Michał Kremzer. Wykaz publikacji :

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Michał Kremzer. Wykaz publikacji :"

Transkrypt

1 Michał Kremzer Wykaz publikacji : 1) M. Kremzer : Zadania dla kółek matematycznych w liceum ( zadania 3,4,5, 6 ) Matematyka 5 / 1999 str. 303, 304, 305 2) M. Kremzer :,, Lanie wody średnie Matematyka 1 / 2000 str.37, 38, 48, 49, 50 3) M. Kremzer : Zadania dla kółek matematycznych w liceum ( zadanie 2 ) Matematyka 4 / 2000 str. 237, 238 4) M. Kremzer :,, Łamigłówka Matematyka 4 / 2000 str ) M. Kremzer :,, Testy dla maturzystów Matematyka 6 / 2000 str ) M. Kremzer :,, Czy tak można? Matematyka 4 / 2001 str ) M. Kremzer : Zadania dla kółek matematycznych w liceum ( zadania 5, 8 ) Matematyka 3 / 2002 str.174, 176, 177 8) M. Kremzer :,, Generator ciągów arytmetycznych Matematyka 3 / 2003 str.187 9) M. Kremzer : Zadania dla kółek matematycznych w liceum ( zadania 6, 7, 9 ) Matematyka 5 / 2003 str.300,302, ) M. Kremzer : Zadania konkursowe ( zadanie 1603 ) Matematyka 5 / 2003 str.304

2 11) M. Kremzer : Zadania konkursowe ( zadanie 1619 ) Matematyka 2 / 2004 str ) M. Kremzer :,, Twierdzenie Lagrange ' a -1 Matematyka 3 / 2004 str ) M. Kremzer :,, Pytania nieco przewrotne Magazyn Miłośników Matematyki 3 / 2004 str.11, 30 14) M. Kremzer :,, Niepoślednie nierówności pośrednie Magazyn Miłośników Matematyki 1 / 2005 str ) M. Kremzer :,, Symetrie Matematyka 3 / 2005 str.144, ) M. Kremzer :,, Czworokąt wklęsły Matematyka 5 / 2005 str ) M. Kremzer :,, Punkt i kąt Matematyka 1 /2006 str.8 18) M. Kremzer :,, Funkcje różnej parzystości Matematyka 2 / 2006 str.73, 84, 87, ) M. Kremzer :,, Twierdzenie -1 Matematyka 3 / 2006 str ) M. Kremzer :,, Funkcja i jej pochodne Matematyka 3 / 2006 str.155, ) M. Kremzer :,, Ciekawostka ze statystyki Matematyka 4 / 2006 str ) M. Kremzer :,, Nierówności i przedziały Matematyka 5 / 2006 str.268, 280, ) M. Kremzer :,, Funkcja i moduł Matematyka 6 / 2006 str.336, 339, 351, 354, ) M. Kremzer :,, Funkcja i moduł ( II ) Matematyka 7 / 2006 str.394, 398,444 25) M. Kremzer :,, Pole równe iloczynowi długości

3 boków Czasopismo dla nauczycieli szkół średnich nr 25 ( listopad grudzień / 2006 ) str ) M. Kremzer :,, Część całkowita Matematyka 10 / 2006 str.594, 619, ) M. Kremzer : Liga Zadaniowa Delty ( zadanie 534 ) Delta 1 / 2007 str.14 28) M. Kremzer :,, Dziwny wielomian Matematyka 1 / 2007 str.33 29) M. Kremzer :,, Tajemnicza pochodna Matematyka 1 / 2007 str.45 30) M. Kremzer :,, Prawda czy fałsz Matematyka 2 / 2007 str.82, ) M. Kremzer :,, Ciekawy trójkąt Matematyka 2 / 2007 str ) M. Kremzer :,, Łamana Matematyka 3 / 2007 str ) M. Kremzer :,, Z przymrużeniem oka Matematyka 4 / 2007 str.205, ) M. Kremzer :,, Ile można mieć rodzeństwa? Matematyka 4 / 2007 str ) M. Kremzer :,, Ciekawa nierówność Matematyka 5 / 2007 str ) M. Kremzer :,, Nie marnujmy talentów Matematyka 5 / 2007 str ) M. Kremzer :,, Dodatkowe założenie Matematyka 5 / 2007 str ) M. Kremzer :,, Przekorne trójkąty Matematyka 6 / 2007 str.332, 342, ) M. Kremzer :,, Uogólnienie twierdzenia

4 o dwusiecznej Matematyka 6 /2007 str ) M. Kremzer :,, Czworokąty i nierówności Matematyka 6 / 2007 str.358, 364, ) M. Kremzer :,, Funkcje w tabelce Czasopismo dla nauczycieli szkół średnich, nr 28 ( maj/ czerwiec 2007 ) str.34 42) M. Kremzer :,, Ciągi i funkcje Magazyn Miłośników Matematyki 3 / 2007 str.21, 22 43) M. Kremzer :,, Wielomiany inaczej Matematyka 7 / 2007 str.398, ) M. Kremzer :,, Ile rozwiązań Matematyka 7 / 2007 str.406, ) M. Kremzer :,, Średnie średnich Matematyka 8 / 2007 str.463, 478, ) M. Kremzer :,, Kąty w okręgu Matematyka 8 / 2007 str ) M. Kremzer :,, Funkcje trygonometryczne i ich pochodne Matematyka 8 / 2007 str ) M. Kremzer :,, Równania funkcyjne Matematyka 9 / 2007 str.525, ) M. Kremzer :,, Trzeba umieć sobie radzić Matematyka 9 / 2007 str ) M. Kremzer :,, Wyrazy wymierne i niewymierne Czasopismo dla nauczycieli szkół średnich nr 30 ( listopad grudzień / 2007 ) str.31 51) M. Kremzer :,, Układy równań z przedziałami

5 Matematyka 1 / 2008 str.58 52) M. Kremzer :,, Stereometria Matematyka 2 / 2008 str.73, 94 53) M. Kremzer :,, Średnie w trójkącie Matematyka 2 / 2008 str ) M. Kremzer :,, Styczne do wykresu funkcji Matematyka 2 / 2008 str ) M. Kremzer :,, Czworokąty dwuśrodkowe Czasopismo dla nauczycieli szkół średnich nr 31 ( styczeń luty / 2008 ) str ) M. Kremzer :,, Proste? Proste... Matematyka 3 / 2008 str.164, ) M. Kremzer :,, Statystyka Matematyka 4 / 2008 str.221, ) M. Kremzer :,, Potęgi i logarytmy inaczej Matematyka 4 / 2008 str.233, ) M. Kremzer :,, Okrąg dopisany do czworokąta Magazyn Miłośników Matematyki 2 / 2008 str.25 60) M. Kremzer :,, Przewrotne wielokąty Matematyka 5 / 2008 str.268, )M. Kremzer,, Symetrie prostych Matematyka 6 / 2008 str ) M. Kremzer,, Ciągi Matematyka 6 / 2008 str.365, 367, 368, ) M. Kremzer,, Liczy się wszystko Matematyka 6 / 2008 str ) M. Kremzer,, Czworokąty Matematyka 7 / 2008 str.404, ) M. Kremzer,, Nierówności Matematyka 8 / 2008 str. 457, 464

6 66) M. Kremzer,, Budowanie trójkąta Matematyka 8 / 2008 str ) M. Kremzer,, Obniżki, obniżki... Matematyka 8 / 2008 str ) M. Kremzer,, Kąty w ostrosłupie Czasopismo dla nauczycieli szkół średnich wrzesień / październik 2008 str ) M. Kremzer,, Nierówności funkcyjne Matematyka 9 / 2008 str.545, )M. Kremzer,, O nauczaniu matematyki w szkole średniej Matematyka 9 / 2008 str )M. Kremzer,, Największy dzielnik Matematyka 10 / 2008 str ) M. Kremzer,, Równe wielkości Nauczyciele i Matematyka plus Technologia Informacyjna Jesień 2008, nr 67 str )M. Kremzer,, Różnowartościowość Matematyka 1 / 2009 str 13, 43 74) M.Kremzer,, Kalendarz Czasopismo dla nauczycieli szkół podstawowych gimnazjów. Numer 48 Styczeń / luty 2009 str. 38

7 75) M. Kremzer,, Przekorne rozwiązanie Matematyka 2 / 2009 str. 83, )M. Kremzer,, Nierówność z,, trygonometrią Matematyka 2 / 2009 str )M. Kremzer Zadania konkursowe (zadanie 1748) Matematyka 2 / 2009 str ) M. Kremzer,, Szukamy liczb Czasopismo dla nauczycieli szkół średnich styczeń / luty 2009 str )M. Kremzer,, NWD i NWW Matematyka 3/ 2009 str. 147 i )M. Kremzer,, O argumentach Matematyka 3 / 2009 str. 158 i ) M. Kremzer:,, Nietypowe układy równań Matematyka 4 / 2009 str. 222, ) M. Kremzer,, Konkurs z nierówności kwadratowych Czasopismo dla nauczycieli szkół średnich marzec / kwiecień 2009 nr 37, str. 38, 39

8 83) M. Kremzer,, Co wiemy o przekątnej? Matematyka 5 / 2009 str. 272, ) M. Kremzer,, Maksimum i minimum Matematyka 5 / 2009 str ) M. Kremzer,, Część ułamkowa Matematyka 5 / 2009 str )M. Kremzer,, Całkowite promienie, pierwsze pole Matematyka 6 / 2009 str ) M. Kremzer,, Ile boków ma wielokąt? Matematyka 6 / 2009 str 367, ) M. Kremzer,, Przedziały liczbowe Matematyka 6 / 2009 str 371, ) M.Kremzer,, Podzielność,liczby pierwsze i złożone Czasopismo dla nauczycieli szkół średnich nr 38, maj / czerwiec 2009 str 34 35

9 90) M. Kremzer,,Punkty na okręgu Matematyka 7 / 2009 str. 395, ) M. Kremzer,, Dokładamy trójkąty Czasopismo dla nauczycieli szkół podstawowych i gimnazjów wrzesień / październik 2009 nr 51 str ) M. Kremzer,, Wymierne? Matematyka 8 / 2009 str. 457, )M. Kremzer,, Dla poszukiwaczy trójkątów Matematyka 8 / 2009 str. 491, ) M. Kremzer,, Chemiczny pierwiastek arytmetyczny Magazyn Miłośników Matematyki 2 / 2009 str ) M.Kremzer,, Ciąg w stożku Matematyka 9 / 2009 str. 540, ) M.Kremzer,, Iloczyn cechy i mantysy Matematyka 9 / 2009, str. 551, 571

10 97)M. Kremzer,, Nierówności funkcyjne - cz. II Matematyka 10 / 2009 str. 601, )M. Kremzer,, Suma funkcji Matematyka 10 / 2009 str. 613, ) M. Kremzer,, Środkowe i wysokości Czasopismo dla nauczycieli szkół średnich nr 40, listopad grudzień 2009 str ) M. Kremzer,, Co to za liczby? Matematyka 11 / 2009 str 654, ) Kremzer,, Pierwiastki wielokrotne Matematyka 11 / 2009 str. 665, 669 ( Publikacja nr 89 została wydrukowana również w numerze 53,, Matematyki w Szkole dla nauczycieli szkół podstawowych i gimnazjów - str. 37) 102)M. Kremzer,, Niezmienne odchylenie Matematyka 1 / 2010 str ) M.Kremzer : Zadania konkursowe ( zadanie 1772 ) Matematyka 1 / 2010 str. 54

11 104) M. Kremzer,, Ile miejsc zerowych? Matematyka 2 / 2010 str. 85, ) M. Kremzer,, Pary równań kwadratowych Matematyka 3 / 2010 str. 165, ) M. Kremzer,, Układy nierówności Matematyka 4/ 2010 str 231, ) M. Kremzer,, Nietypowe ostrosłupy Czasopismo dla nauczycieli matematyki marzec/ kwiecień 2010, nr 54 str ) M. Kremzer,, Co za równanie? Magazyn Miłośników Matematyki nr 4 / 2009, str ) M. Kremzer,, Kwadrat liczby naturalnej Czasopismo dla nauczycieli matematyki nr 55, maj, czerwiec 2010, str ) M. Kremzer,, Wartość bezwzględna Matematyka 6 / 2010 str.331, )M. Kremzer,, Złożenia funkcji i miejsca zerowe Matematyka 6 / 2010

12 str.370, ) M. Kremzer,, Złożenia wielomianów Matematyka 7 / 2010 str ) M.Kremzer Zadanie konkursowe zadanie 1787 Matematyka 7 / 2010 str ) M. Kremzer,, Co to za przedziały? Matematyka 8 / 2010 str. 471, ) M. Kremzer,, Boki i przekątne Czasopismo dla nauczycieli matematyki nr 56, wrzesień / październik 2010 str ) M. Kremzer :,, Tajemniczy wzór Matematyka 9 / 2010 str ) M. Kremzer :,, Czy istnieje...? Matematyka 11/2010 str.676, ) M. Kremzer : Zadania dla kółek matematycznych w liceum Matematyka 11/2010 str

13 119)M. Kremzer :,, Signum, cecha i mantysa Matematyka 2 / 2011 str. 46, )M. Kremzer :,, Własności złożenia funkcji Matematyka 2 / 2011 str. 54, )M. Kremzer,, W poszukiwaniu przykładów Matematyka 3 / 2011 str. 18, )M. Kremzer Zadanie na Konkurs Zadaniowy ( nr 1801 ) Matematyka 3 / 2011 str )M. Kremzer :,, Między funkcjami nr 59 marzec / kwiecień 2011 str ) M.Kremzer,, Wielomiany Matematyka 4 / 2011 str. 22, ) M.Kremzer :,, Przydatna tożsamość Matematyka 6 / 2011 str ) M. Kremzer :,, Wykonalność działań Matematyka 7 / 2011 str 32

14 127)M. Kremzer :,, Obwody Matematyka 7 / 2011 str )M. Kremzer : Zadanie konkursowe nr 1812 Matematyka 7 / 2011 str ) M.Kremzer :,, Część całkowita i średnie Matematyka 9/2011 str )M.Kremzer :,, Jaki to czworokąt? Matematyka 9/2011 str. 22, )M.Kremzer : Zadanie konkursowe nr 1818 Matematyka 9/2011 str )M.Kremzer :,,Nierówności wielomianowe Matematyka 9/2011 str ) M.Kremzer,, Czy znasz foremne wielokąty Matematyka 10 / 2011 str. 14, ) M. Kremzer,, Przewrotne funkcje Matematyka 11/2011 str ) M. Kremzer,, Najdłuższe przedziały Matematyka 11/2011

15 str ) M. Kremzer,, Wysokość średnią harmoniczną Matematyka 11/2011 str )M. Kremzer,, Trapez i przekątne Matematyka 1/2012 str )M.Kremzer,, Na wykresie Matematyka 1/2012 str )M.Kremzer,, Równe zbiory rozwiązań Matematyka 1/2012 str )M.Kremzer,, Złożenia Matematyka 1/2012 str )M.Kremzer,, Układ nierówności Matematyka 1/2012 str.46,50 142)M.Kremzer,, Znajome twierdzenie? Matematyka 1/2012 str )M. Kremzer :,, Ile cyfr? Matematyka 2/2012 str.23

16 144)M. Kremzer :,, Część całkowita i część ułamkowa Matematyka 2/2012 str )M.Kremzer : Rozwiązanie Zadania Konkursowego nr 1748 (wyróżnione i opublikowane w,, Matematyce ) Matematyka 10/2009 str )M.Kremzer : Rozwiązanie Zadania Konkursowego nr 1791(wyróżnione i opublikowane w,, Matematyce ) Matematyka 7/2011 str )M.Kremzer Co to za wielomiany? Matematyka 3/2012 str )M.Kremzer,, Podwójna nierówność Matematyka 3/2012 str )M.Kremzer,, Ekstrema i złożenia Matematyka 3/2012 str )M.Kremzer,, Wielomian i funkcja Matematyka 3/2012 str )M. Kremzer,, Wzrost powyżej średniej nr 64, marzec/kwiecień 2012 str )M.Kremzer,, Ciągi NWD Matematyka 4/2012

17 str )M.Kremzer,, Miejsca zerowe Matematyka 4/2012 str )M.Kremzer,, Suma cyfr Matematyka 4/2012 str )M.Kremzer Zadanie konkursowe nr 1831 Matematyka 4/2012 str )M.Kremzer,,Tangens kąta Matematyka 4/2012 str )M.Kremzer,, Trójkąt i trapez Matematyka 5/2012 str )M.Kremzer,, Wielomian nieparzystego stopnia Matematyka 5/2012 str )M.Kremzer,, Funkcje rosnące Matematyka 5/2012 str )M.Kremzer,, Liczba dzielników Matematyka 5/2012 str.47,54 161)M.Kremzer,,Okresy podstawowe Matematyka 5/2012 str )M.Kremzer,, Logarytmy Matematyka 5/2012 str,64

18 163)M.Kremzer,, Prostopadłe dwusieczne Matematyka 6/2012 str.32, )M.Kremzer,, Nierówność z silniami Matematyka 6/2012 str )M.Kremzer,, Dwie nierówności Matematyka 7/2012 str )M.Kremzer,, Funkcja Dirichleta jako złożenie Matematyka 7/2012 str )M.Kremzer,, Ciągi w wielomianie Matematyka 7/2012 str )M.Kremzer,, Czy dana liczba może być kwadratem? Matematyka 7/2012 str )M.Kremzer,, Zbiór wartości Matematyka 7/2012 str ) M.Kremzer,, Co to za czworokąty? Matematyka 8 / 2012 str )M.Kremzer,, Ciągi w trapezie Matematyka 8 / 2012 str. 50, )M.Kremzer,, Zaskakująca cecha Matematyka 8 / 2012 str )M.Kremzer,, Jakie liczby?

19 Matematyka 8 / 2012 str )M.Kremzer,, Podział prostokąta Matematyka 9 / 2012 str )M.Kremzer,, Dużo (?) niewiadomych Matematyka 9 / 2012 str )M.Kremzer,, Funkcje wymierne Matematyka 9 / 2012 str )M.Kremzer,, Wielomiany i pochodne Matematyka 9 / 2012 str )M.Kremzer,, Funkcje liniowe Matematyka 9 / 2012 str )M.Kremzer Zadania konkursowe ( nr 1846 i 1847 ) Matematyka 10 / 2012 str )M.Kremzer,, Potęgi i układy Matematyka 10 / 2012 str ) M.Kremzer : Zadania o liczbach wymiernych i niewymiernych Świat Matematyki 3 / 2012 str ) M.Kremzer :,, Wielokrotności Matematyka 11 / 2012 str ) M.Kremzer :,, Pomyśl o liczbach

20 nr 68, styczeń / luty 2013 str ) M. Kremzer,, Liczby całkowite Matematyka 2 / 2013 str ) M.Kremzer,, Z równości równość Matematyka 2 / 2013 str ) M.Kremzer,, Wymierne iloczyny Matematyka 2 / 2013 str ) M.Kremzer,, Liczby i ich cechy Matematyka 2 / 2013 str ) M.Kremzer,, Równe liczby dzielników Matematyka 2 / 2013 str ) M.Kremzer,, Okręgi dopisane Matematyka 2 / 2013 str ) M.Kremzer,, Symbol Newtona i podzielność Matematyka 2 / 2013 str ) M.Kremzer Zadania z ciągów arytmetycznych Świat Matematyki nr 25 ( 1/2013) str ) M.Kremzer Zadania z równań diofantycznych Świat Matematyki nr 25 ( 1/2013) str ) M.Kremzer,, Wymierne i niewymierne Matematyka 3 / 2013 str. 40

21 198) M.Kremzer,, Znak nierówności Matematyka 3 / 2013 str ) M.Kremzer,, Podzbiory Matematyka 3 / 2013 str ) M.Kremzer,, Cecha i wymierność Matematyka 3 / 2013 str ) M.Kremzer,, Para funkcji Matematyka 3 / 2013 str ) M.Kremzer,, Współczynnik i stopień Matematyka 4 / 2013 str ) M.Kremzer,, Największe rozwiązanie całkowite Matematyka 4 / 2013 str ) M.Kremzer,, Pewna suma Matematyka 4 / 2013 str ) M.Kremzer,, Czy to wielomian? Matematyka 4 / 2013 str ) M. Kremzer,, Analogia Zadanie konkursowe Matematyka 4 / 2013 str ) M.Kremzer,, Jeden przedział Matematyka 4 / 2013 str ) M.Kremzer,, Funkcje ciągłe i nieciągłe Matematyka 4 / 2013 str ) M.Kremzer,, Funkcje i mantysa Matematyka 4 / 2013 str ) M.Kremzer,, Funkcje i nierówności Matematyka 5 / 2013 str ) M.Kremzer,, Znajdź wielomian Matematyka 5 / 2013 str ) M.Kremzer,, Szukamy trójkątów maj / czerwiec 2013 (nr 70) str

22 213) M.Kremzer,, Ciągi arytmetyczne i geometryczne Matematyka 6 / 2013 str. 12, ) M.Kremzer,, Silnie! Matematyka 6 / 2013 str. 15, 44, ) M.Kremzer,, Jeszcze o pochodnej wielomianu Matematyka 6 / 2013 str. 53, ) M.Kremzer,, Miejsca zerowe wielomianu i jego pochodnej Matematyka 6 / 2013 str ) M.Kremzer,, Równania z cechą Świat Matematyki nr 26, str ) M.Kremzer,, Wielomiany Świat Matematyki nr 26, str ) M.Kremzer Pierwiastki powracają Świat Matematyki nr 26, str ) M.Kremzer,, Z dwóch wynika trzy Świat Matematyki nr 26, str ) M.Kremzer,, Znajdujemy liczby Świat Matematyki nr 26, str ) M.Kremzer,, Ciągi geometryczne Świat Matematyki nr 26, str ) M.Kremzer,, Funkcje liniowe Świat Matematyki nr 26, str ) M.Kremzer,, Dochodzenie Świat Matematyki nr 26, str ) M.Kremzer,, Bieg sukcesu Świat Matematyki nr 26, str ) M.Kremzer Zadania Świat Matematyki nr 26, str. 14, 15, 16, 18, 20, ) M.Kremzer,, Patrz, patrz, patrz! Matematyka 7 / 2013 str

23 228) M.Kremzer,, Równanie z cechą Matematyka 7 / 2013 str ) M.Kremzer,, Wymierne sumy Matematyka 7 / 2013 str ) M.Kremzer,,... 2, 3, 4 Świat Matematyki nr 27, str ) M.Kremzer,, Obliczenia na podstawie cechy Świat Matematyki nr 27, str ) M.Kremzer,, Dziesięć na pięć Świat Matematyki nr 27, str ) M.Kremzer,, Równanie diofantyczne Świat Matematyki nr 27, str ) M.Kremzer,, Ile Matematyka 8 / 2013 str. 46, ) M.Kremzer,, Minimalny przedział Matematyka 8 / 2013 str ) M.Kremzer,, NWW Matematyka 8 / 2013 str ) M.Kremzer,, Równanie f(x) = f(-x) Matematyka 8 / 2013 str. 63, ) M.Kremzer,, Suma, iloczyn i NWD Matematyka 9 / 2013 str ) M.Kremzer,, Usuwamy punkty Matematyka 9 / 2013 str ) M.Kremzer,, Nierówności liniowe Matematyka 9 / 2013 str ) M.Kremzer Zadanie do Ligi Zadaniowej nr 668 Delta 10 / 2013 str ) M.Kremzer,, Tajemnicza funkcja Matematyka 10 / 2013, str )M.Kremzer,, Liczby nieparzystocyfrowe

24 Matematyka 10 / 2013, str ) M.Kremzer,, Jakie znaki dają wielomiany? Matematyka 10 / 2013, str ) M.Kremzer,, Zadania z arytmetyki Matematyka 11 / 2013, str ) M.Kremzer,, Cyfrowe wielomiany Matematyka 11 / 2013, str ) M.Kremzer,, Równania logarytmiczne Matematyka 11 / 2013, str. 16, ) M.Kremzer,, Iloczyny i sumy cyfr Matematyka 11 / 2013, str ) M.Kremzer,, Największy kwadrat nie większy od N Matematyka 1 / 2014, str ) M.Kremzer,, Wszędzie kwadraty Matematyka 1 / 2014, str ) M.Kremzer,, Dzielniki Matematyka 1 / 2014, str ) M.Kremzer,, Wielomian z sinusem Matematyka 1 / 2014, str ) M.Kremzer,, Pięciokąt różnoboczny Matematyka 1 / 2014, str ) M.Kremzer,, Nierówność z dwiema funkcjami Matematyka 1 / 2014, str ) M.Kremzer,, Co mówią równania Matematyka 1 / 2014, str ) M.Kremzer Zadanie konkursowe Matematyka 1 / 2014, str ) M.Kremzer,, Całkowite odległości Matematyka 1 / 2014, str ) M.Kremzer,, Środek symetrii i oś symetrii 1 / 2014 str. 30

25 259) M.Kremzer,, Nierówność podwójna z sinusem Matematyka 2 / 2014, str ) M.Kremzer,, Wielomiany i funkcje wykładnicze Matematyka 2 / 2014, str ) M.Kremzer,, Suma prosta zbiorów Matematyka 2 / 2014, str ) M.Kremzer,, Liczba rozwiązań Matematyka 2 / 2014, str ) M.Kremzer,, Suma cyfr i ich kwadratów Matematyka 2 / 2014, str ) M.Kremzer,, Nierówności funkcyjne Matematyka 2 / 2014 str ) M.Kremzer,, Pole i długości przekątnych Matematyka 2 / 2014 str ) M.Kremzer,, Liczby pierwsze w równaniach Matematyka 2 / 2014 str ) M.Kremzer,, Sinusy i cechy Matematyka 3 / 2014 str ) M.Kremzer,, Tangensy i cechy Matematyka 3 / 2014 str. 37, ) M.Kremzer,, Najmniejsze i największe rozwiązania Matematyka 3 / 2014 str ) M.Kremzer,, Złożenie, suma, stopień Matematyka 4 / 2014 str ) M.Kremzer,, Wielomian, pochodna i największa wartość Matematyka 4 / 2014 str ) M.Kremzer,, Różnowartościowość wielomianów Matematyka 4 / 2014 str ) M.Kremzer,, Zbiory miejsc zerowych Matematyka 4 / 2014 str. 38

26 274) M.Kremzer,, Wykresy funkcji f(x) i f(f(x)) Matematyka 4 / 2014 str ) M.Kremzer,, Wszystko całkowite Matematyka 4 / 2014 str ) M.Kremzer,, Wymierne czy niewymierne Matematyka 5 / 2014 str ) M.Kremzer,, Nierówności z liczbami dzielników Matematyka 5 / 2014 str ) M.Kremzer,, Układ równań Matematyka 5 / 2014 str ) M.Kremzer,, Logarytmy Matematyka 5 / 2014 str ) M. Kremzer,, Wielomiany i trygonometria Matematyka 5 / 2014 str ) M.Kremzer,,,,Trójkatny układ nierówności Matematyka 6 / 2014 str ) M.Kremzer,, Graniastosłup trójkątny Matematyka 6 / 2014 str ) M.Kremzer,, O nieparzystości i parzystości funkcji Matematyka 6 / 2014 str ) M.Kremzer,, Równania funkcyjne Matematyka 6 / 2014 str ) M.Kremzer Zadanie konkursowe nr 1890 Matematyka 6 / 2014 str ) M.Kremzer,, Nierówności z wielomianami Matematyka 6 / 2014 str ) M.Kremzer,, Sinusy i potęgi Matematyka 6 / 2014 str ) M.Kremzer,, Liczby rzeczywiste zadania NiM + TI nr 86 1 / 2014 str ) M.Kremzer,, Liczby o pewnej własności

27 Matematyka 7 / 2014 str. 13, ) M.Kremzer,, Szukamy punktów Matematyka 7 / 2014 str ) M.Kremzer,, Czy istnieje...? Matematyka 7 / 2014 str. 44, ) M.Kremzer,, Funkcje różnej parzystości Matematyka 7 / 2014 str ) M.Kremzer,, Siedem zadań z geometrii nr 75, str ) M.Kremzer,, Nierówności z cechami Matematyka 8 / 2014 str ) M.Kremzer,, Równania z wartością bezwzględną Matematyka 8 / 2014 str ) M.Kremzer,, Równania z liczbami względnie pierwszymi Matematyka 8 / 2014 str ) M.Kremzer,, Graniastosłup i okrąg Matematyka 8 / 2014 str ) M.Kremzer,, Wielomiany i logarytmy Matematyka 8 / 2014 str ) M.Kremzer,, Liczby pierwsze Świat Matematyki nr 31 str ) M.Kremzer,, Układ równań Matematyka 9 / 2014 str. 16, ) M.Kremzer,, Podzielność przez 4 Matematyka 9 / 2014 str ) M.Kremzer,, Równe sumy Matematyka 9 / 2014 str ) M.Kremzer,, Całkowite współczynniki Matematyka 10 / 2014 str. 14, ) M.Kremzer,, Signum i moduł

28 Matematyka 10 / 2014 str. 37, ) M.Kremzer,, Zadania z potęgami Matematyka 10 / 2014 str ) M.Kremzer,, Odległość punktu od prostej Matematyka 10 / 2014 str ) M.Kremzer,, Zadania na kółko, cz 1 nr 76, str ) M.Kremzer,, Wspólne rozwiązanie Matematyka ( styczeń / luty 2015 ) str. 24, ) M.Kremzer,, Procenty Matematyka ( styczeń / luty 2015 ) str. 47, ) M.Kremzer,, Mantysa i wymierność Matematyka ( styczeń / luty 2015 ) str ) M.Kremzer,, Wspólne rozwiązanie Matematyka ( marzec / kwiecień 2015 ) str. 22, 29, 31, 35, 41, ) M.Kremzer,, Zadania na kółko (2) nr 77, str ) M.Kremzer Problem 3940 Crux Mathematicorum 40(4) 314) M.Kremzer Problem 3968 Crux Mathematicorum 40(7) 315) M.Kremzer,, Pamiętniki matematyczne. Zadania i ciekawostki dla uczniów gimnazjów i szkół ponadgimnazjalnych część 1, 36 stron, Wydawnictwo NOWIK 316) M.Kremzer Zadania na kółko, cz. 3 nr 78, str ) M.Kremzer Zbiory i funkcje. Zadania dla licealistów. Matematyka ( grudzień styczeń / 2015 ) str

29 318) M.Kremzer Zmagania z liczbami w liceum. Matematyka ( grudzień styczeń / 2015 ) str ) M.Kremzer Równania, nierówności i ich układy Matematyka ( styczeń luty / 2016 ) str ) M.Kremzer Zadania Macierzator, nr 62, str ) M.Kremzer Równania, nierówności i ich układy, część druga Matematyka ( marzec kwiecień / 2016 ) str Ponadto jestem autorem zadań i ciekawostek, które zamieszczam na mojej stronie internetowej matematycznastrona.wordpress.com

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

PROPOZYCJA PLANU WYNIKOWEGOREALIZACJI PROGRAMU NAUCZANIA Matematyka przyjemna i pożyteczna W DRUGIEJ KLASIE SZKOŁY PONADGIMNAZJALNEJ

PROPOZYCJA PLANU WYNIKOWEGOREALIZACJI PROGRAMU NAUCZANIA Matematyka przyjemna i pożyteczna W DRUGIEJ KLASIE SZKOŁY PONADGIMNAZJALNEJ OOZYCJA LANU WYNIKOWEGOEALIZACJI OGAMU NAUCZANIA Matematyka przyjemna i pożyteczna W DUGIEJ KLASIE SZKOŁY ONADGIMNAZJALNEJ ZAKES OZSZEZONY DZIAŁ I: CIĄGI Tematyka jednostki lekcyjnej lub Liczba oziomy

Bardziej szczegółowo

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

Rozkład materiału: matematyka na poziomie rozszerzonym

Rozkład materiału: matematyka na poziomie rozszerzonym Rozkład materiału: matematyka na poziomie rozszerzonym KLASA I 105h Liczby (30h) 1. Zapis dziesiętny liczby rzeczywistej 2. Wzory skróconego mnoŝenia 3. Nierówności pierwszego stopnia 4. Przedziały liczbowe

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

Rozkład materiału KLASA I

Rozkład materiału KLASA I I. Liczby (31 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy i rozszerzony (Na czerwono zaznaczono treści z zakresu rozszerzonego) KLASA I 1. Zapis dziesiętny liczby

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328

Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328 Drogi Czytelniku 9 Oznaczenia matematyczne 11 Podstawowe wzory 15 Rozdział I. Zbiory. Działania na zbiorach 21 1. Zbiór liczb naturalnych 22 1.1. Działania w zbiorze liczb naturalnych 22 1.2. Prawa działań

Bardziej szczegółowo

Zakres materiału obowiązujący do próbnej matury z matematyki

Zakres materiału obowiązujący do próbnej matury z matematyki ZAKRES PODSTAWOWY Zakres materiału obowiązujący do próbnej matury z matematyki 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Algebra

Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Algebra Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Egzamin wstępny z matematyki na kierunek Matematyka będzie przeprowadzony

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń:

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń: MATEMATYKA LICEUM Stopień niedostateczny otrzymuje uczeń, który nie opanował wiadomości i umiejętności określonych w podstawie programowej i braki uniemożliwiają dalsze zdobywanie wiedzy z tego przedmiotu,

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji. Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń

Bardziej szczegółowo

IV etap edukacyjny Cele kształcenia wymagania ogólne

IV etap edukacyjny Cele kształcenia wymagania ogólne IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości

Bardziej szczegółowo

OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM (założone osiągnięcia ucznia w klasach I III gimnazjum zgodnie z programem nauczania Matematyka z plusem (DPN-5002-17/08) realizującym

Bardziej szczegółowo

Zamiana liczby dziesiętnej na ułamek Ułamek zwykły i liczba dziesiętna Działania na liczbach dziesiętnych...

Zamiana liczby dziesiętnej na ułamek Ułamek zwykły i liczba dziesiętna Działania na liczbach dziesiętnych... SPIS TREŚCI 1. Witaj w świecie liczb rzeczywistych... 15 Prawa działań... 18 2. Poznajemy zbiory liczbowe... 19 3. Cyfry arabskie i rzymskie... 21 4. Liczby pierwsze i złożone... 22 5. Liczba przeciwna

Bardziej szczegółowo

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

IV etap edukacyjny. Cele kształcenia wymagania ogólne

IV etap edukacyjny. Cele kształcenia wymagania ogólne IV etap edukacyjny Cele kształcenia wymagania ogólne I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń używa prostych,

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot matematyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY 1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover :58 Strona 1. Kalendarz przygotowań plan pracy na rok szkolny

07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover :58 Strona 1. Kalendarz przygotowań plan pracy na rok szkolny 07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover 11-06-17 11:58 Strona 1 Kalendarz przygotowań plan pracy na rok szkolny ISBN 978-83-7680-389-0 9 788376 803890 rogram Matura z Operonem Lista uczestników

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

Spis treści. Spis treści

Spis treści. Spis treści Spis treści 3 Spis treści I. Liczby rzeczywiste 1. Liczby naturalne, całkowite, wymierne... 5 2. Potęga o wykładniku naturalnym, całkowitym, wymiernym... 9 3. Pierwiastki, liczby niewymierne... 13 4. Wyrażenia

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas - klasy pierwsze kolor zielony + gimnazjum - klasy drugie kolor zielony + kolor czerwony + gimnazjum, - klasy maturalne cały materiał 1.

Bardziej szczegółowo

Procedury osiągania celów

Procedury osiągania celów Cele wychowawcze Istotną część procesu nauczania stanowi proces wychowywania. W nauczaniu matematyki szczególnie eksponowane są następujące cele wychowawcze: przygotowanie do życia we współczesnym świecie,

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura 2010

Standardy wymagań maturalnych z matematyki - matura 2010 Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum, technikum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki w ZSZ Klasa I

Przedmiotowy system oceniania z matematyki w ZSZ Klasa I Przedmiotowy system oceniania z matematyki w ZSZ Klasa I Dopuszczający Uczeń z potrafi : -zamienić ułamek zwykły na dziesiętny i odwrotnie -rozróżnia liczby wymierne i niewymierne -zna definicję liczby

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA V Wymagania konieczne i podstawowe - na ocenę dopuszczającą i dostateczną. Uczeń powinien umieć: dodawać i odejmować w pamięci liczby dwucyfrowe

Bardziej szczegółowo

Rozkład. materiału nauczania

Rozkład. materiału nauczania Rozkład materiału nauczania Ramowy rozkład materiału nauczania Matematyka. Poznać, zrozumieć Klasa 1 42 Lp. Klasa 2 Dział Liczba godzin zakres podstawowy Liczba godzin zakres rozszerzony 1. 36 30 2. Funkcja

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: LICZBY I WYRAŻENIA ALGEBRAICZNE

PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: LICZBY I WYRAŻENIA ALGEBRAICZNE Ewa Koralewska PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem LP.. 2. 3. 5. OGÓLNA PODST- AWA PROGRA- MOWA a a TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna.

Bardziej szczegółowo

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Kryteria oceniania z matematyki poziom podstawowy klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz

Bardziej szczegółowo

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczający (2) P podstawowy ocena dostateczna (3) Projekt nr WND-POKL.09.01.02-10-104/09 tytuł Z dysleksją bez barier PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach www.awans.net Publikacje nauczycieli Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach Program nauczania matematyki dla 3 letniego liceum ogólnokształcącego dla dorosłych (po zasadniczej szkole

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo