Informatyka 2. Wykład nr 5 ( ) Plan wykładu nr 5. Politechnika Białostocka. - Wydział Elektryczny. Odwrotna notacja polska.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Informatyka 2. Wykład nr 5 ( ) Plan wykładu nr 5. Politechnika Białostocka. - Wydział Elektryczny. Odwrotna notacja polska."

Transkrypt

1 Rok akademicki 008/009, Wykład nr 5 /6 Plan wykładu nr 5 Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 008/009 Dynamiczne struktury danych przykład zastosowania stosu - notacja polska i odwrotna notacja polska kolejka lista (jednokierunkowa, dwukierunkowa, cykliczna) drzewo (binarne) Metody numeryczne obliczanie prognozy pogody Wykład nr 5 (..008) Rok akademicki 008/009, Wykład nr 5 /6 Rok akademicki 008/009, Wykład nr 5 /6 Notacja polska notacja polska (zapis przedrostkowy, Notacja Łukasiewicza) jest to sposób zapisu wyraŝeń arytmetycznych, podający najpierw operator, a następnie argumenty wyraŝenie arytmetyczne: / ( ) ma w notacji polskiej postać: / wyraŝenie w notacji polskiej nie wymaga nawiasów, poniewaŝ przypisanie argumentów do operatorów wynika wprost z ich kolejności w zapisie notacja polska jest bliska naturalnemu sposobowi wyraŝania działań, w którym zazwyczaj najpierw podaje się czynność, a następnie dopełnia wyraŝenia wskazaniem rzeczy, do których czynność się odnosi, np. podziel cztery przez sumę jednego i trzech notację polską przedstawił w 90 roku polski matematyk Jan Łukasiewicz zapis wyraŝeń w notacji polskiej stał się podstawą języków: Logo, Tcl i LISP notacja polska była podstawą opracowania tzw. odwrotnej notacji polskiej odwrotna notacja polska - ONP (ang. Reverse Polish Notation, RPN) jest sposobem zapisu wyraŝeń arytmetycznych, w którym znak wykonywanej operacji umieszczany jest po argumentach, a nie pomiędzy nimi jak w konwencjonalnym zapisie algebraicznym wyraŝenie arytmetyczne: ( ) / ma w odwrotnej notacji polskiej postać: / ONP została opracowana przez australijskiego naukowca Charlesa Hamblina jako odwrócenie beznawiasowej notacji polskiej Jana Łukasiewicza na potrzeby zastosowań informatycznych zapis wyraŝenia w ONP pozwala na całkowita rezygnację z uŝycia nawiasów w wyraŝeniach, gdyŝ jednoznacznie określa kolejność wykonywania działań ONP uŝywana jest w niektórych językach programowania (FORTH, Postscript) oraz w kalkulatorach naukowych HP

2 Rok akademicki 008/009, Wykład nr 5 5/6 Rok akademicki 008/009, Wykład nr 5 6/6 obliczenie wartości wyraŝenia arytmetycznego przy zastosowaniu odwrotnej notacji polskiej wymaga wykonania dwóch operacji: zamiany notacji konwencjonalnej (nawiasowej) na odwrotną notację polską obliczenia wartości wyraŝenia arytmetycznego zapisanego w odwrotnej notacji polskiej Zamiana wyraŝenia z notacji konwencjonalnej na ONP: zamiana wykonywana jest przy zastosowaniu algorytmu Dijkstry nazywanego stacją rozrządową czytając wyraŝenie arytmetyczne od strony lewej do strony prawej operatory odkładamy na stos a liczby na wyjście wyjście naleŝy traktować jako kolejkę, która po zakończeniu algorytmu będzie zawierała wyraŝenie w odwrotnej notacji polskiej Zamiana wyraŝenia z notacji konwencjonalnej na ONP: wykonując powyŝsze operacje trzeba stosować następujące reguły: operator moŝemy odłoŝyć na stos tylko wtedy, jeśli ostatnim elementem stosu jest operator o niŝszym priorytecie jeŝeli ma on wyŝszy lub równy priorytet to zdejmujemy ze stosu dotąd elementy i wysyłamy na wyjście, aŝ ostatni operator będzie miał niŝszy priorytet lub stos będzie pusty jeśli kolejnym elementem jest nawias otwierający (, to odkładamy go na stos, bez względu na to co znajduje się w danym momencie na stosie i bez względu na to czy stos jest pusty powyŝszy nawias traktujemy jak dno stosu i odczytujemy kolejne elementy wyraŝenia według standardowego algorytmu jeśli dojdziemy do nawiasu zamykającego ), to nigdzie go nie odkładamy, tylko zdejmujemy kolejne operatory ze stosu i wysyłamy na wyjście, aŝ dojdziemy do nawiasu otwierającego, który równieŝ zdejmujemy ze stosu i wysyłamy na wyjście jeśli dojdziemy do końca wyraŝenia arytmetycznego, to zdejmujemy ze stosu pozostałe operatory i wysyłamy je na wyjście Rok akademicki 008/009, Wykład nr 5 /6 Rok akademicki 008/009, Wykład nr 5 8/6 Zamiana wyraŝenia z notacji konwencjonalnej na ONP - przykład: równanie w notacji konwencjonalnej: ()-() Krok Wejście ( ) - ( ) Koniec Stos ( NULL ( NULL ( NULL ( NULL NULL NULL - NULL - NULL - NULL ( - NULL ( - NULL ( - NULL ( - NULL - NULL - NULL równanie w ONP: - NULL NULL Wyjście - Obliczenie wartości wyraŝenia arytmetycznego w ONP: Uwaga: w algorytmie obliczania wartości wyraŝenia arytmetycznego zapisanego w odwrotnej notacji polskiej wykonujemy następujące operacje: pobieramy kolejny element wyraŝenia jeśli elementem jest liczba to odkładamy ją na stos jeśli elementem jest operator, to pobieramy ze stosu tyle liczb, aby moŝna było zastosować operator na tych liczbach, np. dla dodawania, odejmowania, mnoŝenia i dzielenia są to dwie kolejne liczby, zaś dla negacji - jedna liczba wykonujemy operację na liczbach i jej wynik odkładamy na stos jeśli dotrzemy do końca wyraŝenia, to pobieramy wynik ze stosu, który jest wartością wyraŝenia arytmetycznego jeśli nie ma jeszcze końca, to wracamy na początek algorytmu jeśli np. stos ma postać: NULL i mamy wykonać operację dzielenia /, to operacja ta ma postać: /, czyli do wykonania operacji argumenty brane są w odwrotnej kolejności

3 Rok akademicki 008/009, Wykład nr 5 9/6 Rok akademicki 008/009, Wykład nr 5 0/6 Kolejka Obliczenie wartości wyraŝenia arytmetycznego w ONP - przykład: równanie w ONP: - Krok Wejście Stos Działanie NULL NULL NULL NULL 5 9 NULL 6 9 NULL 9 NULL 8 9 NULL 9 9 NULL 0 9 NULL - -5 NULL 9 Koniec NULL wynik: -5 wynik: -5 kolejka (ang. queue) jest strukturą danych składającą się z liniowo uporządkowanych elementów, do której moŝna dołączać elementy tylko w jednym końcu (na końcu kolejki), a usuwać tylko w drugim końcu (na początku kolejki) kolejka często określana jest jako stos FIFO (ang. First In First Out - pierwszy wchodzi, pierwszy wychodzi) powiązanie między elementami kolejki jest takie samo, jak w przypadku stosu head - wskaźniki na pierwszy element kolejki (początek kolejki) tail - wskaźnik na ostatni element kolejki (koniec kolejki) Rok akademicki 008/009, Wykład nr 5 /6 Rok akademicki 008/009, Wykład nr 5 /6 Kolejka Lista korzystając z poprzedniej analogii, stosu kartek, moŝemy powiedzieć, Ŝe kładziemy kartki na wierzchołku stosu, zaś wyjmujemy ze spodu listą (liniową) nazywamy liniowo uporządkowany zbiór elementów, z którego w dowolnym miejscu moŝna usunąć element, jak równieŝ dołączyć nowy element kolejkę moŝna takŝe wyobraŝać sobie jako typową kolejkę sklepową elementy moŝna wstawiać do listy na początku, na końcu lub w dowolnym innym miejscu podstawowe operacje dotyczące kolejki to: dołączenie elementu do kolejki - Insert() lub enqueue() usunięcie elementu z kolejki - Remove() lub dequeue() w zaleŝności od powiązań pomiędzy elementami wyróŝniamy listy: jednokierunkowe dwukierunkowe cykliczne, jednokierunkowe cykliczne, dwukierunkowe źródło: A. Zalewski: Programowanie w językach C i C z wykorzystaniem pakietu Borland C

4 Rok akademicki 008/009, Wykład nr 5 /6 Rok akademicki 008/009, Wykład nr 5 /6 Lista jednokierunkowa i dwukierunkowa Lista cykliczna w liście jednokierunkowej dla kaŝdego składnika (poza ostatnim) jest określony następny lub poprzedni składnik (zaleŝnie od implementacji) zapamiętywany jest wskaźnik tylko na pierwszy element listy lub wskaźniki na pierwszy i ostatni element listy listę cykliczną moŝna utworzyć z listy jednokierunkowej lub dwukierunkowej, jeśli ostatni element tej struktury połączymy z pierwszym Jednokierunkowa: w liście dwukierunkowej kaŝdy węzeł posiada adres następnika, jak i poprzednika Dwukierunkowa: Rok akademicki 008/009, Wykład nr 5 5/6 Rok akademicki 008/009, Wykład nr 5 6/6 Drzewo Drzewo binarne drzewo jest najbardziej ogólną dynamiczną strukturą danych i moŝe być reprezentowane graficznie na róŝne sposoby korzeń drzewa jest umieszczony u góry drzewo binarne jest szczególnym przypadkiem ogólnej struktury zwanej drzewem kaŝdy wierzchołek drzewa ma co najwyŝej dwóch potomków skojarzone z korzeniem poddrzewa połączone są z korzeniem liniami zwanymi gałęziami drzewa potomkiem węzła w nazywamy kaŝdy, róŝny od w, węzeł naleŝący do drzewa, w którym w jest korzeniem węzeł, który nie ma potomków, to liść drzewa

5 Rok akademicki 008/009, Wykład nr 5 /6 Rok akademicki 008/009, Wykład nr 5 8/6 Binarne drzewo wyszukiwawcze Metody numeryczne jest to drzewo binarne, w którym dla kaŝdego węzła w i wszystkie klucze (przechowywane wartości) w lewym poddrzewie węzła w i są mniejsze od klucza w węźle w i, a wszystkie klucze w prawym poddrzewie węzła w i są większe od klucza w węźle w i największą zaletą takiej struktury jest szybkość wyszukiwania informacji metody numeryczne - dział matematyki stosowanej, w ramach którego rozwiązuje się problemy matematyczne za pomocą operacji arytmetycznych i logicznych obecnie częściej korzysta się z gotowych procedur lub programów komputerowych niŝ opracowuje własne istnieje bardzo duŝo programów komputerowych i procedur dostępnych bezpłatnie lub odpłatnie (programy komercyjne), w których zaimplementowane są poszczególne metody numeryczne: programy typowo matematyczne: Matlab, MathCAD, Mathematica, Maple, Derive programy specjalizowane, np. do symulacji numerycznej róŝnych zjawisk biblioteki funkcji i procedur (tzw. solvery) znajomość podstaw teoretycznych i własności metod numerycznych pozwala na lepsze i efektywniejsze stosowanie ich w praktyce Rok akademicki 008/009, Wykład nr 5 9/6 Rok akademicki 008/009, Wykład nr 5 0/6 Metody numeryczne rozwiązanie problemu obliczeniowego z zastosowaniem metody numerycznej wymaga wykonania następujących kroków:. Określenie modelu matematycznego zjawiska lub procesu i odpowiadającego mu modelu numerycznego. Wybrania metody numerycznej w celu dokonania obliczeń. Implementacji metody zastosowany model matematyczny oraz odpowiadający mu model numeryczny muszą być dostosowane do dostępnego sprzętu komputerowego, na którym będą wykonywane obliczenia zbyt szczegółowa interpretacja analizowanego zjawiska moŝe doprowadzić do stworzenia modelu niemoŝliwego w implementacji Przykład - obliczanie prognozy pogody moŝna przyjąć w duŝym uproszczeniu, Ŝe pogoda w dowolnym punkcie Ziemi jest funkcją czterech argumentów: Pogoda(dł_geograficzna, szer_geograficzna, wysokość, czas) wartością funkcji Pogoda() jest wektor sześciu liczb: temperatura, ciśnienie, wilgotność, prędkość wiatru ( liczby) w pamięci komputera funkcja ciągła reprezentowana jest w postaci zdyskretyzowanej, co oznacza, Ŝe obliczamy jej wartości w węzłach siatki: Pogoda(i,j,l,k) gdzie: i, j, l - odpowiada komórkom w przestrzeni, zaś k - czasowi, obliczanie pogody polega na rozwiązywaniu układu równań róŝniczkowych cząstkowych Naviera-Stokesa, opisujących przepływy gazów w atmosferze źródło: Praca zbiorowa pod redakcją A. Karbowskiego i E. Niewiadomskiej-Szynkiewicz: Obliczenia równoległe i rozproszone. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 00.

6 Rok akademicki 008/009, Wykład nr 5 /6 Rok akademicki 008/009, Wykład nr 5 /6 Przykład - obliczanie prognozy pogody Przykład - obliczanie prognozy pogody zakładamy podział warstwy atmosfery (ok. 5 km n.p.m.) nad powierzchnią Polski na komórki sześcienne o krawędzi 00 m zakładamy przybliŝenie obszaru Polski kwadratem o boku 00 km - otrzymujemy wtedy: (00 0) 5 0 =, elementarnych komórek przyjmijmy, Ŝe obliczenie wartości w kolejnej chwili czasowej dla jednego punktu przestrzeni wymaga wykonania 00 operacji zmiennoprzecinkowych chcemy obliczyć -dniową prognozę pogody, całkując z krokiem czasowym równym 5 minut - wymaga to wykonania:, = 0, operacji zmiennoprzecinkowych dysponując procesorem wykonującym 0 9 operacji zmiennoprzecinkowych na sekundę ( Gflops) obliczenia trwałyby 0,8 0 6 s = 5, godz. = ok. 0 dni wyznaczenie prognozy pogody w ciągu 5 minut wymagałoby procesora o mocy obliczeniowej ok. Tflops, 0,8 0 5 /(5 60) = 0,9 0 - operacji zmiennoprzecinkowych na sekundę zakładając, Ŝe kaŝda z 6 liczb charakteryzujących pogodę w komórce wymaga 8 bajtów, na zapamiętanie pogody we wszystkich komórkach potrzeba:, = 50 GB = 0,5 TB - pamięci operacyjnej Rok akademicki 008/009, Wykład nr 5 /6 Rok akademicki 008/009, Wykład nr 5 /6 Numeryczna prognoza pogody (Białystok) ICM - Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego, Uniwersytet Warszawski modele numeryczne: UM 6. - siatka km, długość prognozy 8h COAMPS - siatka km, długość prognozy 8h UM.5 (UMPL) - siatka km (w likwidacji...) model numeryczny UMPL.5 (Unified Model for Poland Area) mezoskalowa (o ograniczonym obszarze) wersja opracowanego w Wielkiej Brytanii modelu prognostycznego Unified Model (UM) prognozowanie pogody od 99 r. obliczenia są wykonywane na 6-procesorowym komputerze Cray J96 numeryczne prognozy pogody obliczane są dwa razy na dobę (dla danych początkowych z godz. 00 oraz 06 GMT)

7 Rok akademicki 008/009, Wykład nr 5 5/6 Rok akademicki 008/009, Wykład nr 5 6/6 Numeryczna prognoza pogody (Białystok) Koniec wykładu nr 5 Dziękuj kuję za uwagę! (model COAMPS)

Informatyka 2. Wykład nr 5 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 2. Wykład nr 5 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2008/2009 Wykład nr 5 (22.11.2008) Rok akademicki 2008/2009,

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 2 ( ) Plan wykładu nr 2. Politechnika Białostocka. - Wydział Elektryczny

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 2 ( ) Plan wykładu nr 2. Politechnika Białostocka. - Wydział Elektryczny Wykład nr 2 2/6 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne Rok akademicki 2006/2007 Plan wykładu nr 2 Argumenty funkcji main Dynamiczne struktury danych

Bardziej szczegółowo

Podstawy informatyki 2

Podstawy informatyki 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne Rok akademicki 2006/2007 Wykład nr 2 (07.03.2007) Wykład nr 2 2/46 Plan wykładu nr 2 Argumenty funkcji main

Bardziej szczegółowo

Informatyka 2. Wykład nr 2 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 2. Wykład nr 2 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2008/2009 Wykład nr 2 (22.10.2008) Rok akademicki 2008/2009, Wykład

Bardziej szczegółowo

Dynamiczny przydział pamięci (język C) Dynamiczne struktury danych. Sortowanie. Klasyfikacja algorytmów sortowania. Algorytmy sortowania

Dynamiczny przydział pamięci (język C) Dynamiczne struktury danych. Sortowanie. Klasyfikacja algorytmów sortowania. Algorytmy sortowania Rok akademicki 2010/2011, Wykład nr 4 2/50 Plan wykładu nr 4 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2010/2011

Bardziej szczegółowo

Struktury danych: stos, kolejka, lista, drzewo

Struktury danych: stos, kolejka, lista, drzewo Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja

Bardziej szczegółowo

dr inż. Paweł Myszkowski Wykład nr 11 ( )

dr inż. Paweł Myszkowski Wykład nr 11 ( ) dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 11 (11.05.2016) Plan prezentacji:

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie

Bardziej szczegółowo

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos)

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Algorytmy i struktury danych Wykład 3: Stosy, kolejki i listy Dr inż. Paweł Kasprowski pawel@kasprowski.pl Kolejki FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Stos (stack) Dostęp jedynie

Bardziej szczegółowo

Składnia rachunku predykatów pierwszego rzędu

Składnia rachunku predykatów pierwszego rzędu Początek Gramatyka Kwantyfikatory Poprawność Logika obliczeniowa Instytut Informatyki Początek Gramatyka Kwantyfikatory Poprawność Plan wykładu 1 Na (dobry) początek Zrozumieć słowa Oswoić znaki 2 Gramatyka

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu

Bardziej szczegółowo

Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska 1 Przykład wyliczania wyrażeń arytmetycznych Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Copyright

Bardziej szczegółowo

Listy, kolejki, stosy

Listy, kolejki, stosy Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:

Bardziej szczegółowo

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.)

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Kontenery - - wektor vector - - lista list - - kolejka queue - - stos stack Kontener asocjacyjny map 2016-01-08 Bazy danych-1 W5 1 Kontenery W programowaniu

Bardziej szczegółowo

Odwrotna Notacja Polska

Odwrotna Notacja Polska Odwrotna Notacja Polska Odwrotna Notacja Polska w skrócie ONP) jest sposobem zapisu wyrażeń arytmetycznych. Znak wykonywanej operacji umieszczany jest po operandach, argumentach tzw. zapis postfiksowy).

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Podstawy Informatyki. Metody dostępu do danych

Podstawy Informatyki. Metody dostępu do danych Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

INFORMATYKA DANE.

INFORMATYKA DANE. INFORMATYKA DANE http://www.infoceram.agh.edu.pl DANE Dane to zbiory liczb, znaków, sygnałów, wykresów, tekstów, itp., które mogą być przetwarzane. Pojęcie danych jest relatywne i istnieje tylko razem

Bardziej szczegółowo

Jednostki informacji. Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles).

Jednostki informacji. Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles). Wykład 1 1-1 Informatyka nauka zajmująca się zbieraniem, przechowywaniem i przetwarzaniem informacji. Informacja obiekt abstrakcyjny, który w postaci zakodowanej moŝe być przechowywany, przesyłany, przetwarzany

Bardziej szczegółowo

Wykład 2. Drzewa zbalansowane AVL i 2-3-4

Wykład 2. Drzewa zbalansowane AVL i 2-3-4 Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA. Część 3. Drzewa Przeszukiwanie drzew

STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA. Część 3. Drzewa Przeszukiwanie drzew STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA Część 3 Drzewa Przeszukiwanie drzew 1 / 24 DRZEWA (ang.: trees) Drzewo struktura danych o typie podstawowym T definiowana rekurencyjnie jako: - struktura pusta,

Bardziej szczegółowo

WSTĘP DO INFORMATYKI. Struktury liniowe

WSTĘP DO INFORMATYKI. Struktury liniowe Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Struktury liniowe www.agh.edu.pl STRUKTURY LINIOWE SEKWENCJE Struktury

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Liniowe struktury danych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych:

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: Struktura danych Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: rekord tablica lista stos kolejka drzewo i jego odmiany (np. drzewo

Bardziej szczegółowo

Laboratorium modelowania oprogramowania w języku UML. Ćwiczenie 4 Ćwiczenia w narzędziu CASE diagram czynności. Materiały dla studenta

Laboratorium modelowania oprogramowania w języku UML. Ćwiczenie 4 Ćwiczenia w narzędziu CASE diagram czynności. Materiały dla studenta Zakład Elektrotechniki Teoretycznej i Informatyki Stosowanej Wydział Elektryczny, Politechnika Warszawska Laboratorium modelowania oprogramowania w języku UML Ćwiczenie 4 Ćwiczenia w narzędziu CASE diagram

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Programowanie i struktury danych 1 / 44

Programowanie i struktury danych 1 / 44 Programowanie i struktury danych 1 / 44 Lista dwukierunkowa Lista dwukierunkowa to liniowa struktura danych skªadaj ca si z ci gu elementów, z których ka»dy pami ta swojego nast pnika i poprzednika. Operacje

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 6a Model danych oparty na drzewach 1 Model danych oparty na drzewach Istnieje wiele sytuacji w których przetwarzane informacje mają strukturę hierarchiczną lub zagnieżdżoną,

Bardziej szczegółowo

PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika

PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce. POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Podstawowe struktury danych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

1.UKŁADY RÓWNAŃ LINIOWYCH

1.UKŁADY RÓWNAŃ LINIOWYCH UKŁADY RÓWNAŃ 1.UKŁADY RÓWNAŃ LINIOWYCH Układ: a1x + b1y = c1 a x + by = c nazywamy układem równań liniowych. Rozwiązaniem układu jest kaŝda para liczb spełniająca kaŝde z równań. Przy rozwiązywaniu układów

Bardziej szczegółowo

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu,

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, wprowadzenie Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, w przepisie tym podaje się opis czynności, które trzeba wykonać, oraz dane, dla których algorytm będzie określony.

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04 Cel zajęć. Celem zajęć jest zapoznanie się ze sposobem działania popularnych. Wprowadzenie teoretyczne. Rozważana w ramach niniejszych zajęć

Bardziej szczegółowo

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew 0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury

Bardziej szczegółowo

1 Wprowadzenie do algorytmiki

1 Wprowadzenie do algorytmiki Teoretyczne podstawy informatyki - ćwiczenia: Prowadzący: dr inż. Dariusz W Brzeziński 1 Wprowadzenie do algorytmiki 1.1 Algorytm 1. Skończony, uporządkowany ciąg precyzyjnie i zrozumiale opisanych czynności

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Cel ćwiczenia Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet ielonogórski Drzewa poszukiwań binarnych Ćwiczenie

Bardziej szczegółowo

Drzewo binarne BST. LABORKA Piotr Ciskowski

Drzewo binarne BST. LABORKA Piotr Ciskowski Drzewo binarne BST LABORKA Piotr Ciskowski zadanie 1. drzewo binarne - 1 Zaimplementuj drzewo binarne w postaci: klasy Osoba przechowującej prywatne zmienne: liczbę całkowitą to będzie klucz, wg którego

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje

Bardziej szczegółowo

METODY OPISU ALGORYTMÓW KOMPUTEROWYCH

METODY OPISU ALGORYTMÓW KOMPUTEROWYCH Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: TS1C 100 003 Ćwiczenie pt. METODY OPISU ALGORYTMÓW KOMPUTEROWYCH

Bardziej szczegółowo

Technologia informacyjna

Technologia informacyjna Technologia informacyjna Pracownia nr 9 (studia stacjonarne) - 05.12.2008 - Rok akademicki 2008/2009 2/16 Bazy danych - Plan zajęć Podstawowe pojęcia: baza danych, system zarządzania bazą danych tabela,

Bardziej szczegółowo

1. Kalkulator czterech działań. 2. Konwersja ciągu znaków do tablicy.

1. Kalkulator czterech działań. 2. Konwersja ciągu znaków do tablicy. 1. Kalkulator czterech działań. Kalkulator czterech działań: +, -, *, \ (bez nawiasów). Wejście: łańcuch znakowy, np. 1+2*3\4-5\2=, -2+4e-1= Liczby mogą być w formacie, np. +1.45, -2, 1e-10. 2. Konwersja

Bardziej szczegółowo

Metodyki i techniki programowania

Metodyki i techniki programowania Metodyki i techniki programowania dr inż. Maciej Kusy Katedra Podstaw Elektroniki Wydział Elektrotechniki i Informatyki Politechnika Rzeszowska Elektronika i Telekomunikacja, sem. 2 Plan wykładu Sprawy

Bardziej szczegółowo

Informacja dla ucznia

Informacja dla ucznia Informacja dla ucznia Test, który będziesz rozwiązywać składa się z 0 zadań o róŝnym stopniu trudności. W zadaniach wystarczy odnaleźć jedną prawidłową odpowiedź spośród kilku podanych (oznaczonych literami

Bardziej szczegółowo

Struktury danych (I): kolejka, stos itp.

Struktury danych (I): kolejka, stos itp. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Struktury danych (I): kolejka, stos itp. Struktury danych (I): kolejka, stos itp. Struktura danych stanowi sposób uporządkowania

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2010/2011 Wykład nr 7 (24.01.2011) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW

ZASADY PROGRAMOWANIA KOMPUTERÓW POLITECHNIKA WARSZAWSKA Instytut Automatyki i i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW Język Język programowania: C/C++ Środowisko programistyczne: C++Builder 6 Wykład 9.. Wskaźniki i i zmienne dynamiczne.

Bardziej szczegółowo

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa). Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z

Bardziej szczegółowo

Metodyki i techniki programowania

Metodyki i techniki programowania Metodyki i techniki programowania dr inż. Maciej Kusy Katedra Podstaw Elektroniki Wydział Elektrotechniki i Informatyki Politechnika Rzeszowska Elektronika i Telekomunikacja, sem. 2 Plan wykładu Sprawy

Bardziej szczegółowo

Gramatyki atrybutywne

Gramatyki atrybutywne Gramatyki atrybutywne, część 1 (gramatyki S-atrybutywne Teoria kompilacji Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyki atrybutywne Do przeprowadzenia poprawnego tłumaczenia, oprócz informacji

Bardziej szczegółowo

Dynamiczne struktury danych

Dynamiczne struktury danych Dynamiczne struktury danych 391 Dynamiczne struktury danych Przez dynamiczne struktury danych rozumiemy proste i złożone struktury danych, którym pamięć jest przydzielana i zwalniana na żądanie w trakcie

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Formalne podstawy informatyki Rok akademicki: 2013/2014 Kod: EIB-1-220-s Punkty ECTS: 2 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna

Bardziej szczegółowo

WYMAGANIA PRZEDMIOTOWE Z MATEMATYKI

WYMAGANIA PRZEDMIOTOWE Z MATEMATYKI OCENĘ CELUJĄCĄ otrzymuje uczeń który: posiadł wiedzę i umiejętności znacznie wykraczające poza program nauczania; biegle posługuje się zdobytymi wiadomościami w rozwiązywaniu problemów teoretycznych lub

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Rekurencja - zdolność podprogramu (procedury) do wywoływania samego (samej) siebie Wieże Hanoi dane wejściowe - trzy kołki i N krążków o różniących się średnicach wynik - sekwencja ruchów przenosząca krążki

Bardziej szczegółowo

OPRACOWANIE MONIKA KASIELSKA

OPRACOWANIE MONIKA KASIELSKA KONSPEKT LEKCJI MATEMATYKI DIAGNOZA UMIEJĘTNOŚCI ZGODNYCH ZE STANDARDAMI WYMAGAŃ MATURALNYCH PRZEDMIOT : Matematyka KLASA: III TEMAT: Rozwiązywanie problemów poprzez stosowanie algorytmów. STANDARDY WYMAGAŃ

Bardziej szczegółowo

Lista zadań. Babilońska wiedza matematyczna

Lista zadań. Babilońska wiedza matematyczna Lista zadań Babilońska wiedza matematyczna Zad. 1 Babilończycy korzystali z tablicy dodawania - utwórz w arkuszu kalkulacyjnym EXCEL tablicę dodawania liczb w układzie sześćdziesiątkowym, dla liczb ze

Bardziej szczegółowo

Struktura i funkcjonowanie komputera pamięć komputerowa, hierarchia pamięci pamięć podręczna. System operacyjny. Zarządzanie procesami

Struktura i funkcjonowanie komputera pamięć komputerowa, hierarchia pamięci pamięć podręczna. System operacyjny. Zarządzanie procesami Rok akademicki 2015/2016, Wykład nr 6 2/21 Plan wykładu nr 6 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2015/2016

Bardziej szczegółowo

Dział programowy: Liczby i działania ( 1 )

Dział programowy: Liczby i działania ( 1 ) 1 S t r o n a Dział programowy: Liczby i działania ( 1 ) 14-20 Liczby. Rozwinięcia liczb dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. MnoŜenie

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST)

Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST) Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie

Bardziej szczegółowo

Abstrakcyjne struktury danych - stos, lista, drzewo

Abstrakcyjne struktury danych - stos, lista, drzewo Sprawozdanie Podstawy Informatyki Laboratoria Abstrakcyjne struktury danych - stos, lista, drzewo Maciej Tarkowski maciek@akom.pl grupa VII 1/8 1. Stos Stos (ang. Stack) jest podstawową liniową strukturą

Bardziej szczegółowo

Algorytmy komputerowe. dr inŝ. Jarosław Forenc

Algorytmy komputerowe. dr inŝ. Jarosław Forenc Rok akademicki 2009/2010, Wykład nr 8 2/24 Plan wykładu nr 8 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2009/2010

Bardziej szczegółowo

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie: Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)

Bardziej szczegółowo

Technologie informacyjne - wykład 12 -

Technologie informacyjne - wykład 12 - Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 12 - Prowadzący: Dmochowski

Bardziej szczegółowo

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 = Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,

Bardziej szczegółowo

Scenariusz lekcji. wymienić podstawowe dynamiczne struktury danych (stos, kolejka, lista, graf, drzewo); opisać sposób dostępu do danych w kolejce;

Scenariusz lekcji. wymienić podstawowe dynamiczne struktury danych (stos, kolejka, lista, graf, drzewo); opisać sposób dostępu do danych w kolejce; Scenariusz lekcji 1 TEMAT LEKCJI: Dynamiczne struktury danych - kolejka 2 CELE: 2.1 Wiadomosci: Uczeń potrafi: wymienić podstawowe dynamiczne struktury danych (stos, kolejka, lista, graf, drzewo); opisać

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Drzewa wyszukiwań binarnych (BST)

Drzewa wyszukiwań binarnych (BST) Drzewa wyszukiwań binarnych (BST) Krzysztof Grządziel 12 czerwca 2007 roku 1 Drzewa Binarne Drzewa wyszukiwań binarnych, w skrócie BST (od ang. binary search trees), to szczególny przypadek drzew binarnych.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z INFORMATYKI w klasie II gimnazjum str. 1 1. Algorytmika i programowanie

Bardziej szczegółowo

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem

Bardziej szczegółowo

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np. Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa

Bardziej szczegółowo

Laboratorium Programowanie Obrabiarek CNC. Nr H7

Laboratorium Programowanie Obrabiarek CNC. Nr H7 1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie Obrabiarek CNC Nr H7 Programowanie z wykorzystaniem parametrów i funkcji matematycznych Opracował: Dr inŝ. Wojciech

Bardziej szczegółowo

ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej.

ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej. ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej. 1. Wartość bezwzględną liczby jest określona wzorem: x, dla _ x 0 x =, x, dla _ x < 0 Wartość bezwzględna liczby nazywana

Bardziej szczegółowo

Zapisywanie algorytmów w języku programowania

Zapisywanie algorytmów w języku programowania Temat C5 Zapisywanie algorytmów w języku programowania Cele edukacyjne Zrozumienie, na czym polega programowanie. Poznanie sposobu zapisu algorytmu w postaci programu komputerowego. Zrozumienie, na czym

Bardziej szczegółowo

Definicja pochodnej cząstkowej

Definicja pochodnej cząstkowej 1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem

Bardziej szczegółowo

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych:

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: Struktura danych Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: rekord tablica lista stos kolejka drzewo i jego odmiany (np. drzewo

Bardziej szczegółowo

Systemy liczenia. 333= 3*100+3*10+3*1

Systemy liczenia. 333= 3*100+3*10+3*1 Systemy liczenia. System dziesiętny jest systemem pozycyjnym, co oznacza, Ŝe wartość liczby zaleŝy od pozycji na której się ona znajduje np. w liczbie 333 kaŝda cyfra oznacza inną wartość bowiem: 333=

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

Wykład 8. Drzewa AVL i 2-3-4

Wykład 8. Drzewa AVL i 2-3-4 Wykład 8 Drzewa AVL i 2-3-4 1 Drzewa AVL Ø Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Ø Drzewa 2-3-4 Definicja drzewa 2-3-4 Operacje wstawiania i usuwania Złożoność

Bardziej szczegółowo

Lista liniowa dwukierunkowa

Lista liniowa dwukierunkowa 53 Lista liniowa dwukierunkowa Jest to lista złożona z elementów, z których każdy posiada, oprócz wskaźnika na element następny, również wskaźnik na element poprzedni. Zdefiniujmy element listy dwukierunkowej

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

Struktury Danych i Złożoność Obliczeniowa

Struktury Danych i Złożoność Obliczeniowa Struktury Danych i Złożoność Obliczeniowa Zajęcia 1 Podstawowe struktury danych Tablica Najprostsza metoda przechowywania serii danych, zalety: prostota, wady: musimy wiedzieć, ile elementów chcemy przechowywać

Bardziej szczegółowo

Porządek symetryczny: right(x)

Porządek symetryczny: right(x) Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)

Bardziej szczegółowo

Ćwiczenie nr 1: Systemy liczbowe

Ćwiczenie nr 1: Systemy liczbowe Ćwiczenie nr 1: Systemy liczbowe Barbara Łukawska, Adam Krechowicz, Tomasz Michno Podstawowym systemem liczbowym uŝywanym na co dzień jest system dziesiętny. Podstawą tego systemu jest 10 cyfr 0, 1, 2,

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

Architektura komputerów wer. 7

Architektura komputerów wer. 7 Architektura komputerów wer. 7 Wojciech Myszka 2013-10-29 19:47:07 +0100 Karty perforowane Kalkulator IBM 601, 1931 IBM 601 kalkulator Maszyna czytała dwie liczby z karty, mnożyła je przez siebie i wynik

Bardziej szczegółowo