Normalizacja histogramu: Normalizacja histogramu jest prostą operacją punktową stosowaną w celu poprawy obrazów o złym kontraście.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Normalizacja histogramu: Normalizacja histogramu jest prostą operacją punktową stosowaną w celu poprawy obrazów o złym kontraście."

Transkrypt

1 Barłomiej Mróz: Hisogram - czyli wykres częsości wysępowania kolejnych warości pikseli obrazu. Hisogram pokazuje, jak liczne są w obrazie punky o różnych warościach jasności. Przyjmuje się, że pierwszy elemen hisogramu ma numer 0, a osani Z max, Z max zakres maksymalny. Zakładamy, że Z max = 2 n -1, jeżeli barwa jes reprezenowana przez n biów Obliczenia: 1. Usalenie zakresu jasności lub przyjęcie domyślnego dla danej liczby biów na piksel; 2. Określenie liczby przedziałów; 3. Wyznaczenie szerokości przedziałów poprzez podzielnie zakresu przez ich liczbę; 4. Obliczenie liczby pikseli o warościach jasności należących do poszczególnych przedziałów. Paramery liczone z hisogramu: W oparciu o obliczony hisogram obrazu możliwe jes wygenerowanie szeregu paramerów opisujących różne własności hisogramu, i obrazu. Zdefiniowano szereg paramerów wykorzysujących obliczony już wcześniej hisogram H(b: - Gdzie: H - hisogram p - szerokość przedziału L - liczba przedziałów Normalizacja hisogramu: Normalizacja hisogramu jes prosą operacją punkową sosowaną w celu poprawy obrazów o złym konraście. Załóżmy, iż hisogram H(b posiada niezerowe warości jedynie w pewnym przedziale [a,b] będącym podzakresem przedziału [0,255], czyli H(b= 0 dla 0 b < a oraz b < b 255. Efekem działania operacji normalizacji jes rozszerzenie przedziału [a,b] na pełen zakres odcienie szarości.

2 Normalizacja jes opisywana funkcją liniową F o warościach wzrasających od 0 do 255 w przedziale [a,b]. F = 0 dla b < a oraz F = 255 dla b > b. Z liczba elemenów Z liczbą elemenów i liczbą przedziałów Normalizacja obrazu ma za zadanie ściągnąć cały zakres do przedziału <0;255> X - macierz danych Xnorm - znormalizowana macierz danych Dysponują hisogramem obrazu możemy określić pozycje i szerokość zakresu w kórym znajduje się większość danych. W ym celu wprowadza się próg określający minimalną częsość wysępowania elemenów z lewej i prawej srony hisogramu. XL - lewa granica XP - prawa granica Rozciągnięcie hisogramu wzdłuż krzywej: Rozciągnięcie hisogramu wzdłuż zadanej krzywej zmienia rozkład jasności pikseli poprzez zmianę ich przyporządkowania do przedziałów hisogramu. Przekłada o się na zmianę szerokości przedziałów hisogramu: b jasność piksela przed rozciągnięciem hisogramu; e jasność piksela po rozciągnięciu hisogramu; f(b funkcja rozciągnięcia hisogramu. Tangens kąa nachylenia sycznej funkcji f(b jes współczynnikiem zmiany szerokości przedziału. Chodzi oo, ze nową warości dla piksela liczymy na podsawie równanie (np y=x+b lub y=x^a, przy czym rzeba pamięać aby później zrobić normalizacje obrazka do przedziału <0;255> Wyrównywanie hisogramu (ang. hisogram equalizaion ma na celu akie dobranie warości aby wykres był możliwie "płaski". W prakyce wyrównywanie hisogramu sprowadza się do wykonania przekszałcenia obrazu przy pomocy odpowiednio przygoowanej ablicy normalizacyjnej. Operacja wyrównywania hisogramu pozwala na uwypuklenie ych szczegółów w obrazie, kóre z uwagi na niewielki konras są mało widoczne. obliczenie średniej wysokości słupków N - liczba przedziałów H - hisogram Obliczenie nowej szerokości przedziałów

3 Obliczanie granic przedziałów i zmiana warości jasności ak aby znalazły się w odpowiednich przedziałach Hisogram dwuwymiarowy Hisogram dwuwymiarowy służy do badania saysycznych zależności miedzy sąsiednimi pikselami. Jes szczególnie przydany w analizie eksur. Łukasz Koreń: Negayw P (x, y = P(x, y P(x, y jasność oryginalnego piksela obrazka; P (x, y jasność nowego piksela obrazka. Progowanie binarne a jasność oryginalnego piksela obrazka; a jasność nowego piksela obrazka; p usalony próg.

4 Progowanie binarne odwrone a jasność oryginalnego piksela obrazka; a jasność nowego piksela obrazka; p usalony próg. Progowanie binarne przedziałowe lub a jasność oryginalnego piksela obrazka; a jasność nowego piksela obrazka; p 1, p 2 usalone progi. Progowanie z zachowaniem poziomów szarości a jasność oryginalnego piksela obrazka; a jasność nowego piksela obrazka; p 1, p 2 usalone progi. Progowanie obrazu kolorowego z zachowaniem poziomów jasności

5 A wekor składowych koloru piksela obrazka przed progowaniem; A' wekor składowych koloru piksela obrazka po progowaniu; p r1, p r2, p g1, p g2, p b1, p b2 usalone progi dla poszczególnych kolorów. Progowanie wielopoziomowe a jasność oryginalnego piksela obrazka; a' jasność nowego piksela obrazka; b 1,b 2,...b N usalone poziomy szarości; p 1,p 2,..,p N usalone progi. Dodawanie obrazów Dwa lub więcej obrazów możemy połączyć wykonując prosą operację sumowania macierzy: O 1,O 1,...O N obrazki sumowane; O' obrazek powsały w wyniku zsumowania; w 1, w 2,...w N współczynniki normalizujące (wagi. Na ogół współczynniki normalizujące powinny spełniać warunek: Splo

6 Splo dwóch funkcji f i g można zapisać nasępująco: Splo liniowy Sploem liniowym y[n] dwóch sygnałów czasu dyskrenego x 1 [n] i x 2 [n] nazywamy sumę: Splo kołowy Dla dwóch ciągów x[n] i h[n] o idenycznej długości N splo kołowy definiujemy jako: Splo sekorowy Dwuwymiarowa filracja sploowa

7 Problem elemenów skrajnych 1. Pominięcie elemenów skrajnych 2. Powielenie elemenów skrajnych 3. Dynamiczny rozmiar maski Filr sploowy uśredniający (dolnoprzepusowy W filrze ym warość piksela wyznaczana jes na podsawie uśrednienia jego najbliższego ooczenia. Sopień uśrednienia a zarazem pewnego rozmycia obrazu zależy od wielkości analizowanego ooczenia. W przypadku gdy konieczne jes osłabienie działania filru elemenom cenralnym można nadać warości większe od zera. Warość normalizacyjna jes sumą wszyskich elemenów maski. Efekem działania filru uśredniającego jes wygładzenie obrazu i usunięcie szumu o niewielkiej ampliudzie. Maski: Filr sploowy wyosrzający (górnoprzepusowy Filr górnoprzepusowy wykorzysywany jes do wzmacniania szczegółów o dużej częsoliwości wysępujących w obrazie. W filrach ych środkowe elemeny maski są zazwyczaj bardzo duże, a pozosałe są niewielkimi liczbami ujemnymi lub zerami. Po filracji zwiększa się osrość i konras obrazu, ale ujemnym efekem jes wzmocnienie również szumu. Częso filry górnoprzepusowe sosuje się po silnej filracji uśredniającej, aby przywrócić osrość obrazu. Maski: Pior Humienik:

8 Filr sploowy konuryzacyjny Po filracji obszary o jednoliym kolorze maja warość zero, a obszary jasność zmieniała sie mocno (czyli głównie brzegi obieków mają bardzo duże warości (dodanie lub ujemne Filr en służy do przekszałcenia obrazów do posaci wekorowej. przykładowe maski: Modyfikacje filru sploowego efek wiaru- pozwala ona na rozmycie obrazu w wybranym kierunku i daje wrażenie jakby zdjęcie było zrobione w ruchu lub ze zby krókim czasem naświelania.efek wiaru uzyskujemy przekszałcając obraz za pomocą wzoru: : N liczba powórzeń, wsp współczynnik. Modyfikacje filru sploowego pikselizacja Filry sayczne- Służą przede wszyskim do usuwania zakłóceń losowych (szumów na obrazie, nie zmieniają one przy ym użyecznych informacji. filr medianowy-przepisujemy określoną liczbę pikseli(wymiar maski i sorujemy rosnąco, a nasępnie zapisujemy w wyjściowym obrazie warość środkową naszej lisy. Isnieją 2 wersje: mocna- gdy obliczony piksel zasępuje nam wejściowy, i bierze udział w obliczaniu sąsiednich pikseli, oraz wersja słabsza, kiedy obliczone piksele są zapisywane w innym miejscu.

9 filr minimalny i maksymalny: w zależności od wielkości maski, badamy warość jasności w pikseli w obrębie naszej wybranej kropki, i zasępujemy ją największą lub najmniejszą warością (w ym przypadku 0 dla filru minimalnego i 6 dla maksymalnego. filr różnicowy- w zależności o wielkości maski, od warości pikseli w badanym obszarze odejmujemy warości maski, obliczamy warość bezwzględna i sumujemy- wynik zapisujemy w miejsce badanego piksela. Tomasz Waligóra: Relief KONTURYZACJA Mamy obraz. Robimy z niego negayw, a nasępnie robimy przesunięcie ego negaywu (np. o 1 piksel, o 2 piksele id.. Nasępnie sumujemy obraz oryginalny z obrazem negaywu po przesunięciu. Orzymany obraz

10 normalizujemy. Konuryzacyjny filr korelacyjny Konuryzacyjny filr korelacyjny definiuje maskę filru sploowego: Gdzie : ρc i ρr współczynniki korelacji między punkami obrazu; M maska filru sploowego. Współczynniki ρc i ρr obieramy sami, wedy np. dla ρc=0 i ρr=0 mamy maskę : a dla ρc=1 i ρr=1, maskę Filr konuryzacyjny Gaussa Funkcja Macleoda: Gdzie: p i współczynniki podające wpływ elemenów obrazu na wyliczaną warość; n i m rozmiary maski.

11 Filr Robersa Do realizacji ego filru wysarczy jedynie skorzysać ze wzoru : lub : O w obraz wynikowy O obraz źródłowy Filr Sobela W ym przypadku poruszamy się po obrazie podobnie jak w filracji sploowej. Przesuwamy się kolejno od lewego górnego rogu do prawego dolnego i wycinamy z obrazu maski o rozmiarze 3x3. Maski akie przedsawiają się nasępująco: Nasępnie dokonujemy obliczeń : obrazu wynikowego według wzoru : Po obliczeniu warości X oraz Y podsawiamy je do Filr Kirscha Tuaj podobnie jak w filrze Sobela wyznaczamy kolejne maski obrazu : Nasępnie rzeba obliczyć kolejne warości S i oraz T i :

12 pamięając przy ym, że, a indeksy zmieniają się modulo 8. Po obliczeniu warości S i oraz T i, podsawiamy wszysko do obrazu wynikowego według wzoru : Wekoryzacja konuru rasrowego meoda najbliższego sąsiada Akualnie znaleziony punk zaznaczamy jako bieżący, usuwamy go z ablicy I, a nasępnie szukamy jego najbliższego sąsiada. Oznacza o, że wszyskie punky o jednakowej odległości od punku bieżącego, znajdują się na obrzeżu kwadrau, o środku w ym punkcie. 1. Sar. Szukamy punku począkowego, zapamięujemy go i usawiamy jako bieżący. 2. Usalamy bok kwadrau na Sprawdzamy czy są jakieś punk na obwodzie kwadrau. 4. Jeśli są o wybieramy en o najmniejszej odległości od punku bieżącego. Jeśli nie ma o skaczemy do pk. 3 i zwiększamy bok kwadrau o Zapamięujemy punk i usawiamy go jako bieżący. Przechodzimy do pk 3. Cały proces powarzamy do momenu aż nie przekroczymy usalonego rozmiaru kwadrau. Filip Przybysz 1. Aproksymacja obrazu wieloma obrazami Obraz można przedsawić jako sumę ważoną innych obrazów (z błędem. Polega na podziale obrazu na bloki odpowiadające rozmiarom obrazów z bazy (nimi będziemy przybliżać fragmeny skrajne mniejsze od obrazów bazy należy odrzucić. współczynniki aproksymacji dla każdego fragmenu według wzoru: wsp. aproksymacji (korelacji mówią nam jak podobne są do siebie dwa obrazy, przyjmuje war. Od -1 do 1, 0 oznacza max niepodobieńswo, war. Skrajne o max podobieńswo. Po obliczeniu współczynników odwarzamy każdy wg wzoru: X 1...X n - obrazy bazowe c 1 c n wsp. aproksymacji

13 4. Przybliżanie sygnału innym sygnałem f( = c*g(+ve( z ego: = ( ( ( 2 d g d g f c dla obrazu: = g g f c ( ( ( 2 5. Przybliżanie dla wielu sygnałów: = ( ( ( 2 i i i i d g d g f c

14 Konrad Gorczyca: 1 Porównywanie obrazów: Punk po punkcie Cała meoda polega na porównaniu kolejnych pikseli obrazów. Wzór: h* w* n a =, a ilość ych samych pikseli, h wysokość obrazka, w szerokość obrazka, n warość 100 podobieńswa. średnia RGB z kwadrau Wysępuje wzór jak wyżej oraz: 256 n r = 256, r różnica 100 Każdy obraz jes dzielony na mniejsze obrazy, przy pomocy siaki, nasępnie: R + G + B c =, c średnia koloru w danym kwadracie, RGB warości składowych danego piksela, 3 2 Kompresja Składa się z 4 eapów: Transformaa cosinusowa: n + 1 lπ c( k, l = α ( k α ( l x( m, n cos cos 64 m= 0 n= n + 1 lπ x( m, n = 2 ( ( ( α k α l c k, l cos cos m= 0 n= 0 16 Gdzie: x(m,n warość piksela obrazu począkowego c(k,l współczynnik ransformay 1 ; k, l 0 α( k = 2 1; k, l = 1,2, 7 Kwanowanie: Cˆ ( k, l = C( k, l /( k * l Cˆ ( k, l = C( k, l / V Gdzie V>>1 lub C(1,1 ( ( 2n + 1 ( ( 2n + 1 kπ 16 kπ 16 Kodowanie obrazów: Kod Hoffmana działa na zasadzie wyliczania częsości wysępowanie danej jasności 3 Składowa wekorów wzdłuż innych wekorów A=c 1 X 1+c 2 X c n X n 4 Przybliżanie obrazów innymi obrazami Sprowadza się do znalezienia wekora c współczynników z ww. równania 5 Rozbarwienie Dodanie do każdego X pewnej sałej, przesuwającej kolor. 6 Usunięcie składowej Usunięcie czyli zlikwidowanie jednego X z danego równania 7 Wykrywanie kierunków

15 Wiele meod deekcji krawędzi bazuje na pierwszej pochodnej luminancji - daje o nam sopień przyrosu (gradien warości oryginalnych danych. Wykorzysując ą informację możemy szukać eksremów pierwszej pochodnej luminancji (gradienu luminancji. Jeśli I(x odzwierciedla luminancję piksela x, a I (x jes pierwszą pochodną (inensiy gradien piksela x, można zapisać : I (x=-1/2*i(x-1+0*i(x+1/2*(x+1; Andrzej Licznierski Godziuk Definicje Grupa zdefiniowane mnożenie lączne, elemen neuralny 1, elemen odwrony Grupa abelowa mnożenie jes przemienne Cialo dodawanie, mnozenie, rozdzielnosc mnozenia względem dodawania Przesrzen wekorowa zdefiniowane mnozenie przez skalar; jes grupa abelowa; jes rozdzielnosc i lacznosc Przesrzen prehilberowska zdefiniowany iloczyn skalarny (x,y Przesrzen uniarna prehilberowska + zdefiniowano norme (x,x Malowanie jednym pedzlem Malowanie jednym pedzlem polega na odworzeniu obrazu w odcieniach jednego koloru np. piekne odcienie rozowego. Majac dany wekor koloru rozowego C = (255, 128, 128 i piksel obrazka A = (r, g, b wyliczamy najpierw wspolczynnik skalowania c: ( A, C c =, a nasepnie skalujemy wekor C o warosc c czyli nowa warosc piksela A = c C. Jako bonus, wzor ( C, C na iloczyn skalarny: (A,C = a 1 c 1 + a 2 c 2 + a 3 c 3. Filracja barw Filracja barw polega na zmieszaniu obrazu oryginalnego z obrazu namalowanego jednym pedzlem. Dodajemy obraz oryginalny (z waga np. 0.8 do obrazu monochromaycznego (powiedzmy z waga 0.2. Goowe. Laczenie obrazow za pomoca rzuowania kolorow Jak malowanie jednym pedzlem, ylko kolor pedzla w kazdym pikselu bierzemy z drugiego obrazka. Filr Gabora Filr Gabora należy do filrów sploowych. Jego maska o dwoch filrow skladowych. Skladowa s o zespolona skladowa sinusoidalna i jej wzor o. Skladowa g o gaussian evenlop (jakkolwiek glupio by o nie brzmialo po polsku i jej wzor o - powsaje z pomnozenia. Filr en sluzy m.in. do wykrywania skladowych o roznych kaach nachylenia. Ka kóry będziemy wykrywac można wyliczyc ze wzoru. Paramery σ x, σ y określają szerokośc pasma przepusowego filru (lub, jak ko woli, sandardowe odchylenie. Można przyjac, ze ich miara sa piksele. Tak wiec, usawiajac warosci sigm na odpowiednio 40 i 50 oraz ka na -45, wypadaloby usalic rozmiar maski na 128x128!

16 Składowa wekora wzdłuż innych wekorów wzajemnie orogonalnych Wekor A wyrażamy jako kombinację liniową wzajemnie oragonalnych wekorów X 1..X n : Wersja macierzowa obliczeń:, c 1..c n skalary. Wersja ieracyjna obliczeń: Oronormalizacja Wekory bazy są oronormalne jeśli są wzajemnie oragonalne (iloczyny skalarne wynoszą 0 oraz unormowane do 1. Oronormalizacja przekszałcenie wekorów liniowo niezależnych w oronormalne. Proces oronormalizacji Grama-Schmida: dla wekorów wejściowych X 1..X n, obliczamy wekory wyjściowe (zoronormalizowane Y 1..Y n. Najpierw obliczamy Y 1 : Nasępnie kolejne wekory Y 2..Y n : Inny (bardziej czyelny wzór na obliczanie Y k o: k 1 ( X k, Yi Y k = X k Y 2 i, (X, Y iloczyn skalarny; X - norma i= 1 Y i Orogonalność funkcji zespolonych, f(, g( o funkcje kórych oragonalność badamy; g*( sprzężenie warości funkcji Funkcje f(, g( są oragonalne jeśli warość c jes zerowa. Szereg rygonomeryczny Chcemy zapisać funkcję f( w przedziale jako ciąg współczynników a0, a1, a2,..., b1, b2,... Aby złożyć warość funkcji ze współczynników, dokonujemy operacji:

17 ,, Współczynniki z funkcji f( uzyskuje się nasępująco: Szereg wykładniczy Przedsawiamy funkcję f( jako ciąg współczynników F n, Operacja złożenia warości funkcji ze współczynników: Liczenie współczynników F n : Odpowiedniki dla wersji dwuwymiarowej:,

18 Transformaa Fouriera Uwaga: ϖ jes ciągłe, nie jak w poprzednich ransformaach dyskrene! Wersja dwuwymiarowa:

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Proste metody przetwarzania obrazu

Proste metody przetwarzania obrazu Operacje na pikselach obrazu (operacje punktowe, bezkontekstowe) Operacje arytmetyczne Dodanie (odjęcie) do obrazu stałej 1 Mnożenie (dzielenie) obrazu przez stałą Operacje dodawania i mnożenia są operacjami

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 3 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 3 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Przetwarzanie analogowocyfrowe

Przetwarzanie analogowocyfrowe Przewarzanie analogowocyfrowe Z. Serweciński 05-03-2011 Przewarzanie u analogowego na cyfrowy Proces przewarzania u analogowego (ciągłego) na cyfrowy składa się z rzech podsawowych operacji: 1. Próbkowanie

Bardziej szczegółowo

Przetwarzanie obrazów rastrowych macierzą konwolucji

Przetwarzanie obrazów rastrowych macierzą konwolucji Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu

Bardziej szczegółowo

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ Ćwiczenie 8 ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ. Cel ćwiczenia Analiza złożonego przebiegu drgań maszyny i wyznaczenie częsoliwości składowych harmonicznych ego przebiegu.. Wprowadzenie

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Przetwarzanie obrazów wykład 4

Przetwarzanie obrazów wykład 4 Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

Python: JPEG. Zadanie. 1. Wczytanie obrazka

Python: JPEG. Zadanie. 1. Wczytanie obrazka Python: JPEG Witajcie! Jest to kolejny z serii tutoriali uczący Pythona, a w przyszłości być może nawet Cythona i Numby Jeśli chcesz nauczyć się nowych, zaawansowanych konstrukcji to spróbuj rozwiązać

Bardziej szczegółowo

Filtracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla):

Filtracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla): WYKŁAD 3 Operacje sąsiedztwa Są to operacje, w których na wartość zadanego piksla obrazu wynikowego q o współrz. (i,j) mają wpływ wartości piksli pewnego otoczenia piksla obrazu pierwotnego p o współrzędnych

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie trzecie Operacje na dwóch obrazach 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z operacjami jakie możemy wykonywać na dwóch obrazach,

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Przekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu

Przekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu Definicja Przekształcenia kontekstowe są to przekształcenia które dla wyznaczenia wartości jednego punktu obrazu wynikowego trzeba dokonać określonych obliczeń na wielu punktach obrazu źródłowego. Przekształcenia

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

Analiza i Przetwarzanie Obrazów. Szyfrowanie Obrazów. Autor : Mateusz Nawrot

Analiza i Przetwarzanie Obrazów. Szyfrowanie Obrazów. Autor : Mateusz Nawrot Analiza i Przetwarzanie Obrazów Szyfrowanie Obrazów Autor : Mateusz Nawrot 1. Cel projektu Celem projektu jest zaprezentowanie metod szyfrowania wykorzystujących zmodyfikowane dane obrazów graficznych.

Bardziej szczegółowo

Rozciąganie histogramu

Rozciąganie histogramu Rozciąganie histogramu Histogram jest wykresem przedstawiającym częstość występowania pikseli o danej jaskrawości, jasności, barwie. Raster 1 1 3 1 0 2 2 2 3 3 3 1 1 4 0 0 0 3 1 3 4 1 3 3 3 1 3 2 3 5 1

Bardziej szczegółowo

Ćwiczenie 12 Różdżka, szybkie zaznaczanie i zakres koloru

Ćwiczenie 12 Różdżka, szybkie zaznaczanie i zakres koloru Ćwiczenie 12 Różdżka, szybkie zaznaczanie i zakres koloru Różdżka 1. zaznacza wszystkie piksele o podobnym kolorze w zakresie Tolerancji ustalanej na pasku Opcji, 2. ma zastosowanie dla obszarów o dość

Bardziej szczegółowo

Ćwiczenie 6. Transformacje skali szarości obrazów

Ćwiczenie 6. Transformacje skali szarości obrazów Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 6. Transformacje skali szarości obrazów 1. Obraz cyfrowy Obraz w postaci cyfrowej

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Maskowanie i selekcja

Maskowanie i selekcja Maskowanie i selekcja Maska prostokątna Grafika bitmapowa - Corel PHOTO-PAINT Pozwala definiować prostokątne obszary edytowalne. Kiedy chcemy wykonać operacje nie na całym obrazku, lecz na jego części,

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

Operacje przetwarzania obrazów monochromatycznych

Operacje przetwarzania obrazów monochromatycznych Operacje przetwarzania obrazów monochromatycznych Obraz pobrany z kamery lub aparatu często wymaga dalszej obróbki. Jej celem jest poprawienie jego jakości lub uzyskaniem na jego podstawie określonych

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Rozpoznawanie Twarzy i Systemy Biometryczne

Rozpoznawanie Twarzy i Systemy Biometryczne Filtry Plan wykładu Przegląd dostępnych filtrów Zastosowanie filtrów na różnych etapach pracy systemu Dalsze badania Kontrast i ostrość Kontrast różnica w kolorze i świetle między częściami ś i obrazu

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Przetwarzanie obrazów

Przetwarzanie obrazów Przetwarzanie obrazów Zajęcia 11 Filtracje przestrzenne obrazów rastrowych (2). Zasady wykonania ćwiczenia Obrazy wynikowe do zadań zapisujemy w pliku nazwiskonr.rvc (bieżące nr 1) a komentarze do wyników

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

Segmentacja przez detekcje brzegów

Segmentacja przez detekcje brzegów Segmentacja przez detekcje brzegów Lokalne zmiany jasności obrazu niosą istotną informację o granicach obszarów (obiektów) występujących w obrazie. Metody detekcji dużych, lokalnych zmian jasności w obrazie

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 4 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Filtry górnoprzepustowe - gradienty Gradient - definicje Intuicyjnie, gradient jest wektorem, którego zwrot wskazuje

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie piate Filtrowanie obrazu Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z pojęciami szumu na obrazie oraz metodami redukcji szumów przez

Bardziej szczegółowo

GRAFIKA RASTROWA. WYKŁAD 1 Wprowadzenie do grafiki rastrowej. Jacek Wiślicki Katedra Informatyki Stosowanej

GRAFIKA RASTROWA. WYKŁAD 1 Wprowadzenie do grafiki rastrowej. Jacek Wiślicki Katedra Informatyki Stosowanej GRAFIKA RASTROWA WYKŁAD 1 Wprowadzenie do grafiki rastrowej Jacek Wiślicki Katedra Informatyki Stosowanej Grafika rastrowa i wektorowa W grafice dwuwymiarowej wyróżnia się dwa rodzaje obrazów: rastrowe,

Bardziej szczegółowo

Operacje morfologiczne w przetwarzaniu obrazu

Operacje morfologiczne w przetwarzaniu obrazu Przekształcenia morfologiczne obrazu wywodzą się z morfologii matematycznej działu matematyki opartego na teorii zbiorów Wykorzystuje się do filtracji morfologicznej, wyszukiwania informacji i analizy

Bardziej szczegółowo

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH. Cel ćwiczenia Celem ćwiczenia jes poznanie właściwości przyrządów i przeworników pomiarowych związanych ze sanami przejściowymi powsającymi po

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

Formaty obrazów rastrowych biblioteki PBM

Formaty obrazów rastrowych biblioteki PBM Formaty obrazów rastrowych biblioteki PBM Reprezentacja obrazu Obrazy pobierane z kamery, bądź dowolnego innego źródła, mogą być składowane na pliku dyskowym w jednym z wielu istniejących formatów zapisu

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University.

Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University. Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 14 Wykorzystanie warstw Opis zadania Obrazy do ćwiczeń Zadania

Bardziej szczegółowo

i ruchów użytkownika komputera za i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Promotor: dr Adrian Horzyk

i ruchów użytkownika komputera za i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Promotor: dr Adrian Horzyk System śledzenia oczu, twarzy i ruchów użytkownika komputera za pośrednictwem kamery internetowej i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Mirosław ł Słysz Promotor:

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie drugie Podstawowe przekształcenia obrazu 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami obrazu wykonywanymi

Bardziej szczegółowo

Przetwarzanie obrazów wykład 2

Przetwarzanie obrazów wykład 2 Przetwarzanie obrazów wykład 2 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Etapy obróbki pozyskanego obrazu Obróbka wstępna

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji

Bardziej szczegółowo

INFORMATYKA WSTĘP DO GRAFIKI RASTROWEJ

INFORMATYKA WSTĘP DO GRAFIKI RASTROWEJ INFORMATYKA WSTĘP DO GRAFIKI RASTROWEJ Przygotowała mgr Joanna Guździoł e-mail: jguzdziol@wszop.edu.pl WYŻSZA SZKOŁA ZARZĄDZANIA OCHRONĄ PRACY W KATOWICACH 1. Pojęcie grafiki komputerowej Grafika komputerowa

Bardziej szczegółowo

Techniki wizualizacji. Ćwiczenie 4. Podstawowe algorytmy przetwarzania obrazów

Techniki wizualizacji. Ćwiczenie 4. Podstawowe algorytmy przetwarzania obrazów Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Techniki wizualizacji Ćwiczenie 4 Podstawowe algorytmy przetwarzania obrazów

Bardziej szczegółowo

Regulatory. Zadania regulatorów. Regulator

Regulatory. Zadania regulatorów. Regulator Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD 1. Cel ćwiczenia Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD Celem ćwiczenia jes poznanie własności dynamicznych diod półprzewodnikowych. Obejmuje ono zbadanie sanów przejściowych podczas procesu przełączania

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1 Analiza danych Drzewa decyzyjne. Enropia. Jakub Wróblewski jakubw@pjwsk.edu.pl hp://zajecia.jakubw.pl/ DRZEWA DECYZYJNE Meoda reprezenacji wiedzy (modelowania ablic decyzyjnych). Pozwala na przejrzysy

Bardziej szczegółowo

Filtracja w domenie przestrzeni

Filtracja w domenie przestrzeni 1 Filtracja Filtracja w domenie przestrzeni Filtracja liniowa jest procesem splotu (konwolucji) obrazu z maską (filtrem). Dla dwuwymiarowej i dyskretnej funkcji filtracja dana jest wzorem: L2(m, n) = (w

Bardziej szczegółowo

Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych.

Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych. Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych. Słowa kluczowe: teledetekcja, filtracja obrazu, segmentacja obrazu, algorytmy

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 6 Temat: Operacje sąsiedztwa wyostrzanie obrazu Wykonali: 1. Mikołaj Janeczek

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Obraz i komputer. Trzy dziedziny informatyki. Podział przede wszystkim ze względu na dane wejściowe i wyjściowe

Obraz i komputer. Trzy dziedziny informatyki. Podział przede wszystkim ze względu na dane wejściowe i wyjściowe Obraz i komputer Trzy dziedziny informatyki Grafika komputerowa Przetwarzanie obrazów Rozpoznawanie obrazów Podział przede wszystkim ze względu na dane wejściowe i wyjściowe Grafika komputerowa Dane wejściowe

Bardziej szczegółowo

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Grafika komputerowa. Oko posiada pręciki (100 mln) dla detekcji składowych luminancji i 3 rodzaje czopków (9 mln) do detekcji koloru Żółty

Grafika komputerowa. Oko posiada pręciki (100 mln) dla detekcji składowych luminancji i 3 rodzaje czopków (9 mln) do detekcji koloru Żółty Grafika komputerowa Opracowali: dr inż. Piotr Suchomski dr inż. Piotr Odya Oko posiada pręciki (100 mln) dla detekcji składowych luminancji i 3 rodzaje czopków (9 mln) do detekcji koloru Czerwony czopek

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz

Bardziej szczegółowo

Zestaw 3. - Zapis liczb binarnych ze znakiem 1

Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b

Bardziej szczegółowo

Założenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG

Założenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo