Podstawy Informatyki. Wykład 6. Struktury danych
|
|
- Tadeusz Piekarski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Podstawy Informatyki Wykład 6 Struktury danych
2 Stałe i zmienne Podstawowymi obiektami występującymi w programie są stałe i zmienne. Ich znaczenie jest takie samo jak w matematyce. Stałe i zmienne muszą posiadać nazwę i posiadają przypisaną wartość. Nazwa jest ciągiem znaków, z których pierwszy musi być literą, np.: x, alfa1, pierwiastek1, Obowiązują tylko znaki ASCII (abc...z, ABC...XYZ). Nie ma polskich liter ani greckich. Charakter zmiennych jest deklarowany we wstępnej części programu (zazwyczaj zaraz na początku, przed instrukcjami właściwymi programu)
3 Zmienne są różnych typów: całkowite (integer): 1, 2, 128 rzeczywiste (real): 0.456, logiczne (logical): true, false znakowe (character): imie, adres itp.
4 Tablice Tablica jest to struktura danych zawierająca uporządkowany zbiór obiektów tego samego typu i odpowiada matematycznemu pojęciu wektora, macierzy, zmiennych indeksowych, itp a S = a a a n
5 Typy danych Typ danych określa zbiór wartości, do którego należy obiekt Typy proste: liczbowe: całkowite, zmiennoprzecinkowe, w formacie dziesiętnym, dwójkowym, itp. znakowe: słowa zapisane w różnych alfabetach logiczne: prawda/fałsz Zmienne Służą do przechowywania w pamięci pojedynczych obiektów Odwoływanie się do zmiennych. Przykład: Niech X będzie zmienną całkowitą. wypisz(x); //wypisz wartość zmiennej X X -2; //przypisz zmiennej X wartość 2 X X + 5; //zwiększ wartość X o 5
6 Struktury danych W programowaniu struktura danych jest sposobem składowania danych na komputerze tak, by mogły być efektywnie wykorzystane. Często staranne dobranie struktury danych pozwala na zastosowanie wydajniejszego algorytmu. Przykładowe struktury danych to: rekord, zwany w niektórych językach po prostu strukturą tablica lista stos kolejka drzewo i jego liczne odmiany (np. drzewo binarne) graf
7 Struktury danych Struktura danych zbiór elementów. Każdy element składa się z jednego lub więcej części (słów maszynowych), zwanych polami. Przykład elementu struktury danych p1 Pole p1 jest wskaźnikiem (dowiązaniem) Pola,, dowolnego typu
8 Struktury danych TOP Wskaźnik (dowiązanie) podstawowy sposób reprezentowania złożonych struktur danych. Dowiązanie puste symbol Λ, symbol uziemienia Na pierwszą wartość wskazuje wartość zapisana w zmiennej TOP TOP to zmienna wskaźnikowa zmienna, której wartościami są wskaźniki (dowiązania). Wszystkie odwołania do elementów struktury odbywają się bezpośrednio przez zmienne (lub stałe) wskaźnikowe pośrednio przez pola elementów struktury zawierające wskaźniki
9 Listy liniowe Projekt reprezentacji struktury danych: zdefiniowanie informacji (danych), które będą przechowywane zdefiniowanie operacji wykonywanych na danych Wybór struktury danych zależy od powyższych czynników i determinuje funkcjonalność struktury. Lista liniowa ciąg n 0 elementów X[1], X[2],.., X[n], w którym względna pozycja elementu zdefiniowana jest w porządku liniowym. Dla n > 0 X[1] jest pierwszym elementem, X[n] ostatnim i jeśli 1 < k < n, to k-ty element X[k] leży za elementem X[k-1] i przed elementem X[k+1].
10 Listy Podstawowe operacje na liście: dostęp do k-tego elementu listy. Cel: odczyt lub modyfikacja zawartości pól elementu wstawianie nowego elementu przed lub po k-tym elemencie usuwanie k-tego elementu wyznaczenie liczby elementów listy znajdowanie elementu listy o zadanej wartości jednego z pól
11 Stos (ang. LIFO) lista liniowa, dla której operacje wstawiania i usuwania (oraz odczytu) elementu dotyczą tylko jednego końca listy Kolejka (ang. FIFO) lista liniowa, dla której operacje wstawiania dotyczą jednego końca, a operacje usuwania (i odczytu) drugiego końca Kolejka dwustronna lista liniowa, dla której wszystkie operacje wstawiania i usuwania (i odczytu) dotyczą dowolnego końca listy Wstawianie lub zdejmowanie wierzchołek Usuwanie pierwszy Kolejka Wstawianie ostatni Stos dno Wstawianie lub usuwanie lewy Wstawianie lub usuwanie prawy Kolejka dwustronna
12 Tablice jednowymiarowe (wektory) Służą do przechowywania w pamięci określonej (skończonej) liczby obiektów tego samego typu Przykład: 10-cio elementowa tablica liczb całkowitych o nazwie T indeks elementu w tablicy T element tablicy T Odwołanie się do i-tego elementu tablicy T: T[i], np. wypisz(t[i]); //wypisz wartość i-tego elementu tablicy T T[i] 8; //i-temu elementowi tablicy T przypisz wartość 8
13 Tablice dwuwymiarowe (macierze) Służą do przechowywania w pamięci określonej (skończonej) liczby obiektów tego samego typu Przykład: Tablica o nazwie M, o 5-ciu wierszach i 10-ciu kolumnach i elementach całkowitych wiersz kolumna element M[4][3] Odwołanie się do elementu o indeksie i i j tablicy M: M[i][j], np. wypisz(m[i][j]); //wypisz wartość elementu z wiersza i i kolumny j tablicy T M[i][j] 27; //elementowi tablicy M o indeksie i i j przypisz //wartość 27 Jeżeli n = m, gdzie n liczba wierszy, m liczba kolumn tablicy dwuwymiarowej, to tablicę nazywamy kwadratową. Przekątna główna tablicy kwadratowej: indeksy wiersza i kolumny są równe (i=j)
14 Tablice dwuwymiarowe cd. Każdą tablicę dwuwymiarową można przekształcić w tablicę jednowymiarową: Niech M tablica dwuwymiarowa o n wierszach i m kolumnach, T tablica jednowymiarowa o k = n*m elementach Wtedy i=1..n, j=1..m M[i][j] = T[m*(i-1)+j] Tablice wielowymiarowe Niech wymiar tablicy X będzie równy 3. Tablica tworzy wtedy prostopadłościan, a element jest wskazywany przez 3 indeksy: X[i][j][k] Wektor wektorów struktura złożona z wektora, którego elementy wskazują na wektory różnej długości. wskaźnik element element element... element element wskaźnik... wskaźnik element element element element element... element
15 Lista realizacja wskaźnikowa First Program wykorzystujący listę wskaźnikową musi pamiętać wskaźnik do pierwszego elementu listfirst.
16 Porównanie realizacji listy liniowej z wykorzystaniem tablicy i wskaźników Struktura ze wskaźnikami wymaga dodatkowego pola na przechowywanie wskaźnika. Operacja usunięcia elementu z listy jest prosta wymaga jedynie zmiany wskaźnika w odpowiednim elemencie. W przypadku sekwencyjnego przydziału pamięci operacja ta wymaga przemieszczenia całego fragmentu listy do innych lokacji pamięci. First Wstawianie elementu w środek listy wskaźnikowej jest prostą operacją. Wymaga zmiany wskaźników w dwóch elementach. First
17 Porównanie realizacji listy liniowej z wykorzystaniem tablicy i wskaźników cd. Odwołania do dowolnego elementu listy jest szybsze w przypadku tablic. Dostęp do k-tego elementu listy w postaci tablicy jest stały, dla listy wskaźnikowej wymaga k przejść po wskaźnikach. Operacja łączenia list wskaźnikowych jest prostsza niż list przy użyciu tablic. Lista wskaźnikowa umożliwia budowę skomplikowanych struktur, np. zmienna liczba list o zmiennej długości: element listy głównej jest wskaźnikiem do listy podrzędnej, lub elementy struktury mają wiele dowiązań i połączone są równocześnie w różnych porządkach, odpowiadając różnym listom. Operacje przeglądania kolejnych elementów listy są szybsze dla list sekwencyjnych. Do tworzenia listy wskaźnikowej niezbędny jest mechanizm przydzielania, zwalniania, sprawdzania, czy można pamięć przydzielić, czyli gospodarowania pamięcią. Sterta zbiór wszystkich elementów przeznaczonych do dynamicznego przydzielania. Uwaga: Zakłada się, że element listy ma postać: info link
18 Stos realizacja poprzez listę wskaźnikową. Zmienna wskaźnikowa T wskazuje na wierzchołek stosu. T=Λ stos pusty Włożenie informacji Y na stos T (wykorzystanie dodatkowej zmiennej wskaźnikowej P): P new (element); info(p) Y; link(p) T; T P; T Przypisanie informacji do Y z wierzchołka stosu i zdjęcie ze stosu tej informacji: jeśli T =Λ to niedomiar; wpp{ P T; T link(p); Y info(p); delete(p); }
19 Kolejka realizacja poprzez listę wskaźnikową. Kolejka pusta: F=Λ i R=Add(F); F R Operacja wstawiania nowego elementu do kolejki: P new(element); info(p) Y; F link(p) Λ; link(r) P; R P; Operacja usuwania elementu z kolejki: jeśli F=Λ to niedomiar; wpp{ P F; F link(p); Y info(p); delete(p); F jeśli F=Λ to R=Add(F);} P, nowy element R R
20 Lista cykliczna ostatni element listy wskazuje na pierwszy element. PTR Podstawowe operacje na listach cyklicznych: PTR = Λ lista pusta Wstaw element Y z lewej strony: P new(element); info(p) Y; jeśli PTR=Λ to PTR link(p) P; wpp{ link(p) link(ptr); link(ptr) P; } Usuń z listy lewy element: jeśli PTR=Λ to niedomiar wpp{ P link(ptr); Y info(p); link(ptr) link(p); jeśli PTR=P to PTR Λ; delete(p); Wstaw element Y z prawej strony: Wstaw Y z lewej strony; PTR P;
21 Drzewa Drzewo jest hierarchicznym ułożeniem danych. DEF. Drzewo jest to zbiór T jednego lub więcej elementów zwanych węzłami, takich że: 1. istnieje jeden wyróżniony węzeł zwany korzeniem drzewa 2. pozostałe węzły (bez korzenia) są podzielone na m 0 rozłącznych zbiorów T 1,.., T m, z których każdy jest drzewem. Drzewa T 1,.., T m są nazywane poddrzewami korzenia. Pierwszy obiekt zwany jest korzeniem, kolejne obiekty traktowane są jako jego potomstwo: węzły, liście węzły nie mające potomstwa. Droga w drzewie sekwencja węzłów w drzewie odpowiadających przejściu w kierunku od korzenia do liścia. węzeł korzeń Pojęcia: rodzic liść przodek potomek rodzeństwo (dwa węzły są rodzeństwem, gdy mają tego samego ojca) droga
22 Drzewa binarne Drzewo binarne jest skończonym zbiorem węzłów, który jest albo pusty, albo zawiera korzeń oraz dwa drzewa binarne. A T B C A B C D E D E F F Każdy węzeł przechowuje dwa wskaźniki: do lewego poddrzewa LLINK i prawego poddrzewa RLINK T jest wskaźnikiem do drzewa Jeśli T = Λ - drzewo puste Wpp T jest adresem korzenia drzewa, a LLINK(T) wskazuje lewe poddrzewo, RLINK(T) wskazuje prawe poddrzewo.
23 Przechodzenie drzewa Jest to systematyczne przeglądanie węzłów w taki sposób, ze każdy węzeł jest odwiedzony dokładnie jeden raz. Przejście drzewa wyznacza porządek liniowy w drzewie. Sposoby przechodzenia drzewa binarnego: preorder (porządek przedrostkowy) inorder (porządek wrostkowy) postorder (porządek przyrostkowy) Rekurencyjna definicja porządków przechodzenia drzewa binarnego: Jeśli drzewo jest puste, stop Wpp wykonaj: Przechodzenie preorder Przechodzenie inorder Odwiedź korzeń Przejdź lewe poddrzewo Przejdź lewe poddrzewo Przejdź prawe poddrzewo Odwiedź korzeń Przejdź prawe poddrzewo Przechodzenie postorder Przejdź lewe poddrzewo Przejdź prawe poddrzewo Odwiedź korzeń
24 Przykład: A B C D E F G H I Porządek preorder: A B D C E G F H I Porządek inorder: D B A E G C H F I Porządek postorder: D B G E H I F C A
Podstawy Informatyki. Wykład 4. Struktury danych
Podstawy Informatyki Wykład 4 Struktury danych Języki programowania Kompilacja proces, w którym program w języku wysokiego poziomu jest tłumaczony na język adresów symbolicznych (asembler). Program realizujący
Bardziej szczegółowoPodstawy Informatyki. Struktura programu Stałe i zmienne. Wykład 4. Struktury danych
Podstawy Informatyki Wykład 4 Języki programowania Kompilacja proces, w którym program w języku wysokiego poziomu jest tłumaczony na język adresów symbolicznych (asembler). Program realizujący ten proces
Bardziej szczegółowoDynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)
Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013
Bardziej szczegółowoWYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
Rekurencja - zdolność podprogramu (procedury) do wywoływania samego (samej) siebie Wieże Hanoi dane wejściowe - trzy kołki i N krążków o różniących się średnicach wynik - sekwencja ruchów przenosząca krążki
Bardziej szczegółowoINFORMATYKA DANE.
INFORMATYKA DANE http://www.infoceram.agh.edu.pl DANE Dane to zbiory liczb, znaków, sygnałów, wykresów, tekstów, itp., które mogą być przetwarzane. Pojęcie danych jest relatywne i istnieje tylko razem
Bardziej szczegółowoPodstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno
Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują
Bardziej szczegółowoWysokość drzewa Głębokość węzła
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Bardziej szczegółowoStruktury danych: stos, kolejka, lista, drzewo
Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja
Bardziej szczegółowoTypy danych. 2. Dane liczbowe 2.1. Liczby całkowite ze znakiem i bez znaku: 32768, -165, ; 2.2. Liczby rzeczywiste stało i zmienno pozycyjne:
Strona 1 z 17 Typy danych 1. Dane tekstowe rozmaite słowa zapisane w różnych alfabetach: Rozwój metod badawczych pozwala na przesunięcie granicy poznawania otaczającego coraz dalej w głąb materii: 2. Dane
Bardziej szczegółowoProgramowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH Temat 4: Realizacje dynamicznych struktur danych. Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/
Bardziej szczegółowoAbstrakcyjne struktury danych - stos, lista, drzewo
Sprawozdanie Podstawy Informatyki Laboratoria Abstrakcyjne struktury danych - stos, lista, drzewo Maciej Tarkowski maciek@akom.pl grupa VII 1/8 1. Stos Stos (ang. Stack) jest podstawową liniową strukturą
Bardziej szczegółowoListy, kolejki, stosy
Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:
Bardziej szczegółowoProgramowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
Bardziej szczegółowoLista liniowa dwukierunkowa
53 Lista liniowa dwukierunkowa Jest to lista złożona z elementów, z których każdy posiada, oprócz wskaźnika na element następny, również wskaźnik na element poprzedni. Zdefiniujmy element listy dwukierunkowej
Bardziej szczegółowoAlgorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski
Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu
Bardziej szczegółowoAlgorytmy i struktury danych. wykład 5
Plan wykładu: Wskaźniki. : listy, drzewa, kopce. Wskaźniki - wskaźniki Wskaźnik jest to liczba lub symbol który w ogólności wskazuje adres komórki pamięci. W językach wysokiego poziomu wskaźniki mogą również
Bardziej szczegółowoPodstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze
Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Bardziej szczegółowoDrzewa poszukiwań binarnych
1 Cel ćwiczenia Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet ielonogórski Drzewa poszukiwań binarnych Ćwiczenie
Bardziej szczegółowoPodstawy Informatyki. Metody dostępu do danych
Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie
Bardziej szczegółowo< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 >
Typy indeksów Indeks jest zakładany na atrybucie relacji atrybucie indeksowym (ang. indexing field). Indeks zawiera wartości atrybutu indeksowego wraz ze wskaźnikami do wszystkich bloków dyskowych zawierających
Bardziej szczegółowoPrzykładowe B+ drzewo
Przykładowe B+ drzewo 3 8 1 3 7 8 12 Jak obliczyć rząd indeksu p Dane: rozmiar klucza V, rozmiar wskaźnika do bloku P, rozmiar bloku B, liczba rekordów w indeksowanym pliku danych r i liczba bloków pliku
Bardziej szczegółowoZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie
Bardziej szczegółowoUniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów
Bardziej szczegółowoTadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
: idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
Bardziej szczegółowoGrafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz
Grafy (3): drzewa Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 13 (Wykłady z matematyki dyskretnej) Grafy (3): drzewa 13 1 / 107 Drzewo Definicja. Drzewo to graf acykliczny
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie
Bardziej szczegółowoMatematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku
Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku Rozdział 1 Struktury danych 1.1 Listy, stosy i kolejki Lista to uporz adkowany ci ag elementów. Przykładami list s a wektory lub tablice
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6a Model danych oparty na drzewach 1 Model danych oparty na drzewach Istnieje wiele sytuacji w których przetwarzane informacje mają strukturę hierarchiczną lub zagnieżdżoną,
Bardziej szczegółowodr inż. Paweł Myszkowski Wykład nr 11 ( )
dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 11 (11.05.2016) Plan prezentacji:
Bardziej szczegółowoDefinicja pliku kratowego
Pliki kratowe Definicja pliku kratowego Plik kratowy (ang grid file) jest strukturą wspierająca realizację zapytań wielowymiarowych Uporządkowanie rekordów, zawierających dane wielowymiarowe w pliku kratowym,
Bardziej szczegółowoWykłady z Matematyki Dyskretnej
Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Grafy
Bardziej szczegółowoWskaźniki i dynamiczna alokacja pamięci. Spotkanie 4. Wskaźniki. Dynamiczna alokacja pamięci. Przykłady
Wskaźniki i dynamiczna alokacja pamięci. Spotkanie 4 Dr inż. Dariusz JĘDRZEJCZYK Wskaźniki Dynamiczna alokacja pamięci Przykłady 11/3/2016 AGH, Katedra Informatyki Stosowanej i Modelowania 2 Wskaźnik to
Bardziej szczegółowoINFORMATYKA. Podstawy programowania w języku C. (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra
INFORMATYKA Podstawy programowania w języku C (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra INFORMATYKA Temat: Struktury dynamiczne Wykład 7 Struktury dynamiczne lista jednokierunkowa,
Bardziej szczegółowoWykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik
Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym
Bardziej szczegółowoUNIWERSYTET GDAŃSKI MATERIAŁY DYDAKTYCZNE DO PRZEDMIOTU MATEMATYKA DYSKRETNA. pod redakcją: Hanna Furmańczyk Karol Horodecki Paweł Żyliński
UNIWERSYTET GDAŃSKI MATERIAŁY DYDAKTYCZNE DO PRZEDMIOTU MATEMATYKA DYSKRETNA pod redakcją: Hanna Furmańczyk Karol Horodecki Paweł Żyliński kierunek: Informatyka GDAŃSK 2019 Niniejsze materiały powstały
Bardziej szczegółowoDrzewo. Drzewo uporządkowane ma ponumerowanych (oznaczonych) następników. Drzewo uporządkowane składa się z węzłów, które zawierają następujące pola:
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Bardziej szczegółowoWykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy
Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element
Bardziej szczegółowoDynamiczne struktury danych
Dynamiczne struktury danych 391 Dynamiczne struktury danych Przez dynamiczne struktury danych rozumiemy proste i złożone struktury danych, którym pamięć jest przydzielana i zwalniana na żądanie w trakcie
Bardziej szczegółowo2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew
0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury
Bardziej szczegółowoDrzewa BST i AVL. Drzewa poszukiwań binarnych (BST)
Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie
Bardziej szczegółowoPascal typy danych. Typy pascalowe. Zmienna i typ. Podział typów danych:
Zmienna i typ Pascal typy danych Zmienna to obiekt, który może przybierać różne wartości. Typ zmiennej to zakres wartości, które może przybierać zmienna. Deklarujemy je w nagłówku poprzedzając słowem kluczowym
Bardziej szczegółowoZASADY PROGRAMOWANIA KOMPUTERÓW
POLITECHNIKA WARSZAWSKA Instytut Automatyki i i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW Język Język programowania: C/C++ Środowisko programistyczne: C++Builder 6 Wykład 9.. Wskaźniki i i zmienne dynamiczne.
Bardziej szczegółowoMatematyka dyskretna - 7.Drzewa
Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja
Bardziej szczegółowododatkowe operacje dla kopca binarnego: typu min oraz typu max:
ASD - ćwiczenia IX Kopce binarne własność porządku kopca gdzie dla każdej trójki wierzchołków kopca (X, Y, Z) porządek etykiet elem jest następujący X.elem Y.elem oraz Z.elem Y.elem w przypadku kopca typu
Bardziej szczegółowoProgramowanie w C++ Wykład 5. Katarzyna Grzelak. 26 marca kwietnia K.Grzelak (Wykład 1) Programowanie w C++ 1 / 40
Programowanie w C++ Wykład 5 Katarzyna Grzelak 26 marca 2018 9 kwietnia 2018 K.Grzelak (Wykład 1) Programowanie w C++ 1 / 40 Pojęcia z poprzedniego wykładu Podział programu na funkcje podział na niezależne
Bardziej szczegółowoPodstawy programowania. Wykład PASCAL. Zmienne wskaźnikowe i dynamiczne. dr Artur Bartoszewski - Podstawy prograowania, sem.
Podstawy programowania Wykład PASCAL Zmienne wskaźnikowe i dynamiczne 1 dr Artur Bartoszewski - Podstawy prograowania, sem. 1- WYKŁAD Rodzaje zmiennych Zmienne dzielą się na statyczne i dynamiczne. Zmienna
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu
Bardziej szczegółowoMetody getter https://www.python-course.eu/python3_object_oriented_programming.php 0_class http://interactivepython.org/runestone/static/pythonds/index.html https://www.cs.auckland.ac.nz/compsci105s1c/lectures/
Bardziej szczegółowoPodstawy programowania. Wykład 7 Tablice wielowymiarowe, SOA, AOS, itp. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład 7 Tablice wielowymiarowe, SOA, AOS, itp. Krzysztof Banaś Podstawy programowania 1 Tablice wielowymiarowe C umożliwia definiowanie tablic wielowymiarowych najczęściej stosowane
Bardziej szczegółowoAlgorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Bardziej szczegółowoPodstawy Programowania C++
Wykład 3 - podstawowe konstrukcje Instytut Automatyki i Robotyki Warszawa, 2014 Wstęp Plan wykładu Struktura programu, instrukcja przypisania, podstawowe typy danych, zapis i odczyt danych, wyrażenia:
Bardziej szczegółowoBaltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup
Baltie 3 Podręcznik do nauki programowania dla klas I III gimnazjum Tadeusz Sołtys, Bohumír Soukup Czytanie klawisza lub przycisku myszy Czytaj klawisz lub przycisk myszy - czekaj na naciśnięcie Polecenie
Bardziej szczegółowoWykład 2. Drzewa zbalansowane AVL i 2-3-4
Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania
Bardziej szczegółowoOgólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Bardziej szczegółowo. Podstawy Programowania 2. Drzewa bst - część pierwsza. Arkadiusz Chrobot. 22 maja 2016
.. Podstawy Programowania 2 Drzewa bst - część pierwsza Arkadiusz Chrobot Zakład Informatyki 22 maja 2016 1 / 55 Plan.1 Wstęp.2 Definicje.3 Implementacja Typ bazowy i wskaźnik na korzeń Dodawanie elementu
Bardziej szczegółowoprowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325
PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj
Bardziej szczegółowoPodstawy programowania skrót z wykładów:
Podstawy programowania skrót z wykładów: // komentarz jednowierszowy. /* */ komentarz wielowierszowy. # include dyrektywa preprocesora, załączająca biblioteki (pliki nagłówkowe). using namespace
Bardziej szczegółowoPorządek symetryczny: right(x)
Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)
Bardziej szczegółowoAlgorytm. Krótka historia algorytmów
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Bardziej szczegółowoINFORMATYKA W SZKOLE. Podyplomowe Studia Pedagogiczne. Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227
INFORMATYKA W SZKOLE Dr inż. Grażyna KRUPIŃSKA grazyna@fis.agh.edu.pl D-10 pokój 227 Podyplomowe Studia Pedagogiczne Sortowanie Dane wejściowe : trzy liczby w dowolnym porządku Dane wyjściowe: trzy liczby
Bardziej szczegółowoLab 9 Podstawy Programowania
Lab 9 Podstawy Programowania (Kaja.Gutowska@cs.put.poznan.pl) Wszystkie kody/fragmenty kodów dostępne w osobnym pliku.txt. Materiały pomocnicze: Wskaźnik to specjalny rodzaj zmiennej, w której zapisany
Bardziej szczegółowoDynamiczny przydział pamięci (język C) Dynamiczne struktury danych. Sortowanie. Klasyfikacja algorytmów sortowania. Algorytmy sortowania
Rok akademicki 2010/2011, Wykład nr 4 2/50 Plan wykładu nr 4 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2010/2011
Bardziej szczegółowoTemat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych.
Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. 1. Rodzaje pamięci używanej w programach Pamięć komputera, dostępna dla programu,
Bardziej szczegółowoStruktury Danych i Złożoność Obliczeniowa
Struktury Danych i Złożoność Obliczeniowa Zajęcia 1 Podstawowe struktury danych Tablica Najprostsza metoda przechowywania serii danych, zalety: prostota, wady: musimy wiedzieć, ile elementów chcemy przechowywać
Bardziej szczegółowoAlgorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Bardziej szczegółowoLABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
Bardziej szczegółowoINFORMATYKA W SZKOLE. Podyplomowe Studia Pedagogiczne. Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227
INFORMATYKA W SZKOLE Dr inż. Grażyna KRUPIŃSKA grazyna@fis.agh.edu.pl D-10 pokój 227 Podyplomowe Studia Pedagogiczne 2 Algorytmy Nazwa algorytm wywodzi się od nazwiska perskiego matematyka Muhamed ibn
Bardziej szczegółowoAlgorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne.
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach
Bardziej szczegółowoDrzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.
Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa
Bardziej szczegółowoDrzewa podstawowe poj
Drzewa podstawowe poj ecia drzewo graf reprezentujacy regularna strukture wskaźnikowa, gdzie każdy element zawiera dwa lub wiecej wskaźników (ponumerowanych) do takich samych elementów; wez ly (albo wierzcho
Bardziej szczegółowoKażdy węzeł w drzewie posiada 3 pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste.
Drzewa binarne Każdy węzeł w drzewie posiada pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste. Uporządkowanie. Zakładamy, że klucze są różne. Klucze leżące
Bardziej szczegółowoWstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach
Bardziej szczegółowoStruktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych:
Struktura danych Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: rekord tablica lista stos kolejka drzewo i jego odmiany (np. drzewo
Bardziej szczegółowoKolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego.
Kolejki Kolejka priorytetowa Kolejka priorytetowa (ang. priority queue) to struktura danych pozwalająca efektywnie realizować następujące operacje na zbiorze dynamicznym, którego elementy pochodzą z określonego
Bardziej szczegółowoLaboratorium z przedmiotu Programowanie obiektowe - zestaw 04
Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04 Cel zajęć. Celem zajęć jest zapoznanie się ze sposobem działania popularnych kolekcji. Wprowadzenie teoretyczne. Rozważana w ramach niniejszych
Bardziej szczegółowoWYKŁAD 10. Zmienne o złożonej budowie Statyczne i dynamiczne struktury danych: lista, kolejka, stos, drzewo. Programy: c5_1.c, c5_2, c5_3, c5_4, c5_5
WYKŁAD 10 Zmienne o złożonej budowie Statyczne i dynamiczne struktury danych: lista, kolejka, stos, drzewo Programy: c5_1.c, c5_2, c5_3, c5_4, c5_5 Tomasz Zieliński ZMIENNE O ZŁOŻONEJ BUDOWIE (1) Zmienne
Bardziej szczegółowoObliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303
Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp
Bardziej szczegółowoWykład 6. Drzewa poszukiwań binarnych (BST)
Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 12 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych
Bardziej szczegółowoTablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011
Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Załóżmy, że uprawiamy jogging i chcemy monitorować swoje postępy. W tym celu napiszemy program, który zlicza, ile czasu
Bardziej szczegółowo0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001.
KODOWANIE Jednym z problemów, z którymi spotykamy się w informatyce, jest problem właściwego wykorzystania pamięci. Konstruując algorytm staramy się zwykle nie tylko o zminimalizowanie kosztów czasowych
Bardziej szczegółowoWykład 5 Wybrane zagadnienia programowania w C++ (c.d.)
Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Kontenery - - wektor vector - - lista list - - kolejka queue - - stos stack Kontener asocjacyjny map 2016-01-08 Bazy danych-1 W5 1 Kontenery W programowaniu
Bardziej szczegółowoPodstawy Programowania
Podstawy Programowania dr Elżbieta Gawrońska gawronska@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej dr Elżbieta Gawrońska (ICIS) Podstawy Programowania 14 1 / 9 Plan wykładu 1 Sesja egzaminacyjna
Bardziej szczegółowoE: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Bardziej szczegółowoPODSTAWY BAZ DANYCH Wykład 6 4. Metody Implementacji Baz Danych
PODSTAWY BAZ DANYCH Wykład 6 4. Metody Implementacji Baz Danych 2005/2006 Wykład "Podstawy baz danych" 1 Statyczny model pamiętania bazy danych 1. Dane przechowywane są w pamięci zewnętrznej podzielonej
Bardziej szczegółowoBazy danych - BD. Indeksy. Wykład przygotował: Robert Wrembel. BD wykład 7 (1)
Indeksy Wykład przygotował: Robert Wrembel BD wykład 7 (1) 1 Plan wykładu Problematyka indeksowania Podział indeksów i ich charakterystyka indeks podstawowy, zgrupowany, wtórny indeks rzadki, gęsty Indeks
Bardziej szczegółowoPrzypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.
Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4
Bardziej szczegółowoPodstawowe struktury danych
Podstawowe struktury danych 1) Listy Lista to skończony ciąg elementów: q=[x 1, x 2,..., x n ]. Skrajne elementy x 1 i x n nazywamy końcami listy, a wielkość q = n długością (rozmiarem) listy. Szczególnym
Bardziej szczegółowoWykład 1: Wskaźniki i zmienne dynamiczne
Programowanie obiektowe Wykład 1: Wskaźniki i zmienne dynamiczne 1 dr Artur Bartoszewski - Programowanie obiektowe, sem. 1I- WYKŁAD Podstawy programowania w C++ Wskaźniki 2 dr Artur Bartoszewski - Programowanie
Bardziej szczegółowoWykład 8. Drzewa AVL i 2-3-4
Wykład 8 Drzewa AVL i 2-3-4 1 Drzewa AVL Ø Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Ø Drzewa 2-3-4 Definicja drzewa 2-3-4 Operacje wstawiania i usuwania Złożoność
Bardziej szczegółowoSortowanie. Bartman Jacek Algorytmy i struktury
Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39
Bardziej szczegółowoWstęp do programowania. Drzewa podstawowe techniki. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa podstawowe techniki Piotr Chrząstowski-Wachtel Drzewa wyszukiwań Drzewa często służą do przechowywania informacji. Jeśli uda sie nam stworzyć drzewo o niewielkiej wysokości
Bardziej szczegółowoDYNAMICZNE PRZYDZIELANIE PAMIECI
DYNAMICZNE PRZYDZIELANIE PAMIECI Pamięć komputera, dostępna dla programu, dzieli się na cztery obszary: kod programu, dane statyczne ( np. stałe i zmienne globalne programu), dane automatyczne zmienne
Bardziej szczegółowoTypy danych, zmienne i tablice. Tomasz Borzyszkowski
Typy danych, zmienne i tablice Tomasz Borzyszkowski Silne typy Javy Java jest językiem wyposażonym w silny system typów. Wywodzi się stąd siła i bezpieczeństwo tego języka. Co to znaczy silny system typów?
Bardziej szczegółowoTemat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
Bardziej szczegółowoWykład 2. Drzewa poszukiwań binarnych (BST)
Wykład 2 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
Bardziej szczegółowoWyznaczanie strategii w grach
Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych
Bardziej szczegółowo