądu stałego, który w czasie jednego okresu przenosi taki sam ładunek jak dany prąd okresowy. Wartość średnią oznacza się dużą literą z indeksem av albo z umieszczoną u góry kreską (np.: av albo ). Wyznacza się ją (tu przykładowo wartość średnią natężenia prądu) z zależności: av = i( t ) dt (.) Dla przebiegu sinusoidalnego, a takie przebiegi okresowe najczęściej występują w praktyce, jest: m m av = m sin( ωt )dωt = ( cos( ωt ) = [ ( ) ] = (.a) Wartość średnia przebiegu sinusoidalnego wynosi zatem zero. Z tego powodu pojęcie wartości średniej niezbyt nadaje się do opisywania prądów sinusoidalnie zmiennych. Wynikła stąd potrzeba znalezienia wielkości bardziej do tego przydatnej. aką bardziej przydatną wielkością jest wartość skuteczna. Historycznie koncepcja wartości skutecznej związana jest z przyrządami pomiarowymi cieplikowymi (cieplnymi), obecnie stosowanymi bardzo rzadko. Są to przyrządy, które do pomiaru wielkości elektrycznych wykorzystują zjawisko nagrzewania się przewodnika na skutek przepływu prądu. Najważniejszą ich częścią jest drucik grzejny, przez który przepływa mierzony prąd. emperatura do jakiej nagrzewa się taki drucik zależy od natężenia prądu. W tradycyjnych rozwiązaniach miernika, do jej pomiaru wykorzystywane jest zjawisko rozszerzalności cieplnej materiału (por. rys...). emperatura ta, a w związku z tym także wskazanie miernika, nie zależy od zwrotu prądu. Stąd przyrząd cieplikowy można wyskalować prądem stałym, a następnie używać do pomiaru prądu zmiennego. o co wskazuje taki przyrząd nazwano wartością skuteczną (bo daje taki sam skutek energetyczny jak prąd stały, którego użyto do skalowania przyrządu). Jeszcze w latach 9-tych wartości skuteczne określane bywały jako wartości wskazywane przez przyrządy cieplikowe. Rys... Budowa miernika cieplikowego. drucik grzejny,. tzw. mostek,. nić jedwabna, 4. rolka ze wskazówką, 5. sprężyna napinająca Zgodnie ze współczesną definicją, wartość skuteczna natężenia prądu okresowego jest to natężenie takiego umyślonego prądu stałego, który, przepływając przez rezystor o nie zmieniającej się rezystancji, wydzieliłby na nim, w czasie jednego okresu, lub jego - 4 -

3 wielokrotności, taką samą ilość energii cieplnej, jaką, w tym samym czasie, wydziela dany prąd okresowy. Z definicji tej wynika wzór na obliczanie wartości skutecznej natężenia prądu okresowego: Stąd otrzymuje się poszukiwany wzór: energia cieplna pobrana przez rezystor o rezystancji R, w którym płynie umyślony prąd stały : Stąd: W = R = R = R i( t ) dt energia cieplna pobrana przez rezystor o rezystancji R, w którym płynie prąd okresowy i ( t ) o okresie : W = R i( t ) dt = i( t ) dt (.4) Podobnie oblicza się wartości skuteczne innych wielkości charakteryzujących prąd elektryczny. Na przykład wartość skuteczną napięcia wyznacza się z wzoru: U = u( t ) dt (.4a) Matematycznie wartość skuteczna jest więc pierwiastkiem ze średniej z wielkości podnoszonej do kwadratu - po angielsku: root mean square. Pierwsze litery tego anglojęzycznego terminu używane są w tym języku (a więc w międzynarodowym języku nauki i techniki) jako stawiany przy jednostkach indeks oznaczający wartość skuteczną. Przykładowo wartość skuteczną napięcia równą V zapisuje się jako V rms. Wartość skuteczna danej wielkości to wartość tej wielkości dla prądu stałego równoważna jej skutkami energetycznymi, stąd wartości skuteczne oznacza się tak jak wielkości prądu stałego, a więc dużymi literami (np.:, U, V, E, J). Jak to wynika z definicji, wartość skuteczna jest zawsze rzeczywistą liczbą dodatnią. Dzieląc wartość maksymalną (amplitudę) przebiegu przez jego wartość skuteczną otrzymuje się pewien współczynnik, który może być użyty do obliczania tej wartości maksymalnej na podstawie znajomości wartości skutecznej. Jest to współczynnik szczytu: W k maks sz = (.5a) Wsk Definiuje się też współczynnik kształtu: W k = sk (.5b) Wśr Znajduje on zastosowanie przy skalowaniu mierników magnetoelektrycznych wykorzystywanych do pomiarów wielkości sinusoidalnych. Mierzą one wartości średnie przebiegów wyprostowanych, a wyskalowane są w wartościach skutecznych

4 .. Moc czynna, moc pozorna, współczynnik mocy Wartości chwilowe mocy z jaką energia jest pobierana lub wydawana przez dwójnik, równe są iloczynowi wartości chwilowych natężenia prądu płynącego w dwójniku i napięcia charakteryzującego pole elektryczne wymuszające ten prąd: p = u i (.) Wynika to z definicji napięcia i natężenia (por. pkt..4 rozdz.. pierwszej części niniejszego skryptu: Elektrotechnika eoretyczna. Prąd stały. ). Jeżeli przebiegi prądu i napięcia są zmienne w czasie to zmienny jest także przebieg mocy. Jeżeli przebiegi te są okresowe, to również przebieg mocy jest okresowy (okres tego przebiegu na ogół jest inny niż okresy napięcia i prądu). Można zatem wyznaczyć jego matematyczną wartość średnią. Wartość tę nazwano mocą czynną. Oznacza się ją dużą literą P i wylicza z takiego samego wzoru jak inne wartości średnie przebiegów okresowych: P = p( t )dt = u( t ) i( t )dt (.7) Moc czynną można także definiować fizycznie jako taką nie zmieniającą się w czasie moc, która w ciągu jednego okresu spowoduje przepływ energii równy przepływowi energii rozważanego przebiegu okresowego. Jednostką mocy czynnej jest wat ( [ P] = W ). Status mocy czynnej w elektrotechnice trafnie określa jej anglojęzyczna nazwa true power - moc prawdziwa. loczyn wartości skutecznych napięcia i prądu danego dwójnika elektrycznego nosi nazwę mocy pozornej tego dwójnika. Oznacza się ją symbolem S : S = U (.8) Pojęcia moc pozorna i moc czynna nie są stosowane w teorii obwodów prądu stałego. Dla tych prądów moc pozorna jest równa mocy czynnej (i jest nazywana mocą, bez dodatkowych dookreśleń). naczej jest w niektórych obwodach prądu zmiennego. Przesył energii z daną mocą czynną (tj. daną mocą średnią) i przy danej wartości skutecznej napięcia, wymaga w tych obwodach zastosowania natężenia prądu o większej wartości skutecznej niżby to było konieczne gdyby moc czynna była równa mocy pozornej (i jak byłoby w obwodach prądu stałego). Zazwyczaj dzieje się tak dlatego, że część energii dopływającej do odbiornika nie zamienia się w nim na energię użyteczną, lecz jest tam magazynowana (w polach magnetycznych cewek i w polach elektrycznych kondensatorów), a następnie zwracana do źródła. Oscyluje w ten sposób bezproduktywnie pomiędzy odbiornikiem a źródłem, powodując zwiększenie wartości skutecznej natężenia prądu. Z tego powodu słuszna jest zależność: S P (.8) Moc pozorna nie jest zatem wielkością opisującą rzeczywistą moc z jaką energia przepływa pomiędzy odbiornikiem a źródłem. Jest ona maksymalną wartością mocy średniej (mocy czynnej), z jaka energia mogłaby przepływać, przy danych wartościach skutecznych napięcia i prądu, gdyby w obwodzie nie zachodziło zjawisko oscylacji energii, lub inne zjawiska pogarszające ten przepływ. Określa więc jedynie optymalne warunki odniesienia dla procesów rzeczywiście zachodzących przy transferze energii. Aby wyraźnie podkreślić, że moc pozorna nie jest rzeczywistą, prawdziwą mocą S = VA). fizyczną, nie mierzy się jej w watach. Jednostką mocy pozornej jest woltamper ( [ ] Stosunek mocy czynnej danego dwójnika do jego mocy pozornej nosi nazwę współczynnika mocy: - -

5 u( t ) i( t ) dt P P λ = = = (.) S U i ( t ) dt u ( t ) dt Z definicji współczynnika mocy i z zależności (.8.) wynika, że współczynnik ten może przyjmować wartości z przedziału (domkniętego), : λ (.a) Występowanie wartości współczynnika mocy mniejszej od jedności oznacza, że przepływ energii odbywa się przy większych wartościach skutecznych prądu (lub napięcia) niż byłoby to konieczne w warunkach optymalnych. ak, jak gdyby źródło musiało generować jakąś dodatkową energię transferowaną następnie do odbiornika, lecz nie zmieniającą się w energię użyteczną. Moc z jaką przesyłana jest ta hipotetyczna dodatkowa energia nosi nazwę mocy biernej. Będzie ona szczegółowiej omawiana w dalszych rozdziałach niniejszego podręcznika. W obwodach prądu sinusoidalnie zmiennego tą nieużyteczną energią, występowanie której opisuje moc bierna, jest energia rzeczywiście oscylująca pomiędzy odbiornikiem i źródłem. Jednak występowanie mocy biernej może mieć za przyczynę także inne zjawiska fizyczne. PRZYKŁAD Rozważmy obwód rezystancyjny z wirującym łącznikiem o schemacie zastępczym przedstawiony na rys..4. Łącznik wiruje z prędkością kątową ω = /, gdzie to czas jednego obrotu łącznika. Podczas każdego obrotu obwód jest zamknięty jedynie przez czas τ. W związku z tym, w obwodzie płynie prąd zmienny okresowy, mimo iż zasilany jest on przez źródło prądu stałego. Rys..4. Obwód rezystancyjny z wirującym łącznikiem Należy wyznaczyć moce pozorną i czynną źródła, a także jego współczynnik mocy. Z opisu funkcjonowania łącznika wynika, że przebieg wartości chwilowych prądu płynącego w obwodzie, w tym przez źródło, dla jednego okresu zmienności opisuje zależność: E < t τ i( t ) = R s + R o τ < t Jego wartość skuteczna wynosi: = τ E E τ dt R R = Rs Ro s + o + Napięcie źródła: u źr ( t ) = e( t ) = E Stąd jego wartość skuteczna: U źr = E Moc czynna źródła: τ τ E E τ Pźr = u (t) i(t) dt E dt źr = = R R Rs Ro s + o + Moc pozorna źródła: E τ Sźr = E = Rs + Ro Współczynnik mocy: Pźr τ λ źr = =, ( źr Sźr - 7 -

6 Współczynnik mocy jest mniejszy od jedności, co wskazuje na fakt nieoptymalnego wykorzystywania źródła. W obwodzie występuje zatem moc bierna. Jednak nie jest tu ona związana z oscylacyjnym przepływem jakiejkolwiek energii. W tym wypadku nieoptymalność polega na przerwach w przesyle energii. Właśnie dlatego natężenie prądu jest większe niż byłoby to potrzebne do przesyłania energii z daną mocą czynną (mocą średnią) gdyby źródło było wykorzystywane bez przerw (a więc optymalnie). Z punktu widzenia źródła odbiornik jest rezystorem o zmiennej rezystancji (równej R o lub ). Jak widzimy obciążenie źródła stałego takim odbiornikiem, a więc odbiornikiem niestacjonarnym, daje efekt występowania mocy biernej. Podobne rozważania przeprowadzone w odniesieniu do odbiornika (rezystora R o ) dają wynik P odb = Sodb, z czego wynika, że współczynnik mocy ma tu wartość λ =. Gdy rozważać zjawiska energetyczne z punktu widzenia odbiornika, liniowy, stacjonarny rezystor zasilany jest zmiennym napięciem o przebiegu prostokątnym. Moc bierna nie występuje. Zatem powodem występowania mocy biernej w rozważanym przykładzie jest niestacjonarność odbiornika..4. Prąd sinusoidalnie zmienny Na zaciskach wykonanej z materiału przewodzącego ramki, umieszczonej w polu magnetycznym i wirującej z prędkością kątową ω (rys..5a), skutkiem zjawiska indukcji elektromagnetycznej, występuje napięcie (ściślej - pole elektryczne o napięciu) o przebiegu czasowym pokazanym na rys..5b. Rys..5. Napięcie sinusoidalnie zmienne a) powstawanie, b) przebieg w funkcji czasu Przebieg ten opisuje wyrażenie matematyczne: u( t ) = Um sin[ ω ( t + τu )] (.) gdzie: U m - to amplituda napięcia; τ u - to czas jaki minął od chwili gdy napięcie miało wartość chwilową równą zero ( przebieg przechodził przez zero ) do chwili kiedy rozpoczęto mierzenie czasu (chwili t = ). Zmienną niezależną jest tu czas (mierzony w jednostkach czasu, tj. w sekundach), zaś do analitycznego zapisu musi zostać użyta funkcja trygonometryczna sinus (lub kosinus). Dziedziną funkcji trygonometrycznych są kąty (mierzone w jednostkach miary kąta płaskiego, tj. w radianach). Stąd zachodzi potrzeba przeliczania czasu na kąty - sekund na radiany. Stosowany tu współczynnik przeliczeniowy nosi nazwę pulsacji (oznacza się go małą grecką literą ω ). Jego wartość wynika z zależności ω = - okres funkcji sinus, równy, musi być równoważny okresowi przebiegu czasowego. Równoważność uzyskuje się za pomocą mnożenia przez współczynnik przeliczeniowy

7 Stąd wynika wzór na wyznaczanie pulsacji: ω = = f (.) [ < ] rad Jednostką pulsacji jest radian na sekundę ( [ ω ] = = ). [ t ] s Konkretna wartość pulsacji danego przebiegu sinusoidalnego wynika z prędkości kątowej (też oznaczanej symbolem ω - por. rys..5a) z jaką kręci się wirnik prądnicy generującej ten przebieg (Sprawa jest nieco bardziej złożona, tak jest tylko wtedy gdy pole magnetyczne prądnicy ma jedną parę biegunów). W elektrotechnice przyjęło się, że przebiegi sinusoidalne przedstawiane są Rys... Napięcie sinusoidalne w funkcji kąta ωt graficznie nie w funkcji czasu lecz w funkcji iloczynu ω t, czyli odpowiadającego czasowi kąta - argumentu funkcji sinus (por. rys..). Kąt ten nosi nazwę kąta fazowego. Zmienia się on w funkcji czasu - υ ( t ) = ωt + Ψ. Nazwa pochodzi stąd, że od wartości tego kąta zależy w jakiej fazie znajduje się w danej chwili czasowej przebieg (czy jest to faza narastania, czy faza osiągania wartości maksymalnej, czy faza malenia, itd.). Okresem tak przedstawianego przebiegu jest kąt pełny (), a zamiast czasu τ u, jaki minął od chwili gdy przebieg przechodził przez zero do chwili gdy rozpoczęto obserwację przebiegu (tj. do chwili gdy t = ), występuje odpowiadający temu czasowi kąt Ψu = τ ω, nazywany początkowym kątem fazowym. Rys..7. Prąd sinusoidalnie zmienny, wyprostowany a) jednopołówkowo b) dwupołówkowo Przebieg sinusoidalny (przykładowo - natężenia prądu) charakteryzują zatem następujące parametry: - amplituda: max, m ; - pulsacja: ω = f ; - okres: = ; ω - częstotliwość: f ω = = - kąt fazowy w funkcji czasu υ ( t ) = ωt + Ψ ; - początkowy kąt fazowy: υ ( ) = ω + Ψ = Ψ ; - wartość średnia: av = ; - 9 -

8 Różna od zera jest wartość średnia przebiegu sinusoidalnego wyprostowanego (jednopołówkowo i dwupołówkowo - por. rys..7): m m av( j.p.) = m sin( ωt )dωt ( cos( ωt ) [ ( ) ( ) ] m = = = (.a) m m av( d.p.) = m sin( ωt )dωt ( cos( ωt ) [ ( ) ( ) ] m = = = (.b) - wartość skuteczna: = m m sin ( t )d t m sin ( t )d t m ω ω = = = ω ω (.4) Dla przebiegów sinusoidalnych słuszny jest więc wzór: = m (.4a) (o NE JES definicja wartości skutecznej, a jedynie wzór na jej wyliczanie dla przebiegów sinusoidalnych! - por. pkt.) W Europie napięcie znamionowe instalacji elektroenergetycznych niskiego napięcia ma wartość skuteczną U = V ( U = Vrms ). Wartość maksymalna tego napięcia wynosi więc U m = V 5V. Częstotliwość ma wartość f = 5 Hz. Odpowiada to okresowi rad = =, s = ms. Stąd wartość pulsacji - ω = s W Stanach Zjednoczonych i w niektórych innych krajach wartości te są następujące: U = V rms, U m 55, V, f = Hz, =, ( & rad ) s,7 ms, ω 77. s Przebiegi sinusoidalne mające taką samą pulsację (np. przebiegi natężenia prądu i wymuszającego ten prąd napięcia) noszą nazwę przebiegów synchronicznych. Dla przebiegów synchronicznych można wyznaczać przesunięcie fazowe jednego przebiegu względem drugiego. Na ogół oznacza się je małą grecką literą ϕ. W przypadku przebiegów z rys..8 wynosi ono: ϕ = Ψ U Ψ Rys..8. Dwa synchroniczne przebiegi sinusoidalne (.5) Mówimy, że napięcie wyprzedza prąd o kąt ϕ, albo, że prąd opóźnia się o kąt ϕ w stosunku do napięcia. Suma przebiegów sinusoidalnych synchronicznych (o tej samej pulsacji) jest też przebiegiem sinusoidalnym. Jej przebieg można wyznaczyć dodając do siebie wyrażenia opisujące przebiegi składowe. Nie jest to jednak zbyt proste. - -

9 Niech prądy i i i z rys..9. mają przebiegi: i( t ) = m sin( ωt + Ψ ) i i( t ) = m sin( ωt + Ψ ). Prąd i jest ich sumą: i = i + i. Jego przebieg czasowy można wyznaczyć jako: i( t ) = m sin( ωt + Ψ ) + m sin( ωt + Ψ ) = m sin( ωt + Ψ ) Wartości m i Ψ można wyznaczyć wykorzystując tożsamości trygonometryczne: i( t ) = m sin( ωt + Ψ ) + m sin( ωt + Ψ ) = m [sin( ωt )cosψ + cos( ωt )sinψ ] + + m [sin( ωt )cosψ + cos( ωt )sinψ ] = = sin( ωt )[ m cosψ + m cosψ ] + cos( ωt )[ m sinψ + m sinψ = sin( ωt )[ m cosψ + m cosψ ] + cos( ωt )[ m sinψ + m sinψ o wyrażenie daje się przekształcać dalej, aż do postaci: i(t) = ( cos cos ) ( sin sin ) m Ψ + m Ψ + m Ψ + m Ψ sin sin sin( t ar tg m Ψ + m Ψ ω + ) m cosψ + m cosψ Jak widać, obliczenia takie są pracochłonne nawet dla bardzo prostego przypadku. Właśnie z tego powodu, już w XX w. (pod jego koniec) elektrycy wymyślili metodę skutecznie je upraszczającą. Jest nią metoda wskazów..5. Metoda wskazów Metoda wskazów odwołuje się do koła trygonometrycznego i do pojęcia wskazu wirującego. ] = ] Rys..9. Sumowanie prądów Rys..9. Prąd sinusoidalny i wskaz wirujący wartości maksymalnej Wskaz wirujący wartości maksymalnej jest rodzajem ruchomego (wirującego) wektora, który odwzorowuje przebieg czasowy wielkości sinusoidalnie zmiennej. Na rys..9. pokazano przykładowo wskaz wartości maksymalnej natężenia prądu. Ma on długość równą amplitudzie odwzorowywanego przebiegu, umieszczony jest w początku układu współrzędnych i obraca się w kierunku przeciwnym do ruchu wskazówek zegara z prędkością kątową ω, równą pulsacji przebiegu. Rzutując koniec takiego wektora na oś rzędnych ( oś igreków ), można na niej odczytywać wartości chwilowe natężenia prądu dla chwil t, odpowiadających kątom ω t + Ψ. W chwili t =, a więc w umownej chwili rozpoczęcia pomiaru czasu, wskaz nachylony jest w stosunku do osi odciętych ( osi iksów ) pod kątem Ψ. Na tzw. wykresach - -

10 wskazowych, wykorzystywanych jako rodzaj graficznego odwzorowania przebiegów sinusoidalnych, rysowany jest on właśnie w tym położeniu. akie odwzorowanie, dzięki swojej prostocie, przydatne jest przy porównywaniu wielu przebiegów, zwłaszcza przy określaniu ich wzajemnych przesunięć fazowych. Jednak największą zaletą tej metody przedstawiania przebiegów sinusoidalnych jest to, że dodane do siebie geometrycznie wskazy dwu synchronicznych przebiegów sinusoidalnych dają wskaz przebiegu sinusoidalnego będącego ich sumą. Pokazano to na rys... Rys... Dodawanie prądów sinusoidalnych jako wskazów wirujących wartości maksymalnej Długość wskazu otrzymanego w wyniku geometrycznego dodawania wskazów składowych jest równa amplitudzie tego sumarycznego przebiegu, kąt jaki ten wskaz tworzy z osią odciętych (osią iksów ) w chwili t = jest jego początkowym kątem fazowym. Gdy wskaz ten obracać ze zwrotem przeciwnym do ruchu wskazówek zegara (jak na rysunku), jego rzuty na oś rzędnych ( oś igreków ), dla kolejnych kątów jaki wskaz tworzy z osią odciętych ( oś iksów ) odpowiadających kolejnym chwilom czasowym, dają wartości chwilowe prądu i ( t ) W praktyce stosowane są nie wskazy wartości maksymalnych, a wskazy wartości skutecznych. Różnią się one od wskazów wartości maksymalnych tym, że mają długość równą wartości skutecznej danej wielkości. Są zatem razy krótsze od wskazów wartości maksymalnej, stąd uzyskane za ich pomocą wartości chwilowe przebiegów czasowych trzeba przemnażać przez. PRZYKŁAD : Dane są dwa synchroniczne prądy sinusoidalne o natężeniach: i ( t ) = sin( 4t ) A i i (t) = 5,57cos(4t) A Należy wyznaczyć przebieg wartości chwilowych prądu będącego ich sumą: i ( t ) = i( t ) + i( t ) Zastosujmy metodę wskazów wartości skutecznej: Jest: max = = = A, rad Ψ = ; i ( t ) = 5,57 cos( 4t ) A = 4 sin( 4t + ) A ; 5,57 max = = = 4 A, Ψ = rad ; Wskazy są nawzajem prostopadłe, do wyznaczania Rys... Dodawanie wskazów prądu długości będącego ich sumą wskazu warto więc zastosować twierdzenie Pitagorasa: - -

11 = + = + 4 = 5 A Początkowy kąt fazowy Ψ można wyliczać stosując funkcje trygonometryczne: 4 Ψ arc tg arc tg,97 rad ( 5, o = = ) Jest zatem: i (t) sin( t ) 5 sin(4t,97 ) 5 sin(4t 5, o = ω + Ψ + + ) A Kąt jaki się otrzyma mnożąc pulsację przez czas ma wartość wyrażoną w radianach - jednostkach układu S. Stąd kąt początkowego przesunięcia fazowego także powinien być wyrażony w radianach (aby jedne dane wymiarami pasowały do drugich). Jednak podawane w radianach wartości kątów nie są intuicyjne - wiemy mniej więcej jaki to jest kąt 5, o, mało kto ma podobne wyobrażenie o kącie,97 rad. Stąd elektrycy do określania wielkości kątów stosują również stopnie (może nawet częściej od radianów). PRZYKŁAD : Niech prądy i ( t ) i i ( t ) mają przebiegi: i( t ) = sin( 4t + ) A i i( t ) = 5, 57 sin( 4t + ) A Należy wyznaczyć: i ( t ) = i( t ) + i( t ) Jest: = A Ψ = rad i = 4 A Ψ = rad ym razem wskazy reprezentujące prądy i ( t ) i i ( t ) nie są wzajemnie prostopadłe, stąd obliczenia nie będą już tak proste jak w poprzednim przykładzie. Do wyznaczenia wartości i Ψ potrzebna jest znajomość twierdzeń trygonometrycznych i - co ważniejsze - wymaga to sporego nakładu pracy. Najprościej wylicza się te parametry dodając do siebie rzuty wskazów na osie odciętych i rzędnych. akie rzuty nazywane są w elektrotechnice składowymi ortogonalnymi (prostopadłymi). x = cos Ψ = cos( ) =, 5 A, y = sin Ψ = sin( ),598 A x = cos Ψ = 4 cos( ),44 A, y = sin Ψ = 4 sin( ) = A x = x + x,5 +,44 = 4, 94 A, y = y + y, = 4, 598 A x y 4, 94 4, 598 = + +, 7 A Rys..a. Dodawanie wskazów prądu Rys..b. Dodawanie wskazów prądu metodą dodawania ich składowych - -

12 4,94 Ψ arc tg x arc tg,747 rad ( 4,8 o = ) y 4,598 Jest zatem: i ( t ), 7 sin( 4t +, 747 ) A.. Metoda symboliczna Metoda wykresów wskazowych ułatwia obliczanie przebiegów sinusoidalnych. Zamiast dodawać funkcje czasu, co jest zajęciem dość skomplikowanym i pracochłonnym, dodaje się do siebie (geometrycznie) reprezentujące je wskazy. Najprościej robi się to dodając do siebie rzuty wskazów na osie układu współrzędnych, zwane ich składowymi ortogonalnymi. Elektrycy znaleźli sposób, by jeszcze uprościć, zautomatyzować te obliczenia. Efekt ten daje zastosowanie liczb zespolonych. Reprezentacją liczby zespolonej Z = Z e jα = a + ib na płaszczyźnie liczb zespolonych jest wektor o długości Z i o początku w początku układu współrzędnych, nachylony względem osi liczb rzeczywistych pod kątem równym α. Dodawanie liczb zespolonych polega na dodawaniu (geometrycznym) reprezentujących je wektorów. Wszystko to idealnie pasuje do wskazów odwzorowujących przebiegi sinusoidalne. Można je zatem utożsamiać z wektorami reprezentującymi liczby zespolone i nadawać im wartości zespolone. Metoda, w której wskazy zapisuje się używając liczb zespolonych nosi nazwę metody symbolicznej. Jej autorem był irlandzki uczony Arthur Edwin Kennelly (był synem oficera pokładowego, sam przez krótki czas pracował jako elektryk okrętowy). Stosując metodę symboliczną wskazowi wartości skutecznej odwzorowującemu przebieg w ( t ) (gdzie w ( t ) to przebieg czasowy sinusoidalnego napięcia, natężenia, sem itd.), o długości W W = max i o kącie nachylenia względem osi odciętych (początkowym kącie fazowym j przebiegu) równym Ψ W przyporządkowuje się liczbę zespoloną W e Ψ W o module W i argumencie Ψ W (reprezentuje ona wskaz, symbolizuje go - stąd nazwa metody). Wartość ta nosi nazwę wartości skutecznej zespolonej. W efekcie takiego przyporządkowania, geometryczne dodawanie wskazów wartości skutecznych zostaje zastąpione arytmetycznym dodawaniem wartości skutecznych zespolonych. W elektrotechnice, w odniesieniu do liczb zespolonych, zwyczajowo stosuje się nieco inne oznaczenia niż w matematyce. Przede wszystkim liczba urojona jest tu oznaczana literą j, a nie i - litera i zarezerwowana jest dla oznaczania natężenia prądu. stnieją też trzy różne konwencje oznaczania wartości zespolonych wielkości elektrycznych, przy czym dwie z nich występują równolegle. Rzadziej spotyka się i inne. przestarzała, używana do połowy lat 9-tych, spotykana w starych podręcznikach aktualna, spotykana w niektórych podręcznikach (np. Cholewicki.: Elektrotechnika teoretyczna. WN. 97 i inne wyd..), a także w publikacjach zagranicznych abela. konwencja wartość zespolona moduł wartości zespolonej Î = e jψ symbol z daszkiem bez wyróżniania = e jψ bez wyróżniania symbol wartości bezwzględnej - na ogół niekonsekwentnie aktualna, najpopularniejsza, ta którą będziemy stosować = e jψ symbol podkreślony bez wyróżniania - 4 -

13 Niektóre kalkulatory wykonują działania na liczbach zespolonych. Pracujący w zawodzie inżynier elektryk powinien mieć taki kalkulator. Powinien jednak także umieć radzić sobie i bez niego. W bardziej zaawansowanych rozważaniach teoretycznych, reprezentację sinusoidalnej funkcji czasu poprzez wartość skuteczną zespoloną wyprowadza się przy pomocy tzw. transformacji Fouriera. Zapoznamy się z nią w dalszym toku studiowania elektrotechniki teoretycznej. PRZYKŁAD : Wyznaczmy raz jeszcze prąd i ( t ) z poprzedniego przykładu. ym razem zastosujmy metodę symboliczną. Jest: i( t ) = sin( 4t + ) A i i( t ) = 5, 57 sin( 4t + ) A Należy wyznaczyć: i ( t ) = i( t ) + i( t ) Przedstawmy przebiegi za pomocą ich wartości skutecznych zespolonych: j = A Ψ = rad stąd: e = A = 4 A Ψ = rad stąd: 4 e j = A e 4 e j j = + = + 4,94 + j4,598 A Aby można było wyznaczyć przebieg wartości chwilowych prądu i ( t ) trzeba przekształcić z postaci algebraicznej do postaci wykładniczej: 4,94 j4,598, e j, Prąd i ( t ) ma przebieg: i ( t ) =, 74 sin( 4t +, 747 ) A A.7. Odbiornik liniowy, pasywny - impedancja, admitancja, prawo Ohma Odbiornik liniowy, pasywny jest to taki odbiornik, który nie zawiera ani elementów o charakterystykach nieliniowych, ani elementów źródłowych. Jeżeli do zacisków takiego odbiornika przyłożyć napięcie sinusoidalne (ściślej - pole elektryczne o napięciu sinusoidalnie zmiennym): u( t ) = U sin( ωt + ΨU ) to również płynący pod wpływem tego napięcia prąd jest prądem okresowym, sinusoidalnym, o takiej samej pulsacji (a więc synchronicznym z napięciem): i( t ) = sin( ωt + Ψ ) Rys... Odbiornik liniowy, pasywny w obwodzie prądu zmiennego Rys..4. Prąd i napięcie odbiornika liniowego, pasywnego w obwodzie prądu zmiennego

14 Wartość skuteczna prądu jest przy tym wprost proporcjonalna do wartości skutecznej napięcia: U (.a) zaś przesunięcie fazowe miedzy prądem i napięciem jest (dla danego odbiornika) stałe i nie zależy od wartości skutecznej napięcia: Ψ U Ψ = const = ϕ (.b) Dla wielkości nawzajem proporcjonalnych można wyznaczać współczynnik proporcjonalności. Współczynnik proporcjonalności pomiędzy wartościami skutecznymi prądu i U napięcia Z = nosi nazwę impedancji. ermin ten pochodzą od łacińskiego impedio - przeszkadzam, tamuję, stoję na zawadzie. Odbiornik pasywny, liniowy w obwodzie prądu zmiennego charakteryzują więc jego impedancja Z i przesunięcie fazowe pomiędzy prądem i napięciem ϕ. Znając te wielkości można na podstawie znajomości przebiegu prądu wyznaczyć wartość skuteczną wymuszającego ten prąd napięcia, a także jego początkowy kąt fazowy: U = Z (.7) Ψ U = Ψ + ϕ Zależności te stanowią prawo Ohma dla obwodów prądu sinusoidalnie zmiennego. Jeżeli na podstawie znajomości przebiegu napięcia wyznaczony ma być prąd wygodniej jest stosować inną postać prawa Ohma dla przebiegów sinusoidalnych: = Y U (.8) Ψ = ΨU ϕ gdzie: Y = = to współczynnik Z U proporcjonalności, który nazwano admitancją. ta nazwa ma łaciński źródłosłów. Pochodzi od czasownika admitto - dozwalam, przyjmuję. mpedancja i admitancja, definiowane jako współczynniki proporcjonalności pomiędzy napięciem i prądem oraz prądem i napięciem, mają takie same jednostki jak rezystancja i konduktancja, definiowane identycznie, lecz dla obwodów prądu stałego: V A = = Y = = A [ Z ] Ω, [ ] S V Sinusoidalnie zmienne napięcie i sinusoidalnie zmienny prąd mogą być reprezentowane za pomocą wskazów swoich wartości skutecznych. Wskazy te, narysowane w skali i umieszczone na jednym rysunku, tworzą tzw. wykres wskazowy (rys..5). Wskazy można zapisać za pomocą liczb zespolonych, jako wartości skuteczne zespolone: jψ U = U e U jψ i = e Rys..5. Odbiornik liniowy, pasywny - wykres wskazowy napięcia i prądu Jeżeli do wyrażenia na wartość skuteczną zespoloną napięcia podstawić zależności z prawa Ohma (.5) otrzymuje się: jψu j( Ψ +ϕ ) j jψ U = U e = Z e = Z e ϕ e Wprowadzając oznaczenie Z = Z e jϕ i uwzględniając, że jψ = e otrzymuje się wyrażenie na prawo Ohma w zapisie symbolicznym: U = Z (.9) - -

15 Wielkość Z = Z e jϕ to impedancja zespolona. Jest ona współczynnikiem proporcjonalności pomiędzy wartościami skutecznymi zespolonymi napięcia i prądu: U j U j( U ) Z Z e ϕ Ψ Ψ = = = e (.) Jej modułem jest impedancja, czyli współczynnik proporcjonalności pomiędzy wartościami U skutecznymi napięcia i prądu danego odbiornika ( Z = ), zaś argumentem - stałe (dla danego odbiornika) przesunięcie fazowe pomiędzy przebiegami czasowymi napięcia i prądu ( ϕ = Ψ U Ψ ). mpedancja zespolona opisuje właściwości odbiornika liniowego, pasywnego jako elementu obwodu prądu sinusoidalnie zmiennego. Równoważną ( dualną ) postać prawa Ohma w zapisie symbolicznym otrzymuje się wyznaczając napięcie na podstawie znajomości natężenia prądu: jψ j( ΨU ϕ) j jψ = e = Y U e = Ye ϕ Ue U Wprowadzając oznaczenie Y = Y e jϕ jψ i uwzględniając, że U = U e U otrzymuje się wyrażenie: = Y U (.) Wielkość Y = Y e jϕ to admitancja zespolona. Jest ona współczynnikiem proporcjonalności pomiędzy wartościami skutecznymi zespolonymi prądu i napięcia: j j( U ) Y Y e ϕ Ψ Ψ = = = e (.) U U Jej modułem jest admitancja - współczynnik proporcjonalności pomiędzy wartościami skutecznymi prądu i napięcia występujących w danym odbiorniku - Y =, zaś argumentem stałe U przesunięcie fazowe pomiędzy przebiegami czasowymi prądu i napięcia - Ψ ΨU. Admitancja zespolona jest odwrotnością impedancji zespolonej. Zatem zawiera te same co tamta informacje o odbiorniku liniowym, pasywnym w obwodzie prądu sinusoidalnie zmiennego, jedynie inaczej zapisane. PRZYKŁAD Rozważmy odbiornik, którego prąd ma przebieg czasowy i( t ) = 5 cos( 4t + ) A przy napięciu o przebiegu u( t ) = sin( 4t ) V. Do odbiornika tego przyłożono napięcie o przebiegu czasowym u' ( t ) = 4 sin( 4t + ) V. Należy wyznaczyć przebieg prądu przy tym nowym napięciu, a także wskazania woltomierza i amperomierza mierzącego napięcie i natężenie prądu. Wartości skuteczne zespolone napięcia i prądu wynoszą: j U = e j = V oraz = 5 e A Admitancja zespolona odbiornika ma więc wartość: j 5 e j Y = =, 74 e S U Nowe napięcie ma wartość skuteczną zespoloną: U' 4 e j = V - 7 -

16 Wartość skuteczną zespoloną nowego prądu można wyliczyć jako: 5 j j j ' = Y U',74 e 4 e =,5 e A ak więc wartość skuteczna prądu wynosi ', 57 A ; 5 Jego początkowy kąt fazowy ma wartość Ψ' = Stąd nowy prąd ma następujący przebieg wartości chwilowych: 5 5 i' ( t ),5 sin( 4t + ),4 sin( 4t + ) A Woltomierz i amperomierz mierzą wartości skuteczne odpowiednio napięcia i prądu, zatem ich wskazania wynoszą: U V = 4V i A,5 A - 8 -

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Impedancje i moce odbiorników prądu zmiennego

Impedancje i moce odbiorników prądu zmiennego POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.

Bardziej szczegółowo

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

Elektrotechnika 2. Stany nieustalone w obwodach elektrycznych: Metoda klasyczna. Kolokwium. Metoda operatorowa. Kolokwium

Elektrotechnika 2. Stany nieustalone w obwodach elektrycznych: Metoda klasyczna. Kolokwium. Metoda operatorowa. Kolokwium Wybrane zagadnienia teorii obwodów Osoba odpowiedzialna za przedmiot (wykłady): dr hab. inż. Ryszard Pałka prof. PS ćwiczenia i projekt: dr inż. Krzysztof Stawicki e-mail: ks@ps.pl w temacie wiadomości

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Obwody liniowe. Sprawdzanie praw Kirchhoffa POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel

Bardziej szczegółowo

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego: Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Prąd stały. Prawa, twierdzenia, metody obliczeniowe 42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Celem ćwiczenia jest doświadczalne sprawdzenie praw obowiązujących w obwodach prądu stałego,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Podstawy działań na wektorach - dodawanie

Podstawy działań na wektorach - dodawanie Podstawy działań na wektorach - dodawanie Metody dodawania wektorów można podzielić na graficzne i analityczne (rachunkowe). 1. Graficzne (rysunkowe) dodawanie dwóch wektorów. Założenia: dane są dwa wektory

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

Moc (praca w jednostce czasu) pobierana przez urządzenie elektryczne wynosi:

Moc (praca w jednostce czasu) pobierana przez urządzenie elektryczne wynosi: Ćwiczenie POMIARY MOCY. Wprowadzenie Moc (praca w jednostce czasu) pobierana przez urządzenie elektryczne wynosi: P = U I (.) Jest to po prostu (praca/ładunek)*(ładunek/czas). Dla napięcia mierzonego w

Bardziej szczegółowo

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH Ć w i c z e n i e 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH. Wiadomości ogólne Prostowniki są to urządzenia przetwarzające prąd przemienny na jednokierunkowy. Prostowniki stosowane są m.in. do ładowania akumulatorów,

Bardziej szczegółowo

Obliczanie i pomiary parametrów obwodów prądu jednofazowego 311[08].O1.04

Obliczanie i pomiary parametrów obwodów prądu jednofazowego 311[08].O1.04 MINISTERSTWO EDKACJI i NAKI Teresa Birecka Obliczanie i pomiary parametrów obwodów prądu jednofazowego 311[08].O1.04 Poradnik dla ucznia Wydawca Instytut Technologii Eksploatacji Państwowy Instytut Badawczy

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTONIKI Część II Podstawowe elementy elektroniczne dwójniki bierne LC Formalizm zespolony opisu napięć i prądów harmonicznie zmiennych w czasie impedancja Źródła napięcia i prądu Przekazywanie

Bardziej szczegółowo

AC/DC. Jedno połówkowy, jednofazowy prostownik

AC/DC. Jedno połówkowy, jednofazowy prostownik AC/DC Przekształtniki AC/DC można podzielić na kilka typów, mianowicie: prostowniki niesterowane; prostowniki sterowane. Zależnie od stopnia skomplikowania układu i miejsca przyłączenia do sieci elektroenergetycznej

Bardziej szczegółowo

Prostowniki. Prostownik jednopołówkowy

Prostowniki. Prostownik jednopołówkowy Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego

Bardziej szczegółowo

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY 30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

XXXIII OOWEE 2010 Grupa Elektryczna

XXXIII OOWEE 2010 Grupa Elektryczna 1. W jakich jednostkach mierzymy natężenie pola magnetycznego: a) w amperach na metr b) w woltach na metr c) w henrach d) w teslach 2. W przedstawionym na rysunku układzie trzech rezystorów R 1 = 8 Ω,

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Materiały dydaktyczne. Podstawy elektrotechniki i elektroniki. Semestr III. Ćwiczenia

Materiały dydaktyczne. Podstawy elektrotechniki i elektroniki. Semestr III. Ćwiczenia Materiały dydaktyczne Podstawy elektrotechniki i elektroniki Semestr III Ćwiczenia 1 Temat 1 (6 godzin): Obwody prądu stałego Zagadnienie: 1. Obwody pasywne prądu stałego. (3h) Obwodem pasywnym nazywa

Bardziej szczegółowo

4. OBWODY LINIOWE PRĄDU STAŁEGO 4.1. ŹRÓDŁA RZECZYWISTE

4. OBWODY LINIOWE PRĄDU STAŁEGO 4.1. ŹRÓDŁA RZECZYWISTE OODY I SYGNŁY 1 4. OODY LINIOE PRĄDU STŁEGO 4.1. ŹRÓDŁ RZECZYISTE Z zależności (2.19) oraz (2.20) wynika teoretyczna możliwość oddawania przez źródła idealne do obwodu dowolnie dej mocy chwilowej. by uniknąć

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia"

Ćwiczenie: Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAZOWYCH

Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAZOWYCH Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAOWYCH Celem ćwiczenia jest poznanie własności odbiorników trójfazowych symetrycznych i niesymetrycznych połączonych w trójkąt i gwiazdę w układach z przewodem neutralnym

Bardziej szczegółowo

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRZYRZĄDY POMIAROWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przyrządy pomiarowe Ogólny podział: mierniki, rejestratory, detektory, charakterografy.

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO 1. Wiadomości wstępne Silniki asynchroniczne jednofazowe są szeroko stosowane wszędzie tam, gdzie

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E11 BADANIE NIESTABILIZOWANYCH

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA ĆWICZENIE 10 OBWODY RC: 10.1. Impedancja i kąt fazowy w

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Oddziaływanie wirnika

Oddziaływanie wirnika Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej

Bardziej szczegółowo

8 K A T E D R A F I ZYKI S T O S O W AN E J

8 K A T E D R A F I ZYKI S T O S O W AN E J 8 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 8. Badanie prostowników niesterowanych Wprowadzenie Prostownikiem nazywamy

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA

INDUKCJA ELEKTROMAGNETYCZNA Wstęp INDKCJA ELEKTROMAGNETYCZNA Zajęcia wyrównawcze, Częstochowa, 009/00 Ewa Jakubczyk Michalel Faraday (79-867) odkrył w 83roku zjawisko indukcji elektromagnetycznej. Oto pierwsza prądnica -generator

Bardziej szczegółowo

Badanie prądnicy synchronicznej

Badanie prądnicy synchronicznej POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Badanie prądnicy synchronicznej (E 18) Opracował: Dr inż. Włodzimierz OGULEWICZ

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

2/57. Pomiar mocy. Watomierz analogowy Watomierz cyfrowy Przetworniki AC/DC (RMS) Wykład nr 8 04-06-2016

2/57. Pomiar mocy. Watomierz analogowy Watomierz cyfrowy Przetworniki AC/DC (RMS) Wykład nr 8 04-06-2016 2/57 Pomiar mocy Watomierz analogowy Watomierz cyfrowy Przetworniki AC/DC (RMS) Wykład nr 8 04-06-2016 3/57 Watomierz analogowy Watomierz jest elektrycznym miernikiem wskazówkowym przeznaczonym do pomiaru

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział 2. Składanie ruchów Rozdział 3. Modelowanie zjawisk fizycznych...43 Numeryczne całkowanie,

Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział 2. Składanie ruchów Rozdział 3. Modelowanie zjawisk fizycznych...43 Numeryczne całkowanie, Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział. Składanie ruchów... 11 Rozdział 3. Modelowanie zjawisk fizycznych...43 Rozdział 4. Numeryczne całkowanie, czyli obliczanie pracy w polu grawitacyjnym

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

ĆWICZENIE 6 BADANIE OBWODÓW MAGNETYCZNYCH

ĆWICZENIE 6 BADANIE OBWODÓW MAGNETYCZNYCH ĆWCZENE 6 BADANE OBWODÓW MAGNETYCZNYCH Cel ćwiczenia: poznanie procesów fizycznych zachodzących, w cewce nieliniowej i jej własności, przez wyznaczenie rezystancji oraz indukcyjności cewki w różnych warunkach

Bardziej szczegółowo

2.3. Pomiary wielkości elektrycznych i mechanicznych. (1h wykładu)

2.3. Pomiary wielkości elektrycznych i mechanicznych. (1h wykładu) 2.3. Pomiary wielkości elektrycznych i mechanicznych. (1h wykładu) 2.3.1. Pomiary wielkości elektrycznych Rezystancja wejściowa mierników cyfrowych Przykład: Do sprawdzenia braku napięcia przemiennego

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

Temat: PODSTAWY PRZETWARZANIA ENERGII W ODNAWIALNYCH ŹRÓDŁA ENERGII

Temat: PODSTAWY PRZETWARZANIA ENERGII W ODNAWIALNYCH ŹRÓDŁA ENERGII Temat: PODSTAWY PRZETWARZANIA ENERGII W ODNAWIALNYCH ŹRÓDŁA ENERGII 1. Przetwarzanie (wytwarzanie) energii elektrycznej 2. Podział źródeł energii 3. Podstawowe pojęcia z dziedziny elektryczności 1 WYTWARZANIE

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

Pomiary rezystancji izolacji

Pomiary rezystancji izolacji Stan izolacji ma decydujący wpływ na bezpieczeństwo obsługi i prawidłowe funkcjonowanie instalacji oraz urządzeń elektrycznych. Dobra izolacja to obok innych środków ochrony również gwarancja ochrony przed

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczający (2) P podstawowy ocena dostateczna (3) Projekt nr WND-POKL.09.01.02-10-104/09 tytuł Z dysleksją bez barier PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z

Bardziej szczegółowo

Plan wynikowy z przedmiotu: MATEMATYKA

Plan wynikowy z przedmiotu: MATEMATYKA Plan wynikowy z przedmiotu: MATEMATYKA Szkoła: Liceum Ogólnokształcące Klasa: pierwsza Poziom nauczania: podstawowy Numer programu: DPN-5002-31/08 Podręcznik: MATEMATYKA Anna Jatczak, Monika Ciołkosz,

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka Poznać, zrozumieć. Zakres podstawowy Klasa 1 Liceum i technikum Katalog

Bardziej szczegółowo

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus - matematyka

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

klasa I Dział Główne wymagania edukacyjne Forma kontroli

klasa I Dział Główne wymagania edukacyjne Forma kontroli semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Rys. 1 Schemat układu L 2 R 2 E C 1. t(0+)

Rys. 1 Schemat układu L 2 R 2 E C 1. t(0+) Autor: Piotr Fabijański Koreferent: Paweł Fabijański Zadanie Obliczyć napięcie na stykach wyłącznika S zaraz po jego otwarciu, w chwili t = (0 + ) i w stanie ustalonym, gdy t. Do obliczeń przyjąć następujące

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 05/06 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody Przedmiot: MATEMATYKA Klasa I (60 godz) Rozdział. Liczby rzeczywiste Numer

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

Badziak Zbigniew Kl. III te. Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych.

Badziak Zbigniew Kl. III te. Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych. Badziak Zbigniew Kl. III te Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych. 1. MIERNIKI ANALOGOWE Mierniki magnetoelektryczne. Miernikami magnetoelektrycznymi nazywamy mierniki,

Bardziej szczegółowo

Dielektryki Opis w domenie częstotliwości

Dielektryki Opis w domenie częstotliwości Dielektryki Opis w domenie częstotliwości Ryszard J. Barczyński, 2013 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Opis w domenie częstotliwości

Bardziej szczegółowo

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000 SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁ AD ELEKTROENERGETYKI Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW WIROWYCH Opracował: mgr inż. Edward SKIEPKO Warszawa 000 Wersja 1.0 www.labenergetyki.prv.pl

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Osiągnięcia przedmiotowe

Osiągnięcia przedmiotowe 1. Zbieranie, porządkowanie i prezentowanie danych przedstawione w tabelach przedstawione na przedstawiać dane w tabelach przedstawiać dane na przedstawione w tabelach przedstawione na porównywać informacje

Bardziej szczegółowo

PL 196881 B1. Trójfazowy licznik indukcyjny do pomiaru nadwyżki energii biernej powyżej zadanego tg ϕ

PL 196881 B1. Trójfazowy licznik indukcyjny do pomiaru nadwyżki energii biernej powyżej zadanego tg ϕ RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 196881 (13) B1 (21) Numer zgłoszenia: 340516 (51) Int.Cl. G01R 11/40 (2006.01) G01R 21/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Ćwiczenie: "Prądnica prądu przemiennego"

Ćwiczenie: Prądnica prądu przemiennego Ćwiczenie: "Prądnica prądu przemiennego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo