Abstrakcyjne struktury danych - stos, lista, drzewo

Wielkość: px
Rozpocząć pokaz od strony:

Download "Abstrakcyjne struktury danych - stos, lista, drzewo"

Transkrypt

1 Sprawozdanie Podstawy Informatyki Laboratoria Abstrakcyjne struktury danych - stos, lista, drzewo Maciej Tarkowski grupa VII 1/8

2 1. Stos Stos (ang. Stack) jest podstawową liniową strukturą danych stosowanych w informatyce. Jego schemat, przedstawiony na rys jest zarazem demonstracją zasady jego działania: kolejki LIFO (ang. Last In First Out ostatnie weszło, pierwsze wyjdzie), mechanizmu zasadniczo innego od kolejki FIFO (ang. First In First Out pierwsze weszło, pierwsze wyjdzie), w oparciu o który działają listy. Kolejka ta jak nazwa wskazuje polega na dokładaniu danych (kolejnych elementów) na wierzch stosu (tak jak książki leżące jedna na drugiej). Dostęp do dowolnego elementu, a także dodanie w środek nowego, jest uciążliwy należy najpierw zdjąć wszyskie elementy od góry do bieżącego (aby przeczytać książkę z środka stosu, trzeba zdjąć wszystkie z wierzchu). Najszybszy dostęp jest możliwy tylko do elementu pierwszego. Przedstawiona przeze mnie propozycja dodawania nowego elementu w środek stosu (rys. 1.2.) polega na kolejnym zdejmowaniu elementów i przekładaniu ich na pomocniczy stos (stos 2). Następnie, na wierzch stosu 1 dodawany jest nowy element (kolor zielony). Ostatnim etapem jest przełożenie elementów ze stosu tymczasowego, na wyjściowy. Usuwanie elementu przebiega analogicznie. wejście wyjście stos rys schemat stosu; kolejka LIFO stos 1 stos 2 rys przykład mechanizmu dodawania nowego elementu do stosu 2/8

3 2. Lista Lista jest najprostszą, liniową strukturą danych stosowaną w informatyce. Od tablic innego kontenera do przechowywania danych odróżnia listę przede wszystkim rozmiar. Tablice mają najczęściej z góry określony rozmiar: za duża tablica marnuje pamięć; zbyt mała powoduje, że elementy się w niej nie mieszczą. Z kolei od stosu odróżnia listę stosowana kolejka FIFO, a także prostota dodawania nowych elementów w środek. Rozróżniamy dwa typy list: jednokierunkową (rys. 2.1) i dwukierunkową (rys. 2.2). rys schemat listy jednokierunkowej adr_pop adr_pop adr_pop adr_pop rys schemat listy dwukierunkowej Listy składają się z pojedynczych elementów połączonych ze sobą. Pojedynczy element nazywany węzłem (ang. Node) składa się z konkretnego obiektu (,, itd.) i wskaźnika pokazującego na następny element listy () oraz w przypadku listy dwukierunkowej na element poprzedni (adr_pop). Ponadto element ostatni (i dodatkowo wskaźnik adr_pop w liście dwukierunkowej) wskazuje na, czyli zerowy adres w pamięci oznaczając koniec (początek) listy. Aby znaleźć interesujący nas element na liście jednokierunkowej zaczynamy od początku listy. W liście dwukierunkowej możemy poruszać się w dwóch kierunkach (dzięki wskaźnikom do poprzedniego elementu). W dalszych rozważaniach zajmę się listą jednokierunkową. Dodawanie elementów do listy jednokierunkowej (również w jej środek) jest łatwiejsze w realizacji niż w tablicy (gdzie dodanie nowego elementu najprostrze jest jedynie na końcu tablicy). Wstawienie nowego elementu do środka listy przebiega w trzech prostych etapach. Najpierw znajdujemy dwa elementy, pomiędzy które wstawimy nasz nowy element o przykładowej wartości wartoscx (rys. 2.3a). Następnie musimy odpowiednio ustawić wskaźniki w elemencie który dodajemy oraz poprzedzającym ten element (na rysunku chodzi o element o wartości ). Po pierwsze ustawiamy wkaźnik 3/8

4 elementu dodawanego tak, aby pokazywał na element o wartości (rys. 2.3b). Na tym etapie dwa elementy (a dokładnie: wskaźniki tych elementów) pokazują na element o wartości. Oczywiście nie jest to jeszcze efekt, który by nas satysfakcjonował. Teraz należy tak przestawić wskaźnik w elemencie aby pokazywał na element dodawany (rys. 2.3c). Nowy element jest dodany do środka listy jednokierunkowej. wartoscx rys. 2.3a. pierwszy etap dodawania elementu do listy wartoscx rys. 2.3b. teraz dwa wskaźniki pokazują na element wartoscx rys. 2.3c. nowy element jest już dodany do listy 4/8

5 Usuwanie dowolnego elementu z listy również jest prostrze i szybsze niż w przypadku tablicy. Najpierw musimy wskazać na ten element, który zamierzamy usunąć, oraz element go poprzedzający i następujący po nim (rys. 2.4a). Następnie wystarczy odpowiednio ustawić wskaźnik w elemencie poprzedzającym tak, aby pokazywał na element. Ostatnim etapem jest skasowanie danego elementu poprzez zwolnienie pamięci mu przysługującej (rys 2.4b). rys. 2.4a. zlokalizujmy element do usunięcia rys. 2.4b. przestawienie wskaźnika i usunięcie elementu Implementacja w C++ zaproponowana przeze mnie oparta na strukturach znajduje się w pliku lista.cpp. Zastosowanie list - profesjonalna baza danych obsługująca zapis/odczyt z pliku tekstowego znajduje się w pliku baza_lista.cpp. 5/8

6 3. Drzewa W informatyce drzewa są już bardziej skomplikowaną strukturą danych niż lista. Drzewa w naturalny sposób pozwalają na ukazanie hierarchii dowolnych obiektów (rys. 3.1). Najważniejszą cechą drzew jest możliwość w przeciwieństwie do tablic - przechowywania danych różnych typów oraz szybkie wyszukiwanie i operowanie na obiektach. Tekst Tekst Tekst 125,47 rys schemat drzewa Budowa drzewa nie jest skomplikowana, ale wymaga zdefiniowania kilku pojęć. Każdy punkt w drzewie, to węzeł (ang. Node). Węzły w drzewie ułożone są w kilku poziomach (ang. Level). Poziomy zliczane są w dół drzewa najwyższy poziom posiada zatem numer 1. Węzeł znajdujący się na poziomie pierwszym, to korzeń. Potomstwo danego węzła, to węzły znajdujące się poziom niże i bezpośrednio od niego odchodzące. I tak dla przykładu potomstwo korzenia, to węzły z poziomu 2, itd. Jeśli węzeł nie posiada potomstwa, jest nazywany liściem drzewa. Natomiast gałąź, to sekwencja węzłów odpowiadających przejściu w dół od korzenia do liścia. Połączenie dwóch węzłów nazywa się krawędzią. Drzewo, w którym każdy z węzłów posiada co najwyżej dwójkę potomstwa, nazywamy drzewem binarnym. Warto ponadto zaznaczyć, że drzewo jest spójne, gdy rozpoczynając jego analizę od dowolnego węzła (ale nie korzenia), przechodząc kolejno do jego rodzica, itd, osiągniemy korzeń. Każdy węzeł wraz z jego wszystkimi potomkami (o ile takowe istnieją) jest poddrzewem. Każdy węzeł może być związany z pewną etykietą lub wartością. Wtedy o takim drzewie mówimy, że jest zaetykietowane. Etykieta węzła nie musi być unikatowa (w przeciwieństwie do nazwy węzła). 6/8

7 W dalszej części rozwarzań, zajmę się drzewem reprezentującym zbiór słów. Takie drzewo nosi nazwę drzewa trie. Drzewo to umożliwia sprawdzanie, czy dana sekwencja liter tworzy porawne słowo (czy występuje w słowniku ). Każdy węzeł tego drzewa (poza korzeniem) związany jest z jakąś literą alfabetu (rys. 3.2). Etykieta każdego węzła składa się z litery oraz wartości logicznej true lub false określającej, czy ciąg złożony z liter od korzenia do danego węzła jest już poprawnym słowem. rys przykład drzewa trie W rozumieniu drzew, od strony implementacji w programowaniu, pomaga jego definicja rekurencyjna. Załóżmy, że: 1) pojedynczy węzeł n jest drzewem 2) r będzie nowym węzłem 3) T 1, T 2,..., T k będą drzewami o korzeniach odpowiednio c 1, c 2,..., c k 4) żaden węzeł nie występuje w drzewie T i więcej niż jeden raz oraz węzeł r nie występuje w żadnym z tych drzew Nowe drzewo T powstaje z węzła r i drzew T 1, T 2,..., T k w ten sposób, że węzeł r staje się korzeniem tego drzewa, a dodając po jednej krawędzi łączącej r z każdym z węzłów c 1, c 2,..., c k otrzymujemy strukruę, w której każdy z węzłów jest potomkiem korzenia r. 7/8

8 Dodawanie nowych słów do drzewa polega na iteracyjnym przejściu po wszystkich jego literach oraz po kolejnych potomkach począwszy od korzenia. W przypadku, gdy potomek danego węzła nie istnieje, zostaje utworzony. Ostatnia litera (liść) kończy wyraz, zatem nadajemny mu etykietę z wartością logiczną true. W przypadku pokazanym na rys.3.2. chcąc dodać do drzewa wyraz autobus przechodzimy od korzenia (? ) poprzez a, u, t, o. Zauważamy, że węzeł o nie ma potomka b - zatem go tworzymy. Następnie wśród potomków węzła b nie zauważamy u - znowu go dodajemy. Ostatnim węzłem będzie litera s, zatem w etykiecie nadajemy wartość logiczną true. Wyszukiwanie wyrazu w drzewie przebiega podobnie do dodawania. Przechodzimy iteracyjnie po wszystkich literach wyrazu - węzłach i poszukujemy jego potomków. Ostatnią literę wyrazu powinien (zgodnie z założeniem drzewa trie) tworzyć węzeł z etykietą zawierającą wartość logiczną true. W przykładzie (rys. 3.2.) poszukajmy wyrazu lufa. Zaczynamy od korzenia i przechodzimy kolejno po węzłach potomkach ( l - u - f ) ostatni węzeł (liść) odpowiadający literze a zawiera wartość logiczną true, zatem zadany wyraz występuje w naszym słowniku. Jak starałem się wykazać, wyszukiwanie wyrazów w drzewie jest szybsze niż w przypadku przeszukiwania tablicy stringów. Również dodawanie nowych wyrazów jest łatwiejsze i szybsze. Implementacja w C++ zaproponowana przeze mnie, a zapisana w pliku trie.cpp w prosty sposób demonstruje użycie drzewa typu trie. Drzewo obsługuje polskie znaki diakrytyczne. 8/8

Struktury danych: stos, kolejka, lista, drzewo

Struktury danych: stos, kolejka, lista, drzewo Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

dr inż. Paweł Myszkowski Wykład nr 11 ( )

dr inż. Paweł Myszkowski Wykład nr 11 ( ) dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 11 (11.05.2016) Plan prezentacji:

Bardziej szczegółowo

Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST)

Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST) Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie

Bardziej szczegółowo

Typy danych. 2. Dane liczbowe 2.1. Liczby całkowite ze znakiem i bez znaku: 32768, -165, ; 2.2. Liczby rzeczywiste stało i zmienno pozycyjne:

Typy danych. 2. Dane liczbowe 2.1. Liczby całkowite ze znakiem i bez znaku: 32768, -165, ; 2.2. Liczby rzeczywiste stało i zmienno pozycyjne: Strona 1 z 17 Typy danych 1. Dane tekstowe rozmaite słowa zapisane w różnych alfabetach: Rozwój metod badawczych pozwala na przesunięcie granicy poznawania otaczającego coraz dalej w głąb materii: 2. Dane

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce. POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie

Bardziej szczegółowo

Każdy węzeł w drzewie posiada 3 pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste.

Każdy węzeł w drzewie posiada 3 pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste. Drzewa binarne Każdy węzeł w drzewie posiada pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste. Uporządkowanie. Zakładamy, że klucze są różne. Klucze leżące

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.)

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Kontenery - - wektor vector - - lista list - - kolejka queue - - stos stack Kontener asocjacyjny map 2016-01-08 Bazy danych-1 W5 1 Kontenery W programowaniu

Bardziej szczegółowo

Algorytmy przeszukiwania

Algorytmy przeszukiwania Algorytmy przeszukiwania Przeszukiwanie liniowe Algorytm stosowany do poszukiwania elementu w zbiorze, o którym nic nie wiemy. Aby mieć pewność, że nie pominęliśmy żadnego elementu zbioru przeszukujemy

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach

Bardziej szczegółowo

Lista 5 Typy dynamiczne kolejka

Lista 5 Typy dynamiczne kolejka Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Metody i języki programowania 1 Wprowadzenie Lista 5 Typy dynamiczne kolejka Kolejka jest jedną z podstawowych struktur umożliwiających

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu

Bardziej szczegółowo

Porządek symetryczny: right(x)

Porządek symetryczny: right(x) Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)

Bardziej szczegółowo

Wykład 2. Drzewa zbalansowane AVL i 2-3-4

Wykład 2. Drzewa zbalansowane AVL i 2-3-4 Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania

Bardziej szczegółowo

liniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak:

liniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak: Sortowanie stogowe Drzewo binarne Binary Tree Dotychczas operowaliśmy na prostych strukturach danych, takich jak tablice. W tablicy elementy ułożone są zgodnie z ich numeracją, czyli indeksami. Jeśli za

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Rekurencja - zdolność podprogramu (procedury) do wywoływania samego (samej) siebie Wieże Hanoi dane wejściowe - trzy kołki i N krążków o różniących się średnicach wynik - sekwencja ruchów przenosząca krążki

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew 0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001.

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001. KODOWANIE Jednym z problemów, z którymi spotykamy się w informatyce, jest problem właściwego wykorzystania pamięci. Konstruując algorytm staramy się zwykle nie tylko o zminimalizowanie kosztów czasowych

Bardziej szczegółowo

Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.

Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru. Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4

Bardziej szczegółowo

Wstęp do programowania. Drzewa podstawowe techniki. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa podstawowe techniki. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa podstawowe techniki Piotr Chrząstowski-Wachtel Drzewa wyszukiwań Drzewa często służą do przechowywania informacji. Jeśli uda sie nam stworzyć drzewo o niewielkiej wysokości

Bardziej szczegółowo

Drzewa czerwono-czarne.

Drzewa czerwono-czarne. Binboy at Sphere http://binboy.sphere.p l Drzewa czerwono-czarne. Autor: Jacek Zacharek Wstęp. Pojęcie drzewa czerwono-czarnego (red-black tree) zapoczątkował Rudolf Bayer w książce z 1972 r. pt. Symmetric

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Cel ćwiczenia Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet ielonogórski Drzewa poszukiwań binarnych Ćwiczenie

Bardziej szczegółowo

Plan wykładu. Domain Name System. Hierarchiczna budowa nazw. Definicja DNS. Obszary i ich obsługa Zapytania Właściwości.

Plan wykładu. Domain Name System. Hierarchiczna budowa nazw. Definicja DNS. Obszary i ich obsługa Zapytania Właściwości. Sieci owe Sieci owe Plan wykładu Domain Name System System Nazw Domen Definicja DNS Hierarchiczna budowa nazw Obszary i ich obsługa Zapytania Właściwości Sieci owe Sieci owe Definicja DNS DNS to rozproszona

Bardziej szczegółowo

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów

Bardziej szczegółowo

1 Automaty niedeterministyczne

1 Automaty niedeterministyczne Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Wykład 6. Drzewa poszukiwań binarnych (BST)

Wykład 6. Drzewa poszukiwań binarnych (BST) Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 7 część I 2 Modele danych: zbiory Podstawowe definicje Operacje na zbiorach Prawa algebraiczne Struktury

Bardziej szczegółowo

Podstawy programowania skrót z wykładów:

Podstawy programowania skrót z wykładów: Podstawy programowania skrót z wykładów: // komentarz jednowierszowy. /* */ komentarz wielowierszowy. # include dyrektywa preprocesora, załączająca biblioteki (pliki nagłówkowe). using namespace

Bardziej szczegółowo

WSTĘP DO INFORMATYKI. Drzewa i struktury drzewiaste

WSTĘP DO INFORMATYKI. Drzewa i struktury drzewiaste Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Drzewa i struktury drzewiaste www.agh.edu.pl DEFINICJA DRZEWA Drzewo

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH ALGORYTMY I STRUKTURY DANYCH Temat 4: Realizacje dynamicznych struktur danych. Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/

Bardziej szczegółowo

Sortowanie bąbelkowe

Sortowanie bąbelkowe 1/98 Sortowanie bąbelkowe (Bubble sort) prosty i nieefektywny algorytm sortowania wielokrotnie przeglądamy listę elementów, porównując dwa sąsiadujące i zamieniając je miejscami, jeśli znajdują się w złym

Bardziej szczegółowo

Przykładowe B+ drzewo

Przykładowe B+ drzewo Przykładowe B+ drzewo 3 8 1 3 7 8 12 Jak obliczyć rząd indeksu p Dane: rozmiar klucza V, rozmiar wskaźnika do bloku P, rozmiar bloku B, liczba rekordów w indeksowanym pliku danych r i liczba bloków pliku

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich

Bardziej szczegółowo

Podstawy Informatyki. Metody dostępu do danych

Podstawy Informatyki. Metody dostępu do danych Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Drzewa poszukiwań binarnych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 10 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

Modelowanie hierarchicznych struktur w relacyjnych bazach danych

Modelowanie hierarchicznych struktur w relacyjnych bazach danych Modelowanie hierarchicznych struktur w relacyjnych bazach danych Wiktor Warmus (wiktorwarmus@gmail.com) Kamil Witecki (kamil@witecki.net.pl) 5 maja 2010 Motywacje Teoria relacyjnych baz danych Do czego

Bardziej szczegółowo

7. Teoria drzew - spinanie i przeszukiwanie

7. Teoria drzew - spinanie i przeszukiwanie 7. Teoria drzew - spinanie i przeszukiwanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7. wteoria Krakowie) drzew - spinanie i przeszukiwanie

Bardziej szczegółowo

Wprowadzenie do programowania

Wprowadzenie do programowania do programowania ITA-104 Wersja 1 Warszawa, Wrzesień 2009 ITA-104 do programowania Informacje o kursie Zakres tematyczny kursu Opis kursu Kurs przeznaczony jest do prowadzenia przedmiotu do programowania

Bardziej szczegółowo

Definicja pliku kratowego

Definicja pliku kratowego Pliki kratowe Definicja pliku kratowego Plik kratowy (ang grid file) jest strukturą wspierająca realizację zapytań wielowymiarowych Uporządkowanie rekordów, zawierających dane wielowymiarowe w pliku kratowym,

Bardziej szczegółowo

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos)

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Algorytmy i struktury danych Wykład 3: Stosy, kolejki i listy Dr inż. Paweł Kasprowski pawel@kasprowski.pl Kolejki FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Stos (stack) Dostęp jedynie

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych:

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: Struktura danych Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: rekord tablica lista stos kolejka drzewo i jego odmiany (np. drzewo

Bardziej szczegółowo

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/ STL, czyli o co tyle hałasu W świecie programowania C++, hasło STL pojawia się nieustannie i zawsze jest o nim głośno... często początkujące osoby, które nie znają STL-a pytają się co to jest i czemu go

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku Rozdział 1 Struktury danych 1.1 Listy, stosy i kolejki Lista to uporz adkowany ci ag elementów. Przykładami list s a wektory lub tablice

Bardziej szczegółowo

Algorytmika i pseudoprogramowanie

Algorytmika i pseudoprogramowanie Przedmiotowy system oceniania Zawód: Technik Informatyk Nr programu: 312[ 01] /T,SP/MENiS/ 2004.06.14 Przedmiot: Programowanie Strukturalne i Obiektowe Klasa: druga Dział Dopuszczający Dostateczny Dobry

Bardziej szczegółowo

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb.

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. 1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. Algorytmy przeszukiwania w głąb i wszerz są najczęściej stosowanymi algorytmami przeszukiwania. Wykorzystuje się je do zbadania istnienia połączenie

Bardziej szczegółowo

16MB - 2GB 2MB - 128MB

16MB - 2GB 2MB - 128MB FAT Wprowadzenie Historia FAT jest jednym z najstarszych spośród obecnie jeszcze używanych systemów plików. Pierwsza wersja (FAT12) powstała w 1980 roku. Wraz z wzrostem rozmiaru dysków i nowymi wymaganiami

Bardziej szczegółowo

Zasady programowania Dokumentacja

Zasady programowania Dokumentacja Marcin Kędzierski gr. 14 Zasady programowania Dokumentacja Wstęp 1) Temat: Przeszukiwanie pliku za pomocą drzewa. 2) Założenia projektu: a) Program ma pobierać dane z pliku wskazanego przez użytkownika

Bardziej szczegółowo

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym

Bardziej szczegółowo

Alicja Marszałek Różne rodzaje baz danych

Alicja Marszałek Różne rodzaje baz danych Alicja Marszałek Różne rodzaje baz danych Rodzaje baz danych Bazy danych można podzielić wg struktur organizacji danych, których używają. Można podzielić je na: Bazy proste Bazy złożone Bazy proste Bazy

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np. Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa

Bardziej szczegółowo

Architektura systemów komputerowych Laboratorium 7 Symulator SMS32 Stos, Tablice, Procedury

Architektura systemów komputerowych Laboratorium 7 Symulator SMS32 Stos, Tablice, Procedury Marcin Stępniak Architektura systemów komputerowych Laboratorium 7 Symulator SMS32 Stos, Tablice, Procedury 1. Informacje 1.1. Stos Stos jest strukturą danych, w której dane dokładane są na wierzch stosu

Bardziej szczegółowo

JAK DZIAŁAJĄ FUNKCJE PODZIAŁ PAMIĘCI

JAK DZIAŁAJĄ FUNKCJE PODZIAŁ PAMIĘCI JAK DZIAŁAJĄ FUNKCJE PODZIAŁ PAMIĘCI Gdy wywołujesz daną funkcję, program przechodzi do tej funkcji, przekazywane są parametry i następuje wykonanie ciała funkcji. Gdy funkcja zakończy działanie, zwracana

Bardziej szczegółowo

Bazy danych. Andrzej Łachwa, UJ, /15

Bazy danych. Andrzej Łachwa, UJ, /15 Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 15/15 PYTANIA NA EGZAMIN LICENCJACKI 84. B drzewa definicja, algorytm wyszukiwania w B drzewie. Zob. Elmasri:

Bardziej szczegółowo

STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA. Część 3. Drzewa Przeszukiwanie drzew

STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA. Część 3. Drzewa Przeszukiwanie drzew STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA Część 3 Drzewa Przeszukiwanie drzew 1 / 24 DRZEWA (ang.: trees) Drzewo struktura danych o typie podstawowym T definiowana rekurencyjnie jako: - struktura pusta,

Bardziej szczegółowo

Język programowania: Lista instrukcji (IL Instruction List)

Język programowania: Lista instrukcji (IL Instruction List) Język programowania: Lista instrukcji (IL Instruction List) Wykład w ramach przedmiotu: Sterowniki programowalne Opracował dr inż. Jarosław Tarnawski 08.12.2009 Norma IEC 1131 Języki tekstowe Języki graficzne

Bardziej szczegółowo

Struktury Danych i Złożoność Obliczeniowa

Struktury Danych i Złożoność Obliczeniowa Struktury Danych i Złożoność Obliczeniowa Zajęcia 3 Struktury drzewiaste drzewo binarne szczególny przypadek drzewa, które jest szczególnym przypadkiem grafu skierowanego, stopień każdego wierzchołka jest

Bardziej szczegółowo

Drzewo binarne BST. LABORKA Piotr Ciskowski

Drzewo binarne BST. LABORKA Piotr Ciskowski Drzewo binarne BST LABORKA Piotr Ciskowski zadanie 1. drzewo binarne - 1 Zaimplementuj drzewo binarne w postaci: klasy Osoba przechowującej prywatne zmienne: liczbę całkowitą to będzie klucz, wg którego

Bardziej szczegółowo

Algorytm DIC. Dynamic Itemset Counting. Magdalena Przygórzewska Karolina Stanisławska Aleksander Wieczorek

Algorytm DIC. Dynamic Itemset Counting. Magdalena Przygórzewska Karolina Stanisławska Aleksander Wieczorek Algorytm DIC Dynamic Itemset Counting Magdalena Przygórzewska Karolina Stanisławska Aleksander Wieczorek Spis treści 1 2 3 4 Algorytm DIC jako rozszerzenie apriori DIC Algorytm znajdowania reguł asocjacyjnych

Bardziej szczegółowo

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy: Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

dr inŝ. Jarosław Forenc

dr inŝ. Jarosław Forenc Rok akademicki 2009/2010, Wykład nr 8 2/19 Plan wykładu nr 8 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2009/2010

Bardziej szczegółowo

Co to są drzewa decyzji

Co to są drzewa decyzji Drzewa decyzji Co to są drzewa decyzji Drzewa decyzji to skierowane grafy acykliczne Pozwalają na zapis reguł w postaci strukturalnej Przyspieszają działanie systemów regułowych poprzez zawężanie przestrzeni

Bardziej szczegółowo

Zapytania i wstawianie etykiet z bazy danych do rysunku

Zapytania i wstawianie etykiet z bazy danych do rysunku Zapytania i wstawianie etykiet z bazy danych do rysunku Pracujemy z gotową bazą danych MSAccess o nazwie KOMIS.MDB. Baza ta składa się z kilku tabel, rys. 1 Rys. 1. Diagram relacji. Wybierając w MSAccess,

Bardziej szczegółowo

Spis treści. 1 Moduł Mapy 2

Spis treści. 1 Moduł Mapy 2 Spis treści 1 Moduł Mapy 2 1.1 Elementy planu............................. 2 1.1.1 Interfejs widoku......................... 3 1.1.1.1 Panel sterujacy.................... 3 1.1.1.2 Suwak regulujacy przybliżenie...........

Bardziej szczegółowo

Plan wykładu. Klucz wyszukiwania. Pojęcie indeksu BAZY DANYCH. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów.

Plan wykładu. Klucz wyszukiwania. Pojęcie indeksu BAZY DANYCH. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów. Plan wykładu 2 BAZY DANYCH Wykład 4: Indeksy. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krętowska Wydział Informatyki PB Pojęcie

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Heurystyki. Strategie poszukiwań

Heurystyki. Strategie poszukiwań Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja

Bardziej szczegółowo

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN): 1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu

Bardziej szczegółowo

Wykład 8. Drzewa AVL i 2-3-4

Wykład 8. Drzewa AVL i 2-3-4 Wykład 8 Drzewa AVL i 2-3-4 1 Drzewa AVL Ø Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Ø Drzewa 2-3-4 Definicja drzewa 2-3-4 Operacje wstawiania i usuwania Złożoność

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

Egzamin, AISDI, I termin, 18 czerwca 2015 r.

Egzamin, AISDI, I termin, 18 czerwca 2015 r. Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział

Bardziej szczegółowo

Indeksy. Wprowadzenie. Indeksy jednopoziomowe indeks podstawowy indeks zgrupowany indeks wtórny. Indeksy wielopoziomowe

Indeksy. Wprowadzenie. Indeksy jednopoziomowe indeks podstawowy indeks zgrupowany indeks wtórny. Indeksy wielopoziomowe 1 Plan rozdziału 2 Indeksy Indeksy jednopoziomowe indeks podstawowy indeks zgrupowany indeks wtórny Indeksy wielopoziomowe Indeksy typu B-drzewo B-drzewo B+ drzewo B* drzewo Wprowadzenie 3 Indeks podstawowy

Bardziej szczegółowo

Jednym z najprostszych sposobów porządkowania jest technika stosowana przy sortowaniu listów:

Jednym z najprostszych sposobów porządkowania jest technika stosowana przy sortowaniu listów: Jednym z najprostszych sposobów porządkowania jest technika stosowana przy sortowaniu listów: Listy rozkładane są do różnych przegródek. O tym, do której z nich trafi koperta, decydują różne fragmenty

Bardziej szczegółowo

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany , 1 2 3, czas zamortyzowany zajęcia 3. Wojciech Śmietanka, Tomasz Kulczyński, Błażej Osiński rozpinajace, 1 2 3 rozpinajace Mamy graf nieskierowany, ważony, wagi większe od 0. Chcemy wybrać taki podzbiór

Bardziej szczegółowo

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne Załóżmy, że mamy źródło S, które generuje symbole ze zbioru S={x, x 2,..., x N } z prawdopodobieństwem P={p, p 2,..., p N }, symbolom tym odpowiadają kody P={c, c 2,..., c N }. fektywność danego sposobu

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego

Bardziej szczegółowo

Nierówność Krafta-McMillana, Kodowanie Huffmana

Nierówność Krafta-McMillana, Kodowanie Huffmana Nierówność Krafta-McMillana, Kodowanie Huffmana Kodowanie i kompresja informacji - Wykład 2 1 marca 2010 Test na jednoznaczna dekodowalność Kod a jest prefiksem kodu b jeśli b jest postaci ax. x nazywamy

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku Matematyka Dyskretna Andrzej Szepietowski 25 marca 2004 roku Rozdział 1 Stosy, kolejki i drzewa 1.1 Listy Lista to uporządkowany ciąg elementów. Przykładami list są tablice jednowymiarowe. W tablicach

Bardziej szczegółowo

1. Umieść kursor w miejscu, w którym ma być wprowadzony ozdobny napis. 2. Na karcie Wstawianie w grupie Tekst kliknij przycisk WordArt.

1. Umieść kursor w miejscu, w którym ma być wprowadzony ozdobny napis. 2. Na karcie Wstawianie w grupie Tekst kliknij przycisk WordArt. Grafika w dokumencie Wprowadzanie ozdobnych napisów WordArt Do tworzenia efektownych, ozdobnych napisów służy obiekt WordArt. Aby wstawić do dokumentu obiekt WordArt: 1. Umieść kursor w miejscu, w którym

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2010/2011 Wykład nr 7 (24.01.2011) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

Typy wyliczeniowe Konwersje napis <-> liczba Struktury, unie Scanf / printf Wskaźniki

Typy wyliczeniowe Konwersje napis <-> liczba Struktury, unie Scanf / printf Wskaźniki Typy wyliczeniowe Konwersje napis liczba Struktury, unie Scanf / printf Wskaźniki Typy wyliczeniowe Służą do łatwiejszej kontroli nad stałymi Ustawianie parametrów o ściśle określonym zbiorze wartości

Bardziej szczegółowo

Wstęp do Programowania potok funkcyjny

Wstęp do Programowania potok funkcyjny Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 Podstawowe pojęcia Definition Graf = wierzchołki + krawędzie. Krawędzie muszą mieć różne końce. Między dwoma wierzchołkami może

Bardziej szczegółowo

Algorytmy z powrotami

Algorytmy z powrotami Algorytmy z powrotami Algorytmy z powrotami są wykorzystywane do rozwiązywania problemów, w których z określonego zbioru jest wybierana sekwencja obiektów tak, aby spełniała ona określone kryteria. Klasycznym

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych

Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych 1 Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych Alexander Denisjuk Prywatna Wyższa Szkoła Zawodowa w Giżycku

Bardziej szczegółowo

Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Opracował Jan T. Biernat

Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Opracował Jan T. Biernat Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Program, to lista poleceń zapisana w jednym języku programowania zgodnie z obowiązującymi w nim zasadami. Celem programu jest przetwarzanie

Bardziej szczegółowo

Plan wykładu. Domain Name System. Definicja DNS. Po co nazwy? Przestrzeń nazw domen Strefy i ich obsługa Zapytania Właściwości.

Plan wykładu. Domain Name System. Definicja DNS. Po co nazwy? Przestrzeń nazw domen Strefy i ich obsługa Zapytania Właściwości. Sieci komputerowe 1 Sieci komputerowe 2 Plan wykładu Domain Name System System Nazw Domen Definicja DNS Wymagania Przestrzeń nazw domen Strefy i ich obsługa Zapytania Właściwości Sieci komputerowe 3 Sieci

Bardziej szczegółowo

Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska 1 Przykład wyliczania wyrażeń arytmetycznych Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Copyright

Bardziej szczegółowo

ZADANIE 1. Rozwiązanie:

ZADANIE 1. Rozwiązanie: EUROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 200/20 Rozwiązania zadań dla grupy teleinformatycznej na zawody II. stopnia ZNIE ramka logiczna w technologii MOS składa

Bardziej szczegółowo

Struktury danych (I): kolejka, stos itp.

Struktury danych (I): kolejka, stos itp. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Struktury danych (I): kolejka, stos itp. Struktury danych (I): kolejka, stos itp. Struktura danych stanowi sposób uporządkowania

Bardziej szczegółowo