Listy, kolejki, stosy

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Listy, kolejki, stosy"

Transkrypt

1 Listy, kolejki, stosy

2 abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać: O stos O kolejka, O grafy

3 abc Lista jednokierunkowa Head głowa Dane nast Dane nast Dane nast Węzeł Dane nast Tail Ogon Dane nast nil

4 abc Lista dwukierunkowa Head głowa Dane nast pop Dane nast pop Dane nast pop Dane nast pop Tail Ogon Dane nast pop nil nil

5 abc Lista cykliczna jednokierunkowa Head głowa Tail Ogon Dane nast Dane nast Dane nast Dane nast Dane nast

6 abc Lista cykliczna dwukierunkowa Head głowa Tail Ogon Dane nast pop Dane nast pop Dane nast pop Dane nast pop Dane nast pop

7 abc Lista z przeskokami z równo rozmieszczonymi węzłami z nierówno rozmieszczonymi węzłami

8 abc Listy samoorganizujące się Zalety: Czas dostępu do elementów zwykle szybszy niż w tradycyjnych listach.

9 abc Listy samoorganizujące się metody O Metoda przesuwania na początek znaleziony element umieszczamy na początku O Metoda transpozycji znaleziony element jest zamieniony z tym, który go poprzedza. Wówczas elementy najczęściej używane znajdują się na początku listy. O Metoda zliczania każdy element ma pole licznik, które się zwiększa po znalezieniu elementów, pola te służą do porządkowania.

10 abc Operacja na listach O Zakładamy, że operujemy na listach nieposortowanych i dwukierunkowych.

11 abc Przeszukiwanie listy

12 abc Wstawianie elementów

13 abc Usuwanie elementów

14 abc Upraszcza warunki brzegowe Oznaczenie nil(l) Wstawiamy na koniec lub początek listy jednokierunkowej Wartownik Jest to element listy Łatwo znajdziemy początek lub koniec listy Spina końce listy dwukierunkowej

15 abc Przeszukiwanie listy z wartownikiem

16 abc Wstawianie elementów z wartownikiem

17 abc Usuwanie elementów

18 klucz następny poprzed. abc Lista jako tablica O Wielowymiarowa tablica następny 3 7 / 5 klucz poprzedni / O Jednowymiarowa tablica / /

19 Kolejka Dostęp z dwóch końców FIFO First in First Out Podobnie jak w sklepie

20

21 Operacje na kolejkach enqueue wstawienie do kolejki 3 Wynik Wynik dequeue pobranie elementu z kolejki

22 Operacje - pseudokod Dokładanie elementu Usuwanie elementu kolejki

23 Stos Dostęp z jednego końca LIFO Last in First Out Podobnie jak stos książek, naleśników itd..

24

25 Operacje na stosie push połóż 3 Wynik 3 pop zdejmij 3 Wynik

26 Operacje - pseudokod Sprawdzanie czy stos jest pusty Operacja push

27 Operacje - pseudokod Operacja pop

28 Drzewa ukorzenione Korzeń Węzeł T.root / / / / / / / / / / Liście

29 Drzewo binarne / - brak wskaźnika T.root - korzeń / p wskaźnik na ojca / right prawy syn / / / / / / / / left lewy syn

30 Podejście na lewo syn na prawo brat Liczba synów Nie przekracza pewnej stałej liczby Każdy węzeł ma p wskaźnik na ojca x.left-child wskaźnik na najbardziej lewego syna x.right-sibling wskaźnik na najbliższego na prawo brata

31 Reprezentacja na lewo syn, na prawo brat T.root / / / / / / / / / / / / /

32 Drzewa wyszukiwań binarnych BST binary search tree. Struktura Węzeł x ma elementy Własność klucza węzła x Key (klucz) Drzewo binarne left lewy syn right prawy syn klucz (left) klucz(x) oraz klucz(right) klucz(x) p - ojciec

33 Drzewa wyszukiwań binarnych x 5 y z

34 Operacje na drzewach wyszukiwań binarnych

35 BST wypisanie elementów O Metoda inorder- klucz korzenia wypisuje się pomiędzy wartościami z jego lewego poddrzewa oraz prawego podrzewa. O metoda preorder - klucz korzenia wypisanyj jest przed wypisaniem wartości znajdujących się w obu poddrzewach. O metoda postorder - klucz korzenia po wypisaniu wartości znajdującech się w poddrzewach.

36 BST - Preorder PREORDER-TREE-WALK(x) if x!= NIL wypisz x.klucz PREORDER-TREE-WALK(x.left) PREORDER-TREE-WALK(x.right)

37 BST - Inorder INORDER-TREE-WALK(x) if x!= NIL INORDER-TREE-WALK(x.left) wypisz x.klucz INORDER-TREE-WALK(x.right) Twierdzenie O Jeśli x jest korzeniem poddrzewa o n węzłach, to wykonanie INORDER-TREE- WALK(x) odbywa się w czasie (n).

38 BST - Postorder POSTORDER-TREE-WALK(x) if x!= NIL POSTORDER-TREE-WALK(x.left) POSTORDER-TREE- WALK(x.right) wypisz x.klucz

39 BST - przechodzenie drzewa zaczynamy od korzenia O Preorder: O 14, 6, 4, 2, 5, 9, 11, 20, 18, 21 O Inorder: O 2, 4, 5, 6, 9, 11, 14, 18, 20, 21, O Postorder: O 2, 5, 4, 11, 9, 6, 18, 21, 20, 14

40 BST wyszukiwanie - rekurencyjnie

41 BST wyszukiwanie - iteracyjne

42 BST wyszukiwanie - przykład Szukamy węzła o wartości klucza 9. TREE-SEARCH(14,9) 9<14 TREE-SEARCH(6,9) 9>6 TREE-SEARCH(9,9) 9=9 return 9

43 BST Minimum, Maksimum Koszt = O(h), gdzie h to wysokość drzewa.

44 BST Poprzednik

45 BST Następnik

46 BST - wstawianie

47 BST wstawianie - przykład < < <18

48 BST Usuwanie (3 przypadki) 1. Jeśli z nie ma lewego syna to zastępujemy z przez jego prawego syna (być może równego NIL). Jeśli prawy syn jest równy NIL to z jest liściem a jeśli jest różny od NIL to z ma tylko jednego prawego syna. 2. Jeśli z ma tylko jednego lewego syna, to zastępujemy z przez jego lewego syna.

49 BST Usuwanie, przypadek 1 i 2 q q NIL z r r Przypadek 2. q q z l l NIL

50 BST - Usuwanie 3. Jeśli nie ma zarówno lewego, jak i prawego syna znajdujemy węzeł y będący następnikiem z w prawym poddrzewie z. Węzeł y nie ma lewego syna. Chcemy wyłuskać y z jego aktualnego położenia i zastąpić nim węzeł z w drzewie. a) Jeśli y jest prawym synem z, to zastępujemy z przez y, pozostawiając prawego syna y bez zmian. b) W przeciwnym razie y znajduje się w prawym poddrzewie z, ale nie jest prawym synem z. W tym przypadku najpierw zastępujmy y przez jego prawego syna, a potem zastępujemy z przez y.

51 BST usuwanie, przypadek 3 Przypadek 3.a q q z y l y l x NIL x Przypadek 3.b q q q z z y y l r l NIL r l r y x x NIL x

52 BST przesuwanie poddrzew procedura TRANPLANT

53 BST Usuwanie węzła

54 Bibliografia Książki Cormen Thomas; Leiserson Charles; Rivest Ronald; Stein Clifford, Wprowadzenie do Algorytmów, Wydawnictwo Naukowe PWN, Warszawa 2012 Sedgewick Robert, Algorytmy w C++, Wydawnictwo RM, Warszawa 1999, Drozdek Adam, C++. Algorytmy i Struktury Danych, Wydawnictwo Helion, Gliwice 2004, Wróblewski Piotr, Algorytmy, Struktury Danych i Techniki Programowania, Wydawnictwo Helion, Gliwice 2010, Rysunki: Slajdy 20 i 24: demotywatory.pl, Dostęp: [ ] Pozostałe: opracowanie własne

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Cel ćwiczenia Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet ielonogórski Drzewa poszukiwań binarnych Ćwiczenie

Bardziej szczegółowo

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów

Bardziej szczegółowo

Wykład 6. Drzewa poszukiwań binarnych (BST)

Wykład 6. Drzewa poszukiwań binarnych (BST) Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

Struktury danych: stos, kolejka, lista, drzewo

Struktury danych: stos, kolejka, lista, drzewo Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

Podstawowe struktury danych

Podstawowe struktury danych Podstawowe struktury danych 1) Listy Lista to skończony ciąg elementów: q=[x 1, x 2,..., x n ]. Skrajne elementy x 1 i x n nazywamy końcami listy, a wielkość q = n długością (rozmiarem) listy. Szczególnym

Bardziej szczegółowo

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np. Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa

Bardziej szczegółowo

Struktury Danych i Złożoność Obliczeniowa

Struktury Danych i Złożoność Obliczeniowa Struktury Danych i Złożoność Obliczeniowa Zajęcia 3 Struktury drzewiaste drzewo binarne szczególny przypadek drzewa, które jest szczególnym przypadkiem grafu skierowanego, stopień każdego wierzchołka jest

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Koszt zamortyzowany. Potencjał - Fundusz Ubezpieczeń Kosztów Algorytmicznych

Koszt zamortyzowany. Potencjał - Fundusz Ubezpieczeń Kosztów Algorytmicznych Koszt zamortyzowany Jeśli mamy ciąg operacji, to koszt zamortyzowany jednej z nich jest sumarycznym kosztem wykonania wszystkich operacji podzielonym przez liczbę operacji. Inaczej mówiąc jest to, dla

Bardziej szczegółowo

Abstrakcyjne struktury danych - stos, lista, drzewo

Abstrakcyjne struktury danych - stos, lista, drzewo Sprawozdanie Podstawy Informatyki Laboratoria Abstrakcyjne struktury danych - stos, lista, drzewo Maciej Tarkowski maciek@akom.pl grupa VII 1/8 1. Stos Stos (ang. Stack) jest podstawową liniową strukturą

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku Rozdział 1 Struktury danych 1.1 Listy, stosy i kolejki Lista to uporz adkowany ci ag elementów. Przykładami list s a wektory lub tablice

Bardziej szczegółowo

Programowanie i struktury danych 1 / 44

Programowanie i struktury danych 1 / 44 Programowanie i struktury danych 1 / 44 Lista dwukierunkowa Lista dwukierunkowa to liniowa struktura danych skªadaj ca si z ci gu elementów, z których ka»dy pami ta swojego nast pnika i poprzednika. Operacje

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Algorytmy i struktury danych Struktury danych - drzewa IS/IO, WIMiIP

Algorytmy i struktury danych Struktury danych - drzewa IS/IO, WIMiIP Algorytmy i struktury danych Struktury danych - drzewa IS/IO, WIMiIP Danuta Szeliga AGH Kraków Drzewo Drzewo (tree) Drzewo jest hierarchiczną strukturą danych. Def. Drzewo jest to zbiór T jednego lub więcej

Bardziej szczegółowo

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew 0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury

Bardziej szczegółowo

Podstawowe struktury danych

Podstawowe struktury danych Podstawowe struktury danych Listy Lista to skończony ciąg elementów: q=[x 1, x 2,..., x n ]. Skrajne elementy x 1 i x n nazywamy końcami listy, a wielkość q = n długością (rozmiarem) listy. Szczególnym

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos)

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Algorytmy i struktury danych Wykład 3: Stosy, kolejki i listy Dr inż. Paweł Kasprowski pawel@kasprowski.pl Kolejki FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Stos (stack) Dostęp jedynie

Bardziej szczegółowo

Podstawy informatyki 2

Podstawy informatyki 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne Rok akademicki 2006/2007 Wykład nr 2 (07.03.2007) Wykład nr 2 2/46 Plan wykładu nr 2 Argumenty funkcji main

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Kod przedmiotu: ASD Rodzaj przedmiotu: Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Algorytmy i struktury danych. kierunkowy ; obowiązkowy Poziom studiów: pierwszego stopnia

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Algorytmy i struktury danych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Drzewa Witold Marańda maranda@dmcs.p.lodz.pl Drzewa - podstawy Drzewo jest dynamiczną strukturą danych składającą się z elementu węzłowego, zawierającego wskazania na skończoną

Bardziej szczegółowo

PODSTAWY INFORMATYKI wykład 6.

PODSTAWY INFORMATYKI wykład 6. PODSTAWY INFORMATYKI wykład 6. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutnicza w Krakowie WEAIiE,

Bardziej szczegółowo

Algorytmy przeszukiwania

Algorytmy przeszukiwania Algorytmy przeszukiwania Przeszukiwanie liniowe Algorytm stosowany do poszukiwania elementu w zbiorze, o którym nic nie wiemy. Aby mieć pewność, że nie pominęliśmy żadnego elementu zbioru przeszukujemy

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

Egzaminy i inne zadania. Semestr II.

Egzaminy i inne zadania. Semestr II. Egzaminy i inne zadania. Semestr II. Poniższe zadania są wyborem zadań ze Wstępu do Informatyki z egzaminów jakie przeprowadziłem w ciągu ostatnich lat. Ponadto dołączyłem szereg zadań, które pojawiały

Bardziej szczegółowo

Kurs II, zajęcia 1. Tomasz Kulczyński, Błażej Osiński, Wojciech Śmietanka. Stos, kolejka i lista. Stos. Kolejka. Lista dwukierunkowa

Kurs II, zajęcia 1. Tomasz Kulczyński, Błażej Osiński, Wojciech Śmietanka. Stos, kolejka i lista. Stos. Kolejka. Lista dwukierunkowa , kolejka i symulacja, kolejka i Kurs II, zajęcia 1 Tomasz Kulczyński, Błażej Osiński, Wojciech Śmietanka , kolejka,, kolejka i symulacja, kolejka, to liniowe struktury danych pozwalaja na trzymanie zmieniajacych

Bardziej szczegółowo

Ogólne wiadomości o drzewach

Ogólne wiadomości o drzewach Ogólne wiadomości o drzewach Algorytmy i struktury danych Wykład 4. Rok akademicki: 2010/2011 Drzewo jako struktura danych Drzewo kolekcja elementów pozostających w zależności hierarchicznej, posiadająca

Bardziej szczegółowo

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001.

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001. KODOWANIE Jednym z problemów, z którymi spotykamy się w informatyce, jest problem właściwego wykorzystania pamięci. Konstruując algorytm staramy się zwykle nie tylko o zminimalizowanie kosztów czasowych

Bardziej szczegółowo

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.)

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Kontenery - - wektor vector - - lista list - - kolejka queue - - stos stack Kontener asocjacyjny map 2016-01-08 Bazy danych-1 W5 1 Kontenery W programowaniu

Bardziej szczegółowo

liniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak:

liniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak: Sortowanie stogowe Drzewo binarne Binary Tree Dotychczas operowaliśmy na prostych strukturach danych, takich jak tablice. W tablicy elementy ułożone są zgodnie z ich numeracją, czyli indeksami. Jeśli za

Bardziej szczegółowo

Typy danych. 2. Dane liczbowe 2.1. Liczby całkowite ze znakiem i bez znaku: 32768, -165, ; 2.2. Liczby rzeczywiste stało i zmienno pozycyjne:

Typy danych. 2. Dane liczbowe 2.1. Liczby całkowite ze znakiem i bez znaku: 32768, -165, ; 2.2. Liczby rzeczywiste stało i zmienno pozycyjne: Strona 1 z 17 Typy danych 1. Dane tekstowe rozmaite słowa zapisane w różnych alfabetach: Rozwój metod badawczych pozwala na przesunięcie granicy poznawania otaczającego coraz dalej w głąb materii: 2. Dane

Bardziej szczegółowo

Informatyka 2. Wykład nr 5 ( ) Plan wykładu nr 5. Politechnika Białostocka. - Wydział Elektryczny. Odwrotna notacja polska.

Informatyka 2. Wykład nr 5 ( ) Plan wykładu nr 5. Politechnika Białostocka. - Wydział Elektryczny. Odwrotna notacja polska. Rok akademicki 008/009, Wykład nr 5 /6 Plan wykładu nr 5 Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia (zaoczne) Rok akademicki

Bardziej szczegółowo

Indeksy. Wprowadzenie. Indeksy jednopoziomowe indeks podstawowy indeks zgrupowany indeks wtórny. Indeksy wielopoziomowe

Indeksy. Wprowadzenie. Indeksy jednopoziomowe indeks podstawowy indeks zgrupowany indeks wtórny. Indeksy wielopoziomowe 1 Plan rozdziału 2 Indeksy Indeksy jednopoziomowe indeks podstawowy indeks zgrupowany indeks wtórny Indeksy wielopoziomowe Indeksy typu B-drzewo B-drzewo B+ drzewo B* drzewo Wprowadzenie 3 Indeks podstawowy

Bardziej szczegółowo

E S - uniwersum struktury stosu

E S - uniwersum struktury stosu Temat: Struktura stosu i kolejki Struktura danych to system relacyjny r I r i i I U,, gdzie U to uniwersum systemu, a i i - zbiór relacji (operacji na strukturze danych). Uniwersum systemu to zbiór typów

Bardziej szczegółowo

Programowanie w VB Proste algorytmy sortowania

Programowanie w VB Proste algorytmy sortowania Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku Matematyka Dyskretna Andrzej Szepietowski 25 marca 2004 roku Rozdział 1 Stosy, kolejki i drzewa 1.1 Listy Lista to uporządkowany ciąg elementów. Przykładami list są tablice jednowymiarowe. W tablicach

Bardziej szczegółowo

Wykład 4. Klasa List Kolejki Stosy Słowniki

Wykład 4. Klasa List Kolejki Stosy Słowniki Wykład 4 Klasa List Kolejki Stosy Słowniki Klasa List Poważną niedogodnością tablic jako kolekcji danych jest fakt, że muszą one mieć stały rozmiar. Programista musi wiedzieć z góry ile miejsca powinien

Bardziej szczegółowo

Podstawy Programowania 1 Sortowanie tablic jednowymiarowych. Plan. Sortowanie. Sortowanie Rodzaje sortowania. Notatki. Notatki. Notatki.

Podstawy Programowania 1 Sortowanie tablic jednowymiarowych. Plan. Sortowanie. Sortowanie Rodzaje sortowania. Notatki. Notatki. Notatki. Podstawy Programowania 1 Sortowanie tablic jednowymiarowych Arkadiusz Chrobot Zakład Informatyki 12 listopada 20 1 / 35 Plan Sortowanie Wartość minimalna i maksymalna w posortowanej tablicy Zakończenie

Bardziej szczegółowo

W ramach zadania należy wykorzystać funkcje wirtualne. W programach testujących należy wykorzystać klasy stworzone w ramach pierwszego zadania.

W ramach zadania należy wykorzystać funkcje wirtualne. W programach testujących należy wykorzystać klasy stworzone w ramach pierwszego zadania. Zadanie 1. Utworzyć klasę wzorcową KOLEJKA typu FIFO (First In, First Out; pierwszy na wejściu, pierwszy na wyjściu), która będzie przechowywała obiekty różnych typów (klasa z zadania 1, nowa klasa oraz

Bardziej szczegółowo

Co to są drzewa decyzji

Co to są drzewa decyzji Drzewa decyzji Co to są drzewa decyzji Drzewa decyzji to skierowane grafy acykliczne Pozwalają na zapis reguł w postaci strukturalnej Przyspieszają działanie systemów regułowych poprzez zawężanie przestrzeni

Bardziej szczegółowo

Wykład 11. Konstrukcja drzew składniowych

Wykład 11. Konstrukcja drzew składniowych Wykład 11 Konstrukcja drzew składniowych Drzewa składniowe Wykorzystanie drzew składniowych jako reprezentacji pośredniej umożliwia oddzielenie translacji od analizy składniowej; Procedury translacji wywołane

Bardziej szczegółowo

Marcin Matusiak i Łukasz Stasiak

Marcin Matusiak i Łukasz Stasiak Marcin Matusiak i Łukasz Stasiak Lista jest sekwencyjną strukturą danych, która składa się z ciągu elementów tego samego typu. Dostęp do elementów listy jest sekwencyjny tzn. z danego elementu listy możemy

Bardziej szczegółowo

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych.

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. 1. Rodzaje pamięci używanej w programach Pamięć komputera, dostępna dla programu,

Bardziej szczegółowo

Ksiazka popr.p65 1 2013-01-06, 13:54

Ksiazka popr.p65 1 2013-01-06, 13:54 Ksiazka popr.p65 1 2013-01-06, 13:54 Ksiazka popr.p65 2-3 2013-01-06, 13:54 4-5 Ksiazka popr.p65 6-7 2013-01-06, 13:54 Ksiazka popr.p65 8-9 2013-01-06, 13:54 Ksiazka popr.p65 10-11 2013-01-06, 13:54 Ksiazka

Bardziej szczegółowo

Dynamiczne drzewa. Piotr Sankowski. - p. 1/27

Dynamiczne drzewa. Piotr Sankowski. - p. 1/27 Piotr Sankowski - p. 1/27 przypomnienie czas O(log 2 n), jak to zrobić w czasie O(log n), jak to zrobić w pesymistycznym czasie O(log n) (szkic). - p. 2/27 Operacje na dynamicznych drzewach: parent(v)

Bardziej szczegółowo

Bazy danych. Plan wykładu. Model logiczny i fizyczny. Operacje na pliku. Dyski. Mechanizmy składowania

Bazy danych. Plan wykładu. Model logiczny i fizyczny. Operacje na pliku. Dyski. Mechanizmy składowania Plan wykładu Bazy danych Wykład 10: Fizyczna organizacja danych w bazie danych Model logiczny i model fizyczny Mechanizmy składowania plików Moduł zarządzania miejscem na dysku i moduł zarządzania buforami

Bardziej szczegółowo

Metodyki i techniki programowania

Metodyki i techniki programowania Metodyki i techniki programowania dr inż. Maciej Kusy Katedra Podstaw Elektroniki Wydział Elektrotechniki i Informatyki Politechnika Rzeszowska Elektronika i Telekomunikacja, sem. 2 Plan wykładu Sprawy

Bardziej szczegółowo

Heurystyki. Strategie poszukiwań

Heurystyki. Strategie poszukiwań Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i struktury danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 5: Algorytmy

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Projektowanie i analiza algorytmów

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Projektowanie i analiza algorytmów Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Elektrycznej i Komputerowej obowiązuje w roku akademickim 01/013 Kierunek studiów: Elektrotechnika Forma studiów: Niestacjonarne

Bardziej szczegółowo

Modelowanie hierarchicznych struktur w relacyjnych bazach danych

Modelowanie hierarchicznych struktur w relacyjnych bazach danych Modelowanie hierarchicznych struktur w relacyjnych bazach danych Wiktor Warmus (wiktorwarmus@gmail.com) Kamil Witecki (kamil@witecki.net.pl) 5 maja 2010 Motywacje Teoria relacyjnych baz danych Do czego

Bardziej szczegółowo

Zaawansowane algorytmy. Wojciech Horzelski

Zaawansowane algorytmy. Wojciech Horzelski Zaawansowane algorytmy Wojciech Horzelski 1 Organizacja Wykład: poniedziałek 8 15-10 Aula Ćwiczenia: Każdy student musi realizować projekty (treść podawana na wykładzie) : Ilość projektów : 5-7 Na realizację

Bardziej szczegółowo

Lista 5 Typy dynamiczne kolejka

Lista 5 Typy dynamiczne kolejka Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Metody i języki programowania 1 Wprowadzenie Lista 5 Typy dynamiczne kolejka Kolejka jest jedną z podstawowych struktur umożliwiających

Bardziej szczegółowo

Listy z przeskokami jako drzewa wyszukiwań

Listy z przeskokami jako drzewa wyszukiwań Dariusz 16.10.2008 Wyszukiwanie Szczególne przypadki Lista z przeskokami. B 5 E B 1 3 4 5 6 9 E B 1 2 3 4 5 6 7 8 9 E Wyszukiwanie Szczególne przypadki Wyszukujemy 8. B 5 E B 1 3 4 5 6 9 E B 1 2 3 4 5

Bardziej szczegółowo

Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły

Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 2 obiektów

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Wskaźniki w języku C i C++ dr inż. Piotr Kaczmarek Piotr.Kaczmarek@put.poznan.pl http://pk.cie.put.poznan.pl/wyklady.php Organizacja pamięci Pamięć ma organizację bajtową, liniową

Bardziej szczegółowo

Algorytmy funkcjonalne i struktury danych

Algorytmy funkcjonalne i struktury danych Algorytmy funkcjonalne i struktury danych Lista zadań nr 4 5 listopada 2009 Zadanie 1. Zaprogramuj strukturę Deque o sygnaturze signature DEQUE = sig type a Queue val empty : a Queue val isempty : a Queue

Bardziej szczegółowo

Wykład 7. Algorytmy grafowe

Wykład 7. Algorytmy grafowe Wykład Algorytmy grafowe Algorytmy grafowe i podstawowe algorytmy przeszukiwania Problem Definicje i własności Reprezentacja Przeszukiwanie wszerz (Breadthirst Search) Przeszukiwanie w głąb (Depthirst

Bardziej szczegółowo

Scenariusz lekcji. wymienić podstawowe dynamiczne struktury danych (stos, kolejka, lista, graf, drzewo); opisać sposób dostępu do danych w kolejce;

Scenariusz lekcji. wymienić podstawowe dynamiczne struktury danych (stos, kolejka, lista, graf, drzewo); opisać sposób dostępu do danych w kolejce; Scenariusz lekcji 1 TEMAT LEKCJI: Dynamiczne struktury danych - kolejka 2 CELE: 2.1 Wiadomosci: Uczeń potrafi: wymienić podstawowe dynamiczne struktury danych (stos, kolejka, lista, graf, drzewo); opisać

Bardziej szczegółowo

Kuźnia Talentów Informatycznych: Algorytmika i programowanie Struktury danych i ich zastosowania

Kuźnia Talentów Informatycznych: Algorytmika i programowanie Struktury danych i ich zastosowania Kuźnia Talentów Informatycznych: Algorytmika i programowanie Struktury danych i ich zastosowania Marcin Andrychowicz, Bolesław Kulbabiński, Tomasz Kulczyński, Jakub Łącki, Błażej Osiński, Wojciech Śmietanka

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Lista dwukierunkowa. Grzegorz Wasylów Konrad Wojtoń

Lista dwukierunkowa. Grzegorz Wasylów Konrad Wojtoń Grzegorz Wasylów Konrad Wojtoń Lista dwukierunkowa Lista dwukierunkowa to nic innego jak modyfikacja listy jednokierunkowej. Zaletą takiej listy jest możliwość przejścia nie tylko do następnego elementu,

Bardziej szczegółowo

STL Standard Template Library

STL Standard Template Library Literatura Przykłady: STL Standard Template Library Nicolai M. Josuttis: C++ Standard Library: A tutorial and Reference, 1st, Pearson 1999, (Polska wersja: Nicolai M. Josuttis: C++ Biblioteka standardowa

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego

Bardziej szczegółowo

Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych

Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych 1 Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych Alexander Denisjuk Prywatna Wyższa Szkoła Zawodowa w Giżycku

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

Informatyka 1. Plan dzisiejszych zajęć. zajęcia nr 1. Elektrotechnika, semestr II rok akademicki 2008/2009

Informatyka 1. Plan dzisiejszych zajęć. zajęcia nr 1. Elektrotechnika, semestr II rok akademicki 2008/2009 Informatyka 1 zajęcia nr 1 Elektrotechnika, semestr II rok akademicki 2008/2009 mgr inż.. Paweł Myszkowski Plan dzisiejszych zajęć 1. Organizacja laboratorium przedmiotu 2. Algorytmy i sposoby ich opisu

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Algorytmy i programowanie Algorithms and Programming Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: kierunkowy Poziom studiów: studia I stopnia forma studiów: studia

Bardziej szczegółowo

Programowanie genetyczne - gra SNAKE

Programowanie genetyczne - gra SNAKE PRACOWNIA Z ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne - gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

1 Wskaźniki i listy jednokierunkowe

1 Wskaźniki i listy jednokierunkowe 1 Wskaźniki i listy jednokierunkowe 1.1 Model pamięci komputera Pamięć komputera możemy wyobrażać sobie tak, jak na rysunku: Zawartość:... 01001011 01101010 11100101 00111001 00100010 01110011... adresy:

Bardziej szczegółowo

JAK DZIAŁAJĄ FUNKCJE PODZIAŁ PAMIĘCI

JAK DZIAŁAJĄ FUNKCJE PODZIAŁ PAMIĘCI JAK DZIAŁAJĄ FUNKCJE PODZIAŁ PAMIĘCI Gdy wywołujesz daną funkcję, program przechodzi do tej funkcji, przekazywane są parametry i następuje wykonanie ciała funkcji. Gdy funkcja zakończy działanie, zwracana

Bardziej szczegółowo

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/ STL, czyli o co tyle hałasu W świecie programowania C++, hasło STL pojawia się nieustannie i zawsze jest o nim głośno... często początkujące osoby, które nie znają STL-a pytają się co to jest i czemu go

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Struktury danych i algorytmy. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Struktury danych i algorytmy. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Struktury danych i algorytmy 2. KIERUNEK: Matematyka 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/5 5. LICZBA PUNKTÓW ECTS: 6 6. LICZBA GODZIN: 30 wykład

Bardziej szczegółowo

Programowanie genetyczne, gra SNAKE

Programowanie genetyczne, gra SNAKE STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

Temat: Algorytm kompresji plików metodą Huffmana

Temat: Algorytm kompresji plików metodą Huffmana Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik

Bardziej szczegółowo

KORPORACYJNE SYSTEMY ZARZĄDZANIA INFORMACJĄ

KORPORACYJNE SYSTEMY ZARZĄDZANIA INFORMACJĄ KORPORACYJNE SYSTEMY ZARZĄDZANIA INFORMACJĄ Wykład 3 Katedra Inżynierii Komputerowej Jakub Romanowski jakub.romanowski@kik.pcz.pl POBIERANIE DANYCH C/AL Poniższe funkcje używane są do operacji pobierania

Bardziej szczegółowo

Rozdział 4. Algorytmy sortowania 73 Rozdział 5. Typy i struktury danych 89 Rozdział 6. Derekursywacja i optymalizacja algorytmów 147

Rozdział 4. Algorytmy sortowania 73 Rozdział 5. Typy i struktury danych 89 Rozdział 6. Derekursywacja i optymalizacja algorytmów 147 Spis treści Przedmowa 9 Rozdział 1. Zanim wystartujemy 17 Jak to wcześniej bywało, czyli wyjątki z historii maszyn algorytmicznych 18 Jak to się niedawno odbyło, czyli o tym, kto wymyślił" metodologię

Bardziej szczegółowo

Język programowania: Lista instrukcji (IL Instruction List)

Język programowania: Lista instrukcji (IL Instruction List) Język programowania: Lista instrukcji (IL Instruction List) Wykład w ramach przedmiotu: Sterowniki programowalne Opracował dr inż. Jarosław Tarnawski 08.12.2009 Norma IEC 1131 Języki tekstowe Języki graficzne

Bardziej szczegółowo

Fakultet Informatyczny Algorytmy i ProgramowanIe (API)

Fakultet Informatyczny Algorytmy i ProgramowanIe (API) Fakultet Informatyczny Algorytmy i ProgramowanIe (API) Program autorski fakultetu informatycznego dla uczniów gimnazjum do realizacji na zajęcia pozalekcyjne z komputerem w klasach II Autor: mgr Rafał

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH ALGORYTMY I STRUKTURY DANYCH wykład 1 wprowadzenie, struktury sterujace, projektowanie algorytmów dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych UZ p. 425 A2 tel.

Bardziej szczegółowo

Drzewa binarne. 1 Wprowadzenie. 2 Metodyka testów. Mateusz Bednarski 117194, Nikodem Hynek 117209. 10 kwietnia 2014

Drzewa binarne. 1 Wprowadzenie. 2 Metodyka testów. Mateusz Bednarski 117194, Nikodem Hynek 117209. 10 kwietnia 2014 Drzewa binarne Mateusz Bednarski 117194, Nikodem Hynek 117209 10 kwietnia 2014 1 Wprowadzenie Celem niniejszej pracy jest przeanalizowanie dwóch drzew binarnych. Drzewa BST (Binary Search Tree) oraz ich

Bardziej szczegółowo

PREZENTACJE MULTIMEDIALNE cz.2

PREZENTACJE MULTIMEDIALNE cz.2 Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: TS1C 100 003 Ćwiczenie pt. PREZENTACJE MULTIMEDIALNE cz.2

Bardziej szczegółowo

Wykład 14. Środowisko przetwarzania

Wykład 14. Środowisko przetwarzania Wykład 14 Środowisko przetwarzania Środowisko przetwarzania Przed generacją kodu, musimy umieć powiązać statyczny kod źródłowy programu z akcjami, wykonywanymi w trakcie działania i implementującymi program;

Bardziej szczegółowo

ARCHITEKTURA KOMPUTERÓW. Reprezentacja danych w komputerach

ARCHITEKTURA KOMPUTERÓW. Reprezentacja danych w komputerach Reprezentacja danych w komputerach dr inż. Wiesław Pamuła wpamula@polsl.katowice.pl Literatura 2. J.Biernat: Architektura komputerów, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław2002. 3. Null

Bardziej szczegółowo

PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO OPIS PRZEDMIOTU

PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO OPIS PRZEDMIOTU OPIS PRZEDMIOTU Nazwa przedmiotu Kod przedmiotu Przetwarzanie równoległe i rozproszone Wydział Wydział Matematyki, Fizyki i Techniki Instytut/Katedra Instytut Mechaniki i Informatyki Stosowanej Kierunek

Bardziej szczegółowo

Metoda podziału i ograniczeń

Metoda podziału i ograniczeń Seminarium: Algorytmy heurystyczne Metoda podziału i ograniczeń Mateusz Łyczek Wrocław, 16 marca 011 r. 1 Metoda podziału i ograniczeń Metoda podziału i ograniczeń służy do rozwiązywania problemów optymalizacyjnych.

Bardziej szczegółowo

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3 Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3 Slajd 1 Excel Slajd 2 Adresy względne i bezwzględne Jedną z najważniejszych spraw jest tzw. adresacja. Mówiliśmy

Bardziej szczegółowo

Programowanie Obiektowe (Java)

Programowanie Obiektowe (Java) 1. Wprowadzenie do kontenerów Wykład ósmy Kontenery s ą obiektami, które potrafi ą przechowywa ć inne obiekty w określony sposób. O kontenerach można myśle ć jako o gotowych do użycia strukturach danych.

Bardziej szczegółowo