Odwrotna Notacja Polska
|
|
- Liliana Morawska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Odwrotna Notacja Polska Odwrotna Notacja Polska w skrócie ONP) jest sposobem zapisu wyrażeń arytmetycznych. Znak wykonywanej operacji umieszczany jest po operandach, argumentach tzw. zapis postfiksowy). ktualnie stosuje się dwie notacje zapisu wyrażeń : infiksowa wrostkowa): argument1 operator argument2 postfiksowa przyrostkowa): argument1 argument2 operator Poniższa tabela przedstawia przykładowe zapisy w obu notacjach. UNIWERSYTET EKONOMICZNY W KRKOWIE Notacja infiksowa Notacja postfiksowa + B B + B C) D B C D Zapis wyrażeń w notacji postfiksowej jest najczęściej wykorzystywany do sprawdzenie poprawności wyrażenia jak i do samego obliczenia wyniku końcowego. Konwersja wyrażenia z postaci infiksowej na postać postfiksową Podstawowe zasady obowiązujące w trakcie konwersji: kolejność argumentów w postaci infiksowej i postfiksowej jest taka sama, zmianie ulega kolejność operatorów, wyrażenie w postaci infiksowej jest analizowane od lewej do prawej strony, po odczytaniu argumentu jest on natychmiast zapisywany do wyrażenia w postaci postfiksowej, odczytane operatory przechowywane są na stosie. lgorytm konwersji przedstawia sie następująco: 1.usuwamy wszystkie elementy ze stosu na początku konwersji stos musi być pusty), 2.jeżeli odczytany został operator i stos jest pusty to operator umieszczamy na stosie, 3.jeżeli odczytany został operator o wyższym priorytecie niż operator znajdujący się na wierzchołku stosu to odczytany operator umieszczany na stosie. W przeciwnym przypadku ze stosu usuwamy operator znajdujący się na jego wierzchołku i umieszczamy go on na końcu wyrażenia w postaci postfiksowej. Dalszy sposób postępowania z odczytanym operatorem jest określony przez ponowna realizację punktu 2 lub punktu 3, 4.jeżeli został osiągnięty koniec analizowanego wyrażenia zapisanego w postaci infiksowej to ze stosu usuwamy kolejno znajdujące się tam operatory i dopisujemy je do wyrażenia w postaci postfiksowej. istnieje jeszcze notacja prefiksowa przedrostkowa), jest to tak zwana notacja polska najpierw podawany jest operator, a potem argumenty np. + B C ) 23
2 lgorytmy i Struktury Danych Przykład konwersji Chcemy zamienić wyrażenie w postaci infiksowej na wyrażenie w postaci postfiksowej. Rozpatrzmy takie wyrażenie: + B C D Realizacja konwersji przebiega w następujący sposób: Bieżący odczytany) element wyrażenia w postaci infiksowej Zawartość stosu Wyrażenie w postaci postfiksowej UNIWERSYTET EKONOMICZNY W KRKOWIE + + B + C D B B + B + C B + C B + C D B + C D B + C D 24
3 Efektem konwersji jest wyrażenie w formie postfiksowej. B + C D Konwersja wyrażeń zawierających nawiasy UNIWERSYTET EKONOMICZNY W KRKOWIE lgorytm konwersji wyrażeń, w których występują nawiasy jest bardzo podobny do zwykłej konwersji. Nawiasy traktowane są w podobny sposób jak operatory. Priorytet nawiasu jest niższy od priorytetu każdego innego operatora. Jeżeli odczytanym elementem wyrażenia zapisanego w postaci infiksowej jest lewy nawias to umieszczamy go na stosie. Jeżeli odczytanym elementem wyrażenia zapisanego w postaci infiksowej jest prawy nawias to ze stosu usuwamy kolejno znajdujące się na nim operatory i dopisujemy je do wyrażenia w postaci postfiksowej. Operacja usuwania operatorów ze stosu jest wykonywana aż do chwili, gdy na wierzchołku stosu znajdzie się lewy nawias. Wówczas odpowiadające sobie nawiasy są usuwane prawy z wyrażenia infiksowego, zaś lewy ze stosu). Przykład konwersji Chcemy zamienić wyrażenie w postaci infiksowej zawierające nawiasy na wyrażenie w postaci postfiksowej. Rozpatrzmy takie wyrażenie: C H) B C) Realizacja konwersji przebiega w następujący sposób: Bieżący odczytany) element wyrażenia w postaci infiksowej Zawartość stosu Wyrażenie w postaci postfiksowej 25
4 lgorytmy i Struktury Danych C C C H C H UNIWERSYTET EKONOMICZNY W KRKOWIE ) B C C H C H C H C H B C H B C H B C 26
5 ) C H B C C H B C C H B C UNIWERSYTET EKONOMICZNY W KRKOWIE Efektem konwersji jest wyrażenie w formie postfiksowej. C H B C Tablica przejść Podczas konwersji wyrażeń z notacji infiksowej na postfiksową implementacja algorytmu), przydać się może poniższa tabela, tak zwana tablica przejść. bieżący znak argument koniec wyrażenia ) znak na wierzchołku stosu +,, pusty BŁĄD pobierz ze stosu i usuń ")" oraz "" KONIEC BŁĄD połóż na stosie połóż na stosie połóż na stosie połóż na stosie +, połóż na stosie, połóż na stosie połóż na stosie połóż na stosie połóż na stosie 27
6 lgorytmy i Struktury Danych Sprawdzanie poprawności wyrażeń arytmetycznych UNIWERSYTET EKONOMICZNY W KRKOWIE Konwersja błędnie zapisanego wyrażenia w postaci infiksowej prowadzi do utworzenia błędnego wyrażenia w postaci postfiksowej. Metoda sprawdzająca poprawność wyrażenia analizuje wyłącznie jego postać postfiksową. Przyjmując następujące oznaczenia: s i stałe argumenty) występujące w wyrażeniu postfiksowym, o i operatory występujące w wyrażeniu postfiksowym, definiujemy pojęcie stopnia operatora. Przez stopień operatora rozumiemy liczbę wymaganych przez niego argumentów np. stopień operatora wynosi 2). Każdemu wyrażeniu postfiksowemu przypisujemy współczynnik zwany rangą wyrażenia r). Sposób obliczania rangi wyrażenia to: ranga symbolu s i wynosi 1, ranga operatora o i stopnia n wynosi 1n, ranga ciągu symboli s i i operatorów o i jest równa sumie rang poszczególnych symboli i operatorów. Poniżej proste przykłady obliczania rangi symbolu, operatorów oraz. rs i ) = 1 ranga symbolu r+) = r) = r) = r) = 1 rangi operatorów ra b + c d + ) = ra) + rb) + r+) + rc) + rd) + r+) + r) = ) ) + 1) = 1 Do sprawdzenia poprawności brakuje nam jeszcze pojęcia głowy właściwej. Łańcuch symboli z = x y składa się z dwóch części: głowy x) i ogonay). Głowa łańcucha jest właściwa jeśli jego ogon nie jest łańcuchem pustym. Przykładowa głowa właściwa dla naszego wyrażenia została zaznaczona kolorem niebieskim. ra b + c d + ) = ra) + rb) + r+) + rc) + rd) + r+) + r) Wyrażenie postfiksowe jest poprawne wtedy i tylko wtedy, gdy ranga tego wyrażenia jest równa 1 i ranga dowolnej głowy właściwej wyrażenia jest większa lub równa 1. Przykłady wyrażeń poprawnych i niepoprawnych. wyrażenie w notacji infiksowej: a b c wyrażenie w notacji postfiksowej: a b c ranga wyrażenia: ra b c ) = ra) + rb) + rc) + r) + r) = ) + 1) = 1 głowy właściwe: ra) = 1 ra) + rb) = 2 ra) + rb) + rc) = 3 ra) + rb) + rc) + r) = 2 wyrażenie poprawne ranga wyrażenia równa 1 i wszystkie głowy właściwe >= 1) 28
7 wyrażenie w notacji infiksowej: a + b wyrażenie w notacji postfiksowej: a b + ranga wyrażenia: ra b +) = ra) + rb) + r) + r+) = ) + 1) = 0 wyrażenie niepoprawne ranga wyrażenia równa zero) wyrażenie w notacji infiksowej: a + b c wyrażenie w notacji postfiksowej: a b c + ranga wyrażenia: ra b c +) = ra) + r) + rb) + rc) + r+) = 1 + 1) ) = 1 głowy właściwe: ra) = 1 ra) + r) = 0 UNIWERSYTET EKONOMICZNY W KRKOWIE wyrażenie niepoprawne jedna z głów właściwych mniejsza od 1) Obliczanie wartości wyrażenia zapisanego w ONP Obliczanie wartości polega na jego analizie od lewej do prawej strony. odczytane argumenty są umieszczane na stosie, po odczytaniu operatora odczytywana jest odpowiednia liczba argumentów, wykonywane jest działanie i wynik umieszczany jest na stosie. Poniżej przedstawione zostały poszczególne kroki obliczania wartości przykładowego wyrażenia. Wyrażenie w postaci infiksowej ) 8 4) Wyrażenie skonwertowane do postaci postfiksowej naliza wyrażenia oraz zawartość stosu na poszczegółnych etapach obliczeń. Końcowy wynik to wartość
Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)
Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013
Odczyt danych z klawiatury Operatory w Javie
Odczyt danych z klawiatury Operatory w Javie Operatory W Javie występują następujące typy operatorów: Arytmetyczne. Inkrementacji/Dekrementacji Przypisania. Porównania. Bitowe. Logiczne. Pozostałe. Operacje
TRANSLACJA I TRANSLATORY
TRANSLACJA I TRANSLATORY Języki programowania niskiego czy też wysokiego poziomu mają na zadanie przetworzyć ogół algorytmów w nich zapisanych na taką postać aby maszyna cyfrowa była w stanie je wykonać
Składnia rachunku predykatów pierwszego rzędu
Początek Gramatyka Kwantyfikatory Poprawność Logika obliczeniowa Instytut Informatyki Początek Gramatyka Kwantyfikatory Poprawność Plan wykładu 1 Na (dobry) początek Zrozumieć słowa Oswoić znaki 2 Gramatyka
Notacja RPN. 28 kwietnia wyliczanie i transformacja wyrażeń. Opis został przygotowany przez: Bogdana Kreczmera.
1 wyliczanie i transformacja wyrażeń (wersja skrócona) Opis został przygotowany przez: Bogdana Kreczmera 28 kwietnia 2002 Strona 1 z 68 Zakład Podstaw Cybernetyki i Robotyki - trochę historii...............
Wstęp do programowania
Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie
Operacje wykonywane są na operandach (argumentach operatorów). Przy operacji dodawania: argumentami operatora dodawania + są dwa operandy 2 i 5.
Operatory w Javie W Javie występują następujące typy operatorów: Arytmetyczne. Inkrementacji/Dekrementacji Przypisania. Porównania. Bitowe. Logiczne. Pozostałe. Operacje wykonywane są na operandach (argumentach
EGZAMIN MATURALNY Z INFORMATYKI
WPISUJE ZDAJĄCY NUMER UCZNIA EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY CZĘŚĆ I ARKUSZ EGZAMINACYJNY PROJEKTU INFORMATURA DATA: 13 LUTEGO 2015 R. CZAS PRACY: 60 MINUT LICZBA PUNKTÓW DO UZYSKANIA:
Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos)
Algorytmy i struktury danych Wykład 3: Stosy, kolejki i listy Dr inż. Paweł Kasprowski pawel@kasprowski.pl Kolejki FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Stos (stack) Dostęp jedynie
Metody Kompilacji Wykład 3
Metody Kompilacji Wykład 3 odbywa się poprzez dołączenie zasad(reguł) lub fragmentów kodu do produkcji w gramatyce. Włodzimierz Bielecki WI ZUT 2 Na przykład, dla produkcji expr -> expr 1 + term możemy
Wstęp do informatyki- wykład 2
MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy
1. Maszyna Turinga, gramatyki formalne i ONP
1. Maszyna uringa, gramatyki formalne i OP 1.1.Maszyna uringa Automat skończony składa się ze skończonego zbioru stanów i zbioru przejść ze stanu do stanu, zachodzących przy różnych symbolach wejściowych
Analiza semantyczna. Gramatyka atrybutywna
Analiza semantyczna Do przeprowadzenia poprawnego tłumaczenia, oprócz informacji na temat składni języka podlegającego tłumaczeniu, translator musi posiadać możliwość korzystania z wielu innych informacji
1.1. Pozycyjne systemy liczbowe
1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego
FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
Jeśli nie potrafisz wytłumaczyć czegoś w prosty sposób, to znaczy, że tak naprawdę tego nie rozumiesz
II Liceum Ogólnokształcące im. Mikołaja Kopernika w Lesznie z Oddziałami Dwujęzycznymi i Międzynarodowymi ul. Prusa 33, 64-100 Leszno Jeśli nie potrafisz wytłumaczyć czegoś w prosty sposób, to znaczy,
Języki i paradygmaty programowania
Języki i paradygmaty programowania Instytut Teleinformatyki ITI PK Kraków marzec 2012 Spis rzeczy 1 Operatory w C/C++ Operatory Operatory w C/C++ operator - rodzaj funkcji wbudowanej w język; różnica notacja
Operatory. Operatory bitowe i uzupełnienie informacji o pozostałych operatorach. Programowanie Proceduralne 1
Operatory Operatory bitowe i uzupełnienie informacji o pozostałych operatorach. Programowanie Proceduralne 1 Przypomnienie: operatory Operator przypisania = przypisanie x = y x y Operatory arytmetyczne
Podstawy i języki programowania
Podstawy i języki programowania Laboratorium 3 - operatory oraz instrukcje warunkowe i wyboru mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 19 października 2018 1 / 35 mgr inż. Krzysztof
Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska
1 Przykład wyliczania wyrażeń arytmetycznych Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Copyright
Przedrostkowa i przyrostkowa inkrementacja i dekrementacja
Część VIII C++ Przedrostkowa i przyrostkowa inkrementacja i dekrementacja W poprzednim ćwiczeniu operatory inkrementacji i dekrementacji występowały w wersji przyrostkowej. Istnieje inny sposób zapisu
Wprowadzania liczb. Aby uniknąć wprowadzania ułamka jako daty, należy poprzedzać ułamki cyfrą 0 (zero); np.: wpisać 0 1/2
Wprowadzania liczb Liczby wpisywane w komórce są wartościami stałymi. W Excel'u liczba może zawierać tylko następujące znaki: 0 1 2 3 4 5 6 7 8 9 + - ( ), / $ %. E e Excel ignoruje znaki plus (+) umieszczone
EGZAMIN MATURALNY Z INFORMATYKI MAJ 2010 POZIOM ROZSZERZONY CZĘŚĆ I WYBRANE: Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Operatory w C++ Operatory arytmetyczne. Operatory relacyjne (porównania) Operatory logiczne. + dodawanie - odejmowanie * mnożenie / dzielenie % modulo
Operatory w C++ Operatory arytmetyczne + dodawanie - odejmowanie * mnożenie / dzielenie % modulo Operatory relacyjne (porównania) < mniejszy niż większy niż >= większy lub równy
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
7a. Teoria drzew - kodowanie i dekodowanie
7a. Teoria drzew - kodowanie i dekodowanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7a. wteoria Krakowie) drzew - kodowanie i
Algorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
Języki formalne i automaty Ćwiczenia 4
Języki formalne i automaty Ćwiczenia 4 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Sposób tworzenia deterministycznego automatu skończonego... 4 Intuicyjne rozumienie konstrukcji
Języki formalne i automaty Ćwiczenia 3
Języki formalne i automaty Ćwiczenia 3 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Algorytm LL(1)... 2 Definicja zbiorów FIRST1 i FOLLOW1... 3 Konstrukcja tabeli parsowania
Wymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Przykłady zastosowań funkcji tekstowych w arkuszu kalkulacyjnym
S t r o n a 1 Bożena Ignatowska Przykłady zastosowań funkcji tekstowych w arkuszu kalkulacyjnym Wprowadzenie W artykule zostaną omówione zagadnienia związane z wykorzystaniem funkcji tekstowych w arkuszu
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,
FUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5.
Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5. Schemat Hornera. Wyjaśnienie: Zadanie 1. Pozycyjne reprezentacje
4. Funkcje. Przykłady
4. Funkcje Przykłady 4.1. Napisz funkcję kwadrat, która przyjmuje jeden argument: długość boku kwadratu i zwraca pole jego powierzchni. Używając tej funkcji napisz program, który obliczy pole powierzchni
Języki formalne i automaty Ćwiczenia 9
Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej
Myśl w języku Python! : nauka programowania / Allen B. Downey. Gliwice, cop Spis treści
Myśl w języku Python! : nauka programowania / Allen B. Downey. Gliwice, cop. 2017 Spis treści Przedmowa 11 1. Jak w programie 21 Czym jest program? 21 Uruchamianie interpretera języka Python 22 Pierwszy
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać
.! $ Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty.
!"! " #$%& '()#$$ &%$! #$ %$ &%$& &$&! %&'" )$$! *$$&%$! +,- +-.! $ Celem wiczenia jest zapoznanie studenta ze strukturami: lista, stos, drzewo oraz ich implementacja w jzyku ANSI C. Zrozumienie działania
I. Liczby i działania
I. Liczby i działania porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na dziesiętne i odwrotnie, zaokrąglać liczby do danego rzędu, szacować wyniki działań,
Excel zadania sprawdzające 263
Excel zadania sprawdzające 263 Przykładowe zadania do samodzielnego rozwiązania Zadanie 1 Wpisać dane i wykonać odpowiednie obliczenia. Wykorzystać wbudowane funkcje Excela: SUMA oraz ŚREDNIA. Sformatować
WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:
WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie
Stuck in the loop. Sterowanie. Marcin Makowski. 29 października Zak lad Chemii Teoretycznej UJ
Sterowanie Zak lad Chemii Teoretycznej UJ 29 października 2007 1 2 3 4 arytmetyczne +, -, *, / % (dzielenie modulo) operatory sa lewostronnie l aczne priorytety: (*, /, %), (+, -) nie istnieje operator
Python: JPEG. Zadanie. 1. Wczytanie obrazka
Python: JPEG Witajcie! Jest to kolejny z serii tutoriali uczący Pythona, a w przyszłości być może nawet Cythona i Numby Jeśli chcesz nauczyć się nowych, zaawansowanych konstrukcji to spróbuj rozwiązać
Czas pracy: 60 minut
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 INFORMATYKA POZIOM ROZSZERZONY ARKUSZ I PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB SŁABOSŁYSZĄCYCH (A3) WYBRANE:... (środowisko)... (kompilator)... (program użytkowy)
Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303
Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp
Algorytm. a programowanie -
Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik
Semantyka i Weryfikacja Programów - Laboratorium 3
Semantyka i Weryfikacja Programów - Laboratorium 3 Modelowanie układów mikroprocesorowych - część II Wykonywanie całego programu Cały program wykonywany jest przez funkcję intpprog. Jedynym argumentem
Trik 1 Identyfikator klienta generowany za pomocą formuły
:: Trik 1. Identyfikator klienta generowany za pomocą formuły :: Trik 2. Warunkowe podsumowanie z wielu kolumn :: Trik 3. Komunikaty o błędach niewidoczne na wydruku :: Trik 4. Wyliczanie wynagrodzenia
Metody Kompilacji Wykład 8 Analiza Syntaktyczna cd. Włodzimierz Bielecki WI ZUT
Metody Kompilacji Wykład 8 Analiza Syntaktyczna cd Analiza Syntaktyczna Wstęp Parser dostaje na wejściu ciąg tokenów od analizatora leksykalnego i sprawdza: czy ciąg ten może być generowany przez gramatykę.
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka
Podstawy programowania w języku C i C++
Podstawy programowania w języku C i C++ Część czwarta Operatory i wyrażenia Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu,
Klasa 2 INFORMATYKA. dla szkół ponadgimnazjalnych zakres rozszerzony. Założone osiągnięcia ucznia wymagania edukacyjne na. poszczególne oceny
Klasa 2 INFORMATYKA dla szkół ponadgimnazjalnych zakres rozszerzony Założone osiągnięcia ucznia wymagania edukacyjne na poszczególne oceny Algorytmy 2 3 4 5 6 Wie, co to jest algorytm. Wymienia przykłady
Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.
ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach
DODAWANIE I ODEJMOWANIE SUM ALGEBRAICZNYCH
DODAWANIE I ODEJMOWANIE SUM ALGEBRAICZNYCH Cele operacyjne Uczeń umie: budować wyrażenia algebraiczne, opuszczać nawiasy, redukować wyrazy podobne, dodawać i odejmować sumy algebraiczne. Metody nauczania
UTK Można stwierdzić, że wszystkie działania i operacje zachodzące w systemie są sterowane bądź inicjowane przez mikroprocesor.
Zadaniem centralnej jednostki przetwarzającej CPU (ang. Central Processing Unit), oprócz przetwarzania informacji jest sterowanie pracą pozostałych układów systemu. W skład CPU wchodzą mikroprocesor oraz
ARCHITEKTURA KOMPUTERÓW Systemy liczbowe
ARCHITEKTURA KOMPUTERÓW Systemy liczbowe 20.10.2010 System Zakres znaków Przykład zapisu Dziesiętny ( DEC ) 0,1,2,3, 4,5,6,7,8,9 255 DEC Dwójkowy / Binarny ( BIN ) 0,1 11111 Ósemkowy ( OCT ) 0,1,2,3, 4,5,6,7
EGZAMIN MATURALNY Z INFORMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MIN 2016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY CZĘŚĆ I DATA: 17
Struktury danych: stos, kolejka, lista, drzewo
Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja
... (środowisko) ... ... 60 minut
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 INFORMATYKA POZIOM ROZSZERZONY ARKUSZ I PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A2) WYBRANE:... (środowisko)... (kompilator)...
(mniejszych od 10 9 ) podanych przez użytkownika, wypisze komunikat TAK, jeśli są to liczby bliźniacze i NIE, w przeciwnym przypadku.
Zadanie 1 Już w starożytności matematycy ze szkoły pitagorejskiej, którzy szczególnie cenili sobie harmonię i ład wśród liczb, interesowali się liczbami bliźniaczymi, czyli takimi parami kolejnych liczb
ALGORYTMY I PROGRAMY
ALGORYTMY I PROGRAMY Program to ciąg instrukcji, zapisanych w języku zrozumiałym dla komputera. Ten ciąg instrukcji realizuje jakiś algorytm. Algorytm jest opisem krok po kroku jak rozwiązać problem, czy
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Podstawowe struktury danych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.
Abstrakcyjne struktury danych w praktyce
Abstrakcyjne struktury danych w praktyce Wykład 13 7.4 notacja polska A.Szepietowski Matematyka dyskretna rozdział.8 stos kompilacja rozłączna szablony funkcji Przypomnienie Drzewo binarne wyrażenia arytmetycznego
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Abstrakcyjne struktury danych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Wyrażenie nawiasowe. Wyrażenie puste jest poprawnym wyrażeniem nawiasowym.
Wyrażenie nawiasowe Wyrażeniem nawiasowym nazywamy dowolny skończony ciąg nawiasów. Każdemu nawiasowi otwierającemu odpowiada dokładnie jeden nawias zamykający. Poprawne wyrażenie nawiasowe definiujemy
KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO
Aleksandra Nogała nauczycielka matematyki w Gimnazjum im. Macieja Rataja w Żmigrodzie olanog@poczta.onet.pl KONSPEKT ZAJĘĆ ( 2 godziny) KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO TEMAT
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Ćwiczenie 3 stos Laboratorium Metod i Języków Programowania
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Ćwiczenie 3 stos Laboratorium Metod i Języków Programowania Celem ćwiczenia jest zapoznanie studentów z najprostszą dynamiczną strukturą
Laboratorium 3: Tablice, tablice znaków i funkcje operujące na ciągach znaków. dr inż. Arkadiusz Chrobot dr inż. Grzegorz Łukawski
Laboratorium 3: Tablice, tablice znaków i funkcje operujące na ciągach znaków dr inż. Arkadiusz Chrobot dr inż. Grzegorz Łukawski 7 kwietnia 2014 1. Wprowadzenie Pierwsza część instrukcji zawiera informacje
2. Łańcuchy tekstowe w PHP
2. Łańcuchy tekstowe w PHP 2.1 Apostrofy i cudzysłowy Łańcuch tekstowy w języku PHP to ciąg znaków ograniczony apostrofami (') lub cudzysłowami ("). Te znaki ograniczające nie powinny być traktowane wymiennie,
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI STYCZEŃ POZIOM ROZSZERZONY Część I
Organizatorzy: Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki, Oddział Kujawsko-Pomorski Polskiego Towarzystwa Informatycznego, Ośrodek Doskonalenia Nauczycieli w Poznaniu, Centrum
Języki programowania zasady ich tworzenia
Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi
Wstęp do informatyki- wykład 5 Instrukcja selekcji if-else Operatory arytmetyczne i logiczne
1 Wstęp do informatyki- wykład 5 Instrukcja selekcji if-else Operatory arytmetyczne i logiczne Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion,
Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.
Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4
x 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu:
RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych Przed rozpoczęciem nauki o równaniach kwadratowych, warto dobrze opanować rozwiązywanie zwykłych równań liniowych. W równaniach liniowych niewiadoma
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
9. Podstawowe narzędzia matematyczne analiz przestrzennych
Waldemar Izdebski - Wykłady z przedmiotu SIT 75 9. odstawowe narzędzia matematyczne analiz przestrzennych Niniejszy rozdział służy ogólnemu przedstawieniu metod matematycznych wykorzystywanych w zagadnieniu
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Gramatyki atrybutywne
Gramatyki atrybutywne, część 1 (gramatyki S-atrybutywne Teoria kompilacji Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyki atrybutywne Do przeprowadzenia poprawnego tłumaczenia, oprócz informacji
DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.
DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, (
EGZAMIN MATURALNY Z INFORMATYKI WYBRANE: ... (system operacyjny) ... (program użytkowy) ... (środowisko programistyczne)
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MIN 2018 KOD UZUEŁNIA ZDAJĄCY ESEL miejsce na naklejkę EGZAMIN MATURALNY Z INORMATYKI OZIOM ROZSZERZONY CZĘŚĆ I DATA: 11 maja
Podstawy programowania. Wykład Funkcje. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład Funkcje Krzysztof Banaś Podstawy programowania 1 Programowanie proceduralne Pojęcie procedury (funkcji) programowanie proceduralne realizacja określonego zadania specyfikacja
Wstęp do informatyki- wykład 1 Systemy liczbowe
1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,
Zadanie 2: Arytmetyka symboli
1 Cel ćwiczenia Zadanie 2: Arytmetyka symboli Wykształcenie umiejętności abstrahowania operacji arytmetycznych. Zapoznanie się i przećwiczenie mechanizmu tworzenia przeciążeń funkcji operatorowych. Utrwalenie
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM DZIAŁ: LICZBY WYMIERNE (DODATNIE I UJEMNE) Otrzymuje uczeń, który nie spełnia kryteriów oceny dopuszczającej, nie jest w stanie na pojęcie liczby naturalnej,
Argumenty wywołania programu, operacje na plikach
Temat zajęć: Argumenty wywołania programu, operacje na plikach Autor: mgr inż. Sławomir Samolej Zagadnienie 1. (Zmienne statyczne) W języku C można decydować o sposobie przechowywania zmiennych. Decydują
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Liniowe struktury danych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" LICZBY I DZIAŁANIA POZIOM KONIECZNY - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,
operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,
1. Operacje logiczne A B A OR B
1. Operacje logiczne OR Operacje logiczne są operacjami działającymi na poszczególnych bitach, dzięki czemu można je całkowicie opisać przedstawiając jak oddziałują ze sobą dwa bity. Takie operacje logiczne
Wymagania eduka cyjne z matematyki
Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na
Pomorski Czarodziej 2016 Zadania. Kategoria C
Pomorski Czarodziej 2016 Zadania. Kategoria C Poniżej znajduje się 5 zadań. Za poprawne rozwiązanie każdego z nich możesz otrzymać 10 punktów. Jeżeli otrzymasz za zadanie maksymalną liczbę punktów, możesz