Filtracja obrazu operacje kontekstowe

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Filtracja obrazu operacje kontekstowe"

Transkrypt

1 Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja obrazu w przypadku jego degradacji Filtry liniowe i nieliniowe w dziedzinie przestrzennej obrazu Filtry liniowe bazują na operacjach liniowych (łatwiejsze w realizacji). Filtr jest liniowy jeśli funkcja go realizująca spełniają dwa warunki: jest addytywna jest jednorodna Filtry nieliniowe oferują bogatsze możliwości ale są trudniejsze w realizacji 1 Filtracja obrazu koncepcja Degradacja Filtr odwrotny Odtworzenie obrazu poddanego degradacji poprzez zastosowanie odpowiedniego filtru odwrotnego Na wyjściu procesu uzyskuje się estymatę obrazu poddawanego rekonstrukcji Podstawowy problem brak znajomości funkcji degradacji oraz zakłóceń (nie można zbudować filtru odwrotnego dokładnie odpowiadającego rzeczywistości) W praktyce metody rekonstrukcji i poprawy jakości polegają na heurystycznym aproksymowaniu nieznanego filtru odwrotnego 2

2 Splot funkcji (konwolucja) Splot jest zdefiniowany na całym obszarze zmiennej x ale funkcja h może mieć skończoną dziedzinę. W takim przypadku splot z funkcją h staje się filtrem. Przykład filtrowanie na zasadzie obliczania lokalnie wartości średnich pewnej zaszumionej funkcji f Filtr jako splot 3 Splot dyskretny Funkcja obrazowa jest dwuwymiarowa i dyskretna, splot upraszcza się do sumowania - okno filtru (maska) z wagami o wymiarach 2a+1 na 2b+1 Własności splotu (przydatne w realizacji praktycznej): łączność pozwala na rozdzielenie filtrowania dowolnie dużą maską na kolejne filtrowania za pomocą małych masek rozdzielność pozwala na zastąpienie filtracji dwuwymiarowego obrazu złożeniem filtracji jednowymiarowych 4

3 Splot dyskretny dla otoczenia 3x3 Realizacja praktyczna operacji splotu wymaga utworzenia nowego bufora dla obrazu wynikowego (w przeciwieństwie do operacji punktowych)! 5 Realizacja filtracji poprzez operację korelacji (stosowana w praktyce) Dla masek symetrycznych splot jest identyczny z korelacją Filtr dolnoprzepustowy powinien przenosić składową stałą suma wag powinna wynosić 1 Filtr górnoprzepustowy nie przenosi składowej stałej suma wag powinna wynosić 0 6

4 Filtry dolnoprzepustowe W współczynnik normalizacji suma wag maski filtru 1 a 1 1 b 1 b b 2 b b > 1 1 b 1 Filtr Gaussa W=9 W=8+a W=(b+2) 2 W=9 7 Filtry dolnoprzepustowe Filtr uśredniający W=9 3x3 Filtr uśredniający W=121 11x11 8

5 Filtr Gaussa b=2,5 imnoise(i,'gaussian',0,.005) Filtr uśredniający W = 7 9 Filtry górnoprzepustowe W=1 W=1 W= W=16 Filtr górnoprzepustowy 10

6 Filtry górnoprzepustowe wykrywające krawędzie Krawędź to granica pomiędzy dwoma regionami o różniących się poziomach jasności. Podstawą większości technik wykrywania krawędzi jest porównywanie wartości lokalnych pochodnych stosując metody gradientowe z określonym progiem Gradient dla obrazu w punkcie Moduł gradientu Operatory Robertsa pion poziom skos 11 Działanie operatorów Robertsa poziom pion skos pion poziom 12

7 Operatory Prewitta Aproksymują pierwszą pochodną, gradient może być estymowany dla ośmiu kierunków, największa wartość estymowana wskazuje kierunek gradientu. Pierwsze trzy maski operatora mają postać Operatory Sobela Mniej czułe na szumy, daje silniejszą odpowiedź Operatory Sobela Binaryzacja Filtry wykrywające narożniki przykład maski Robinsona

8 Filtry wyostrzające (laplasjany) Laplasjany - filtry liniowe oparte o drugie pochodne cząstkowe mają maskę symetryczną (nie mają charakteru kierunkowego), mogą służyć do wyostrzania obrazu oraz wykrywania krawędzi (produkuje podwójny kontur i czuły na szumy dlatego poprzedza się filtrem Gaussa) = Korelacja obrazu z wzorcem Współczynnik korelacji Filtracja obrazu Operację korelacji często wykorzystuje się do prostego porównywania obrazu (fragmentów obrazu) z nauczonym wzorcem. Wartość korelacji określa stopień dopasowania obszaru obrazu do wzorca Metoda taka jest bardzo prosta ale jest czuła na zakłócenia, zmianę orientacji i czasochłonna dla dużych wzorców K R=0,993 16

9 Filtry logiczne Filtracja obrazu filtry nieliniowe Filtracja logiczna jest najprostszym przykładem filtracji nieliniowej. Polega na badaniu wartości wyrażenia logicznego, które opisuje związki między punktami z dowolnie wybranego sąsiedztwa w zależności od potrzeb. Najczęściej wybiera się otoczenie w postaci czterosąsiedztwa z punktem analizowanym i stosuje się przede wszystkim dla obrazów binarnych Przykładowe reguły a b X c d Wyeliminowanie zakłóceń w postaci izolowanych punktów i poziomych linii o szerokości jednego piksela Usunięcie izolowanych pojedynczych punktów 17 Filtracja medianowa Filtracja obrazu filtry nieliniowe Wartość wynikowa punktu jest medianą (wartością środkową) zbioru punktów z sąsiedztwa branych pod uwagę do filtracji Zaleta filtrów medianowych zdolność do usuwania większości lokalnych zakłóceń i szumów typu sól i pieprz. Filtry medianowe nie powodują zamazywania krawędzi i drobnych detali w porównaniu do filtracji liniowej i metod konwolucyjnych Filtracja medianowa dla zakłócenia Przed filtracją Po filtracji Filtr medianowy Filtr uśredniający 18

10 Filtracja obrazu filtry nieliniowe Filtracja medianowa dla krawędzi Przed filtracją Po filtracji Filtr medianowy Filtr uśredniający 19 Filtracja obrazu filtry nieliniowe Filtry lokalnego maksimum i minimum Stosowane jako podstawowe operatory morfologiczne odpowiednio dylatacji i erozji na obrazach monochromatycznych Element strukturalny Dylatacja Erozja 20

Przekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu

Przekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu Definicja Przekształcenia kontekstowe są to przekształcenia które dla wyznaczenia wartości jednego punktu obrazu wynikowego trzeba dokonać określonych obliczeń na wielu punktach obrazu źródłowego. Przekształcenia

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego

Bardziej szczegółowo

Przetwarzanie obrazów rastrowych macierzą konwolucji

Przetwarzanie obrazów rastrowych macierzą konwolucji Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność

Bardziej szczegółowo

Grafika komputerowa. Dr inż. Michał Kruk

Grafika komputerowa. Dr inż. Michał Kruk Grafika komputerowa Dr inż. Michał Kruk Operacje kontekstowe Z reguły filtry używane do analizy obrazów zakładają, że wykonywane na obrazie operacje będą kontekstowe Polega to na wyznaczeniu wartości funkcji,

Bardziej szczegółowo

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 4 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Filtry górnoprzepustowe - gradienty Gradient - definicje Intuicyjnie, gradient jest wektorem, którego zwrot wskazuje

Bardziej szczegółowo

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny. Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy

Bardziej szczegółowo

Politechnika Świętokrzyska. Laboratorium. Przetwarzanie obrazów medycznych. Ćwiczenie 5. Filtracja kontekstowa obrazów.

Politechnika Świętokrzyska. Laboratorium. Przetwarzanie obrazów medycznych. Ćwiczenie 5. Filtracja kontekstowa obrazów. Politechnika Świętokrzyska Laboratorium Przetwarzanie obrazów medycznych Ćwiczenie 5 Filtracja kontekstowa obrazów. Cel ćwiczenia Celem ćwiczenia jest zdobucie umiejętności tworzenia funkcji realizujących

Bardziej szczegółowo

Przetwarzanie obrazów wykład 3

Przetwarzanie obrazów wykład 3 Przetwarzanie obrazów wykład 3 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Operacje kontekstowe (filtry) Operacje polegają

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie piate Filtrowanie obrazu Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z pojęciami szumu na obrazie oraz metodami redukcji szumów przez

Bardziej szczegółowo

Filtracja w domenie przestrzeni

Filtracja w domenie przestrzeni 1 Filtracja Filtracja w domenie przestrzeni Filtracja liniowa jest procesem splotu (konwolucji) obrazu z maską (filtrem). Dla dwuwymiarowej i dyskretnej funkcji filtracja dana jest wzorem: L2(m, n) = (w

Bardziej szczegółowo

Filtracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla):

Filtracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla): WYKŁAD 3 Operacje sąsiedztwa Są to operacje, w których na wartość zadanego piksla obrazu wynikowego q o współrz. (i,j) mają wpływ wartości piksli pewnego otoczenia piksla obrazu pierwotnego p o współrzędnych

Bardziej szczegółowo

Przetwarzanie obrazów wykład 4

Przetwarzanie obrazów wykład 4 Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)

Bardziej szczegółowo

Segmentacja przez detekcje brzegów

Segmentacja przez detekcje brzegów Segmentacja przez detekcje brzegów Lokalne zmiany jasności obrazu niosą istotną informację o granicach obszarów (obiektów) występujących w obrazie. Metody detekcji dużych, lokalnych zmian jasności w obrazie

Bardziej szczegółowo

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu

Bardziej szczegółowo

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 3 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Binaryzacja Binaryzacja jest jedną z ważniejszych ż czynności punktowego przetwarzania obrazów. Poprzedza prawie zawsze

Bardziej szczegółowo

maska 1 maska 2 maska 3 ogólnie

maska 1 maska 2 maska 3 ogólnie WYKŁAD 4 Detekcja krawędzi, operacje morfologiczne Detekcja (wykrywanie) krawędzi (edge detection) jest to technika segmentacji obrazu, polegająca na znajdowaniu piksli krawędziowych przez sprawdzanie

Bardziej szczegółowo

Projekt 2: Filtracja w domenie przestrzeni

Projekt 2: Filtracja w domenie przestrzeni Projekt 2: Filtracja w domenie przestrzeni 1. 2. Wstęp teoretyczny a. Filtracja w domenie przestrzeni b. Krótko o szumie c. Filtracja d. Usuwanie szumu typu Salt and Pepper filtrem medianowym e. Wnioski

Bardziej szczegółowo

Analiza obrazu. wykład 6. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 6. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 6 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze

Bardziej szczegółowo

Rozpoznawanie Twarzy i Systemy Biometryczne

Rozpoznawanie Twarzy i Systemy Biometryczne Filtry Plan wykładu Przegląd dostępnych filtrów Zastosowanie filtrów na różnych etapach pracy systemu Dalsze badania Kontrast i ostrość Kontrast różnica w kolorze i świetle między częściami ś i obrazu

Bardziej szczegółowo

Filtracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej

Filtracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej Filtracja obrazów w dziedzinie częstotliwości w dziedzinie przestrzennej filtry liniowe filtry nieliniowe Filtracja w dziedzinie częstotliwości Obraz oryginalny FFT2 IFFT2 Obraz po filtracji f(x,y) H(u,v)

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 6 Temat: Operacje sąsiedztwa wyostrzanie obrazu Wykonali: 1. Mikołaj Janeczek

Bardziej szczegółowo

Przetwarzanie obrazów wykład 7. Adam Wojciechowski

Przetwarzanie obrazów wykład 7. Adam Wojciechowski Przetwarzanie obrazów wykład 7 Adam Wojciechowski Przekształcenia morfologiczne Przekształcenia podobne do filtrów, z tym że element obrazu nie jest modyfikowany zawsze lecz tylko jeśli spełniony jest

Bardziej szczegółowo

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,

Bardziej szczegółowo

Operacje morfologiczne w przetwarzaniu obrazu

Operacje morfologiczne w przetwarzaniu obrazu Przekształcenia morfologiczne obrazu wywodzą się z morfologii matematycznej działu matematyki opartego na teorii zbiorów Wykorzystuje się do filtracji morfologicznej, wyszukiwania informacji i analizy

Bardziej szczegółowo

WSTĘP DO PRZETWARZANIA OBRAZÓW. Jak znaleźć ciekawe rzeczy na zdjęciu? mgr Krzysztof Szarzyński

WSTĘP DO PRZETWARZANIA OBRAZÓW. Jak znaleźć ciekawe rzeczy na zdjęciu? mgr Krzysztof Szarzyński WSTĘP DO PRZETWARZANIA OBRAZÓW Jak znaleźć ciekawe rzeczy na zdjęciu? mgr Krzysztof Szarzyński Czym jest obraz? Na nasze potrzeby będziemy zajmować się jedynie obrazami w skali szarości. Większość z omawianych

Bardziej szczegółowo

Przetwarzanie obrazów. Grupy metod przetwarzania obrazu. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe

Przetwarzanie obrazów. Grupy metod przetwarzania obrazu. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe Przetwarzanie obrazów Ogólna definicja Algorytm przetwarzający obraz to algorytm który, otrzymując na wejściu obraz wejściowy f, na wyjściu zwraca takŝe obraz (g). Grupy metod przetwarzania obrazu Przekształcenia

Bardziej szczegółowo

Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych.

Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych. Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych. Słowa kluczowe: teledetekcja, filtracja obrazu, segmentacja obrazu, algorytmy

Bardziej szczegółowo

Transformata Fouriera i analiza spektralna

Transformata Fouriera i analiza spektralna Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady

Bardziej szczegółowo

Laboratorium Cyfrowego Przetwarzania Obrazów

Laboratorium Cyfrowego Przetwarzania Obrazów Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 4 Filtracja 2D Opracowali: - dr inż. Krzysztof Mikołajczyk - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej,

Bardziej szczegółowo

Przetwarzanie i Kompresja Obrazów. Filtracja

Przetwarzanie i Kompresja Obrazów. Filtracja Przetwarzanie i Kompresja Obrazów. acja Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk 7 kwietnia 206

Bardziej szczegółowo

Operacje kontekstowe (filtry)

Operacje kontekstowe (filtry) Operacje kontekstowe (filtry) Operacje polegaj na modyfikacji poszczególnych elementów obrazu w zale no ci od stanu ich samych i stanu ich otoczenia. Ze wzgl du na kontekstowo mog zajmowa du o czasu, ale

Bardziej szczegółowo

dr inż. Tomasz Krzeszowski

dr inż. Tomasz Krzeszowski Metody cyfrowego przetwarzania obrazów dr inż. Tomasz Krzeszowski 2017-05-20 Spis treści 1 Przygotowanie do laboratorium... 3 2 Cel laboratorium... 3 3 Przetwarzanie obrazów z wykorzystaniem oprogramowania

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Ćwiczenia z grafiki komputerowej 5 FILTRY. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University. Październik 2015

Ćwiczenia z grafiki komputerowej 5 FILTRY. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University. Październik 2015 Ćwiczenia z grafiki komputerowej 5 FILTRY Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 12 Wykorzystanie warstw Opis zadania Obrazy do ćwiczeń Zadanie ilustruje

Bardziej szczegółowo

ALGORYTMY PRZETWARZANIA OBRAZÓW Projekt. Aplikacja przetwarzająca obrazy z możliwością eksportu i importu do programu MS Excel.

ALGORYTMY PRZETWARZANIA OBRAZÓW Projekt. Aplikacja przetwarzająca obrazy z możliwością eksportu i importu do programu MS Excel. Grupa IZ07IO1 Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT ALGORYTMY PRZETWARZANIA OBRAZÓW Projekt Aplikacja przetwarzająca obrazy z możliwością eksportu i importu do programu MS Excel. Wykonali:

Bardziej szczegółowo

Przetwarzanie obrazów wykład 6. Adam Wojciechowski

Przetwarzanie obrazów wykład 6. Adam Wojciechowski Przetwarzanie obrazów wykład 6 Adam Wojciechowski Przykłady obrazów cyfrowych i ich F-obrazów Parzysta liczba powtarzalnych wzorców Transformata Fouriera może być przydatna przy wykrywaniu określonych

Bardziej szczegółowo

Przetwarzanie obrazów

Przetwarzanie obrazów Przetwarzanie obrazów Zajęcia 11 Filtracje przestrzenne obrazów rastrowych (2). Zasady wykonania ćwiczenia Obrazy wynikowe do zadań zapisujemy w pliku nazwiskonr.rvc (bieżące nr 1) a komentarze do wyników

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przekształcenia geometryczne Obroty Przesunięcia Odbicia Rozciągnięcia itp Przekształcenia geometryczne Obroty Wielokrotność 90 stopni Inne Przekształcenia geometryczne Obroty Wielokrotność

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 3

Analiza obrazów - sprawozdanie nr 3 Analiza obrazów - sprawozdanie nr 3 Przekształcenia morfologiczne Przekształcenia morfologiczne wywodzą się z morfologii matematycznej, czyli dziedziny, która opiera się na teorii zbiorów, topologii i

Bardziej szczegółowo

Analiza obrazów. Segmentacja i indeksacja obiektów

Analiza obrazów. Segmentacja i indeksacja obiektów Analiza obrazów. Segmentacja i indeksacja obiektów Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 Analiza obrazu Analiza obrazu

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT

Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT 3-1 Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT Grupa BD2,TC1, Zespół 2 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń laboratoryjnych Ćwiczenie nr3 Temat: Operacje sąsiedztwa wygładzanie i wyostrzanie

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I ELEKTRONIKI KATEDRA TELEKOMUNIKACJI Praca dyplomowa magisterska Imię i nazwisko Kierunek studiów Temat pracy dyplomowej Opiekun pracy Adam Pyka Elektronika

Bardziej szczegółowo

9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie

9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie 9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie Obrazy binarne to takie, które mają tylko dwa poziomy szarości: 0 i 1 lub 0 i 255. ImageJ wykorzystuje to drugie rozwiązanie - obrazy

Bardziej szczegółowo

Algorytmy graficzne. Nieliniowa filtracja obrazów monochromatycznych

Algorytmy graficzne. Nieliniowa filtracja obrazów monochromatycznych Algorytmy graficzne Nieliniowa filtracja orazów monochromatycznych Metody oceny efektywności filtracji Analizując filtry redukujące zakłócenia w orazie cyfrowym konieczne jest określenie ścisłych miar

Bardziej szczegółowo

Proste metody przetwarzania obrazu

Proste metody przetwarzania obrazu Operacje na pikselach obrazu (operacje punktowe, bezkontekstowe) Operacje arytmetyczne Dodanie (odjęcie) do obrazu stałej 1 Mnożenie (dzielenie) obrazu przez stałą Operacje dodawania i mnożenia są operacjami

Bardziej szczegółowo

Ćwiczenie 2. Przetwarzanie graficzne plików. Wprowadzenie teoretyczne

Ćwiczenie 2. Przetwarzanie graficzne plików. Wprowadzenie teoretyczne Ćwiczenie Przetwarzanie graficzne plików Wprowadzenie teoretyczne ddytywne składanie kolorów (podstawowe barwy R, G, ) arwy składane addytywnie wykorzystywane są najczęściej w wyświetlaczach, czyli stosuje

Bardziej szczegółowo

WYKŁAD 7. Obraz z wykrytymi krawędziami: gdzie 1 - wartość konturu, 0 - wartość tła.

WYKŁAD 7. Obraz z wykrytymi krawędziami: gdzie 1 - wartość konturu, 0 - wartość tła. WYKŁAD 7 Elementy segmentacji Obraz z wykrytymi krawędziami: Detektory wzrostu (DTW); badanie pewnego otoczenia piksla Lokalizacja krawędzi metodami: - liczenie różnicy bezpośredniej, - liczenie różnicy

Bardziej szczegółowo

PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB

PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB Zygmunt Wróbel Robert Koprowski PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB EXIT 2004 2 3 SPIS TREŚCI Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja

Bardziej szczegółowo

Techniki wizualizacji. Ćwiczenie 4. Podstawowe algorytmy przetwarzania obrazów

Techniki wizualizacji. Ćwiczenie 4. Podstawowe algorytmy przetwarzania obrazów Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Techniki wizualizacji Ćwiczenie 4 Podstawowe algorytmy przetwarzania obrazów

Bardziej szczegółowo

6. Algorytmy ochrony przed zagłodzeniem dla systemów Linux i Windows NT.

6. Algorytmy ochrony przed zagłodzeniem dla systemów Linux i Windows NT. WYDZIAŁ: GEOLOGII, GEOFIZYKI I OCHRONY ŚRODOWISKA KIERUNEK STUDIÓW: INFORMATYKA STOSOWANA RODZAJ STUDIÓW: STACJONARNE I STOPNIA ROK AKADEMICKI 2014/2015 WYKAZ PRZEDMIOTÓW EGZAMINACYJNYCH: I. Systemy operacyjne

Bardziej szczegółowo

AKWIZYCJA I PRZETWARZANIE WSTĘPNE OBRAZU

AKWIZYCJA I PRZETWARZANIE WSTĘPNE OBRAZU AKWIZYCJA I PRZETWARZANIE WSTĘPNE OBRAZU WYKŁAD 2 Marek Doros Przetwarzanie obrazów Wykład 2 2 Akwizycja (pozyskiwanie) obrazu Akwizycja obrazu - przetworzenie obrazu obiektu fizycznego (f(x, y)) do postaci

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie czwarte Przekształcenia morfologiczne obrazu 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z definicjami operacji morfologicznych

Bardziej szczegółowo

Detekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych

Detekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych ZACNIEWSKI Artur 1 Detekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych WSTĘP Kod kreskowy (ang. barcode) to graficzna reprezentacja informacji, w postaci

Bardziej szczegółowo

Wykrywanie obiektów na obrazach cyfrowych. Marcin Kuczyński

Wykrywanie obiektów na obrazach cyfrowych. Marcin Kuczyński Wykrywanie obiektów na obrazach cyfrowych Marcin Kuczyński Spis treści 1. Wprowadzenie 2. System rozpoznawania obrazów 3. Wykrywanie w oparciu o kolor i tekstury 4. Wykrywanie krawędzi 5. Detekcja rogów

Bardziej szczegółowo

WYBRANE ZAGADNIENIA WIDZENIA MASZYNOWEGO

WYBRANE ZAGADNIENIA WIDZENIA MASZYNOWEGO Optomechatronika - Laboratorium Ćwiczenie 4 WYBRANE ZAGADNIENIA WIDZENIA MASZYNOWEGO 4.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobami akwizycji oraz analizy obrazu przydatnymi w kontroli

Bardziej szczegółowo

AKWIZYCJA I PRZETWARZANIE WSTĘPNE

AKWIZYCJA I PRZETWARZANIE WSTĘPNE WYKŁAD 2 AKWIZYCJA I PRZETWARZANIE WSTĘPNE Akwizycja (pozyskiwanie) obrazu Akwizycja obrazu - przetworzenie obrazu obiektu fizycznego (f(x,y)) do postaci zbioru danych dyskretnych (obraz cyfrowy) nadających

Bardziej szczegółowo

Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (1)

Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (1) Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (1) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów. Dr inż. Michał Kruk

Cyfrowe przetwarzanie obrazów. Dr inż. Michał Kruk Cyfrowe przetwarzanie obrazów Dr inż. Michał Kruk Przekształcenia morfologiczne Morfologia matematyczna została stworzona w latach sześddziesiątych w Wyższej Szkole Górniczej w Paryżu (Ecole de Mines de

Bardziej szczegółowo

CECHY BIOMETRYCZNE: ODCISK PALCA

CECHY BIOMETRYCZNE: ODCISK PALCA CECHY BIOMETRYCZNE: ODCISK PALCA Odcisk palca można jednoznacznie przyporządkować do osoby. Techniki pobierania odcisków palców: Czujniki pojemnościowe - matryca płytek przewodnika i wykorzystują zjawisko

Bardziej szczegółowo

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów: Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów

Bardziej szczegółowo

Metody kodowania wybranych cech biometrycznych na przykładzie wzoru naczyń krwionośnych dłoni i przedramienia. Mgr inż.

Metody kodowania wybranych cech biometrycznych na przykładzie wzoru naczyń krwionośnych dłoni i przedramienia. Mgr inż. Metody kodowania wybranych cech biometrycznych na przykładzie wzoru naczyń krwionośnych dłoni i przedramienia Mgr inż. Dorota Smorawa Plan prezentacji 1. Wprowadzenie do zagadnienia 2. Opis urządzeń badawczych

Bardziej szczegółowo

Operacje przetwarzania obrazów monochromatycznych

Operacje przetwarzania obrazów monochromatycznych Operacje przetwarzania obrazów monochromatycznych Obraz pobrany z kamery lub aparatu często wymaga dalszej obróbki. Jej celem jest poprawienie jego jakości lub uzyskaniem na jego podstawie określonych

Bardziej szczegółowo

Obraz jako funkcja Przekształcenia geometryczne

Obraz jako funkcja Przekształcenia geometryczne Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie trzecie Operacje na dwóch obrazach 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z operacjami jakie możemy wykonywać na dwóch obrazach,

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Automatyczne nastawianie ostrości

Automatyczne nastawianie ostrości Automatyczne nastawianie ostrości Systemy automatycznego nastawiania ostrości (AF) - budowa, działanie, zalety, wady, zastosowanie, algorytmy wyostrzania - przykłady Jakub Skalak http://www.fis.agh.edu.pl/~4skalak/

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 2 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 2 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami

Bardziej szczegółowo

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera

Bardziej szczegółowo

AUTOMATYCZNA AKTUALIZACJA BAZY DANYCH O BUDYNKACH W OPARCIU O WYSOKOROZDZIELCZĄ ORTOFOTOMAPĘ SATELITARNĄ

AUTOMATYCZNA AKTUALIZACJA BAZY DANYCH O BUDYNKACH W OPARCIU O WYSOKOROZDZIELCZĄ ORTOFOTOMAPĘ SATELITARNĄ AUTOMATYCZNA AKTUALIZACJA BAZY DANYCH O BUDYNKACH W OPARCIU O WYSOKOROZDZIELCZĄ ORTOFOTOMAPĘ SATELITARNĄ Ireneusz WYCZAŁEK Zakład Geodezji Politechnika Poznańska CEL Aktualizacja baz danych przestrzennych,

Bardziej szczegółowo

FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI

FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI ( frequency domain filters) Każdy człon F(u,v) zawiera wszystkie wartości f(x,y) modyfikowane przez wartości członów wykładniczych Za wyjątkiem trywialnych przypadków

Bardziej szczegółowo

Operacje morfologiczne

Operacje morfologiczne Laboratorium: Cyfrowe przetwarzanie obrazów i sygnaªów Operacje morfologiczne 1 Cel i zakres wiczenia Celem wiczenia jest zapoznanie si z wªasno±ciami prostych operacji morfologicznych: zw»ania/erozji

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Segmentacja obrazu. Segmentacja obrazu

Segmentacja obrazu. Segmentacja obrazu Cel segmentacji Podział obrazu na obszary odpowiadające poszczególnym, widocznym na obrazie obiektom. Towarzyszy temu zwykle indeksacja (etykietowanie) obiektów, czyli przypisanie każdemu obiektowi innej

Bardziej szczegółowo

1. Wprowadzenie do techniki cyfrowej, podstawowe prawa algebry boolowskiej,

1. Wprowadzenie do techniki cyfrowej, podstawowe prawa algebry boolowskiej, WYDZIAŁ GEOLOGII, GEOFIZYKI I OCHRONY ŚRODOWISKA KIERUNEK STUDIÓW: INFORMATYKA STOSOWANA RODZAJ STUDIÓW: STACJONARNE I STOPNIA ROK AKADEMICKI 2015/2016 WYKAZ PRZEDMIOTÓW EGZAMINACYJNYCH: I. Sieci komputerowe.

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie siódme Usuwanie tła i segmentacja 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z metodami usuwania tła z obrazu oraz algorytmami

Bardziej szczegółowo

Analiza szeregów czasowych: 2. Splot. Widmo mocy.

Analiza szeregów czasowych: 2. Splot. Widmo mocy. Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata

Bardziej szczegółowo

POBR Kolos 2 + kilka pyt. z egzaminu

POBR Kolos 2 + kilka pyt. z egzaminu POBR Kolos 2 + kilka pyt. z egzaminu 1. Podstawowe metody akwizycji obrazów. Akwizycja obrazów cyfrowych: kiedyś - lampa analizująca: przetwornik optoelektroniczny zapewniający dyskretyzację dziedziny

Bardziej szczegółowo

Deskryptory punktów charakterystycznych

Deskryptory punktów charakterystycznych Przetwarzanie i Rozpoznawanie Obrazów May 18, 2016 1/41 Wstęp 2/41 Idea Często spotykany (typowy) schemat przetwarzanie obrazu/sekwencji wideo: 1 Detekcja punktów charakterystycznych 2 Opis wyznaczonych

Bardziej szczegółowo

KOREKCJA OBRAZÓW CYFROWYCH DLA OPTYMALIZACJI ICH AUTOMATYCZNEGO POMIARU 1

KOREKCJA OBRAZÓW CYFROWYCH DLA OPTYMALIZACJI ICH AUTOMATYCZNEGO POMIARU 1 Alicja Ciach-Żelazko Regina Tokarczyk KOREKCJA OBRAZÓW CYFROWYCH DLA OPTYMALIZACJI ICH AUTOMATYCZNEGO POMIARU Streszczenie: Celem badań opisanych w artykule było przetestowanie wybranych metod korekcji

Bardziej szczegółowo

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji

Bardziej szczegółowo

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

Analiza obrazu. wykład 7. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 7. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 7 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, Filtry morfologiczne

Bardziej szczegółowo

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego

Bardziej szczegółowo

Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.

Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Strona 1 z 38 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko alicja@cbk.waw.pl 2 czerwca 2006 1 Omówienie danych 3 Strona główna Strona 2 z 38 2

Bardziej szczegółowo

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe

Bardziej szczegółowo

Alicja Ciach-Żelazko Regina Tokarczyk. 1. Wstęp

Alicja Ciach-Żelazko Regina Tokarczyk. 1. Wstęp Alicja Ciach-Żelazko Regina Tokarczyk Korekcja obrazów cyfrowych dla optymalizacji ich automatycznego pomiaru Streszczenie Celem badań opisanych w artykule było przetestowanie wybranych metod korekcji

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów (CPOB)

Cyfrowe Przetwarzanie Obrazów (CPOB) Cyfrowe Przetwarzanie Obrazów (CPOB) dr inż. Beata Leśniak-Plewińska pok. 40 (parter, niska cześć budynku Wydziału Mechatroniki) B.Lesniak-Plewinska@mchtr.pw.edu.pl zib.mchtr.pw.edu.pl Dydaktyka Przedmioty

Bardziej szczegółowo

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) . KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

1 Wprowadzenie. 1.1 Interakcja człowieka z maszyną. 1.2 Cel i zakres pracy

1 Wprowadzenie. 1.1 Interakcja człowieka z maszyną. 1.2 Cel i zakres pracy Spis treści 1 Wprowadzenie...2 1.1 Interakcja człowieka z maszyną...2 1.2 Cel i zakres pracy...2 2 Przedstawienie problemu...4 2.1 Zadanie obserwuj i uchwyć...4 2.2 Stan techniki światowej...4 3 Analiza

Bardziej szczegółowo

Technika audio część 2

Technika audio część 2 Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji

Bardziej szczegółowo