07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover :58 Strona 1. Kalendarz przygotowań plan pracy na rok szkolny

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover :58 Strona 1. Kalendarz przygotowań plan pracy na rok szkolny"

Transkrypt

1 07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover :58 Strona 1 Kalendarz przygotowań plan pracy na rok szkolny ISBN

2 rogram Matura z Operonem Lista uczestników zajęć przygotowujących do matury w 2012 roku Zakres... Zakres... Zakres... Zakres... Lp. Imięinazwisko Lp. Imięinazwisko Lp. Imięinazwisko Lp. Imięinazwisko

3 imię i nazwisko Matematyka Kalendarz przygotowań do matury 2012 zakres rozszerzony (wersja dla nauczyciela) wykonane yg. Dział ematy Zadania test podręcznik vademecum start rzygotowanie do pracy rzygotowanie do pracy zapoznanie się z informacjami na temat matury ze stron i w tym z informatorem maturalnym zapoznanie się z publikacjami Matematyka. Matura esty i arkusze dla maturzysty oraz ademecum maturalne Wydawnictwa edagogicznego OERON zgromadzenie potrzebnych podręczników i innych przydatnych publikacji zapoznanie się ze wskazówkami, jak rozwiązywać zadania maturalne krok po kroku zamieszczonymi w ademecum maturalnym 2012 Wydawnictwa edagogicznego OERON rozwiązanie arkuszy zamieszczonych na płycie CD dołączonej do testów ermin Liczby rzeczywiste liczby naturalne i całkowite; twierdzenie o rozkładzie liczby naturalnej na czynniki pierwsze liczby wymierne; rozwinięcia dziesiętne liczby niewymierne oś liczbowa; przedziały osi liczbowej wartość bezwzględna procenty i punkty procentowe; lokaty i kredyty błąd przybliżenia; szacowanie wartości liczbowych pierwiastki (w tym pierwiastki nieparzystego stopnia z liczb ujemnych) twierdzenie o niewymierności pierwiastka kwadratowego z liczby 2 potęgi liczb nieujemnych o wykładniku wymiernym i ich własności; informacja o własnościach potęg o wykładniku rzeczywistym logarytmy; podstawowe własności logarytmów Liczby rzeczywiste Matura esty i arkusze dla maturzysty, rozdz. I, zakres rozszerzony. 2. owtórzenie tematów z podręcznika Wydawnictwa edagogicznego OERON dla zakresu rozszerzonego Matematyka 1, dział I, rozdz. 1 12, dział II, rozdz. 9, 10, 12, Matematyka 2, dział, rozdz. 8 oraz Matematyka 3, dział II, rozdz rzeczytanie materiału z ademecum maturalnego, dział 1, rozdz , 1.7, dział 10, rozdz , Matura esty i arkusze dla maturzysty, rozdz. I, zakres rozszerzony. 5. owtórzenie pojęć, z którymi były problemy, przy wykorzystaniu indeksu ademecum maturalnego. 6. Rozwiązanie testów sprawdzających z zestawu testów Matura esty i arkusze dla maturzysty, rozdz. I, zakres rozszerzony. ermin Wyrażenia algebraiczne wzory skróconego mnożenia, w tym (a ± b) 3 ; a 3 ± b 3 ; wzór (a 1)(1 + a a n 1) = a n 1 wielomiany; dodawanie, odejmowanie i mnożenie wielomianów dzielenie wielomianów z resztą przez dwumian x a; twierdzenie o reszcie wyrażenia wymierne Wyrażenia algebraiczne Matura esty i arkusze dla maturzysty, rozdz. II, zakres rozszerzony. 2. owtórzenie tematów z podręcznika Matematyka 1, dział III, rozdz. 1 oraz Matematyka 2, dział III, rozdz. 1 3, dział I. rozdz rzeczytanie materiału z ademecum maturalnego, dział III, rozdz ,

4 wykonane yg. Dział ematy Zadania test podręcznik vademecum Wyrażenia algebraiczne dodawanie, odejmowanie, mnożenie i dzielenie wyrażeń wymiernych Wyrażenia algebraiczne Matura esty i arkusze dla maturzysty, rozdz. II, zakres rozszerzony. 5. owtórzenie pojęć z indeksu ademecum maturalnego. 6. Rozwiązanie testów sprawdzających z zestawu testów Matura esty i arkusze dla maturzysty, rozdz. II, zakres rozszerzony. ermin Równania i nierówności równania i nierówności kwadratowe z jedną niewiadomą układy równań prowadzące do równań kwadratowych wzory iète a równania i nierówności kwadratowe z parametrem proste równania wielomianowe; proste nierówności wielomianowe proste równania wymierne; proste nierówności wymierne Równania i nierówności Matura 2012.esty i arkusze dla maturzysty, rozdz. III, zakres rozszerzony. 2. owtórzenie tematów z podręcznika Matematyka 2 dział I, rozdz. 1 8, dział II, rozdz i dział III, rozdz. 4 8, dział I, rozdz. 4, rzeczytanie materiału z ademecum maturalnego, dział III. Matura esty i arkusze dla maturzysty, rozdz. III, zakres rozszerzony. 5. owtórzenie pojęć z indeksu ademecum maturalnego. ermin próbna matura róbna matura przygotowanie róbna matura przygotowanie 1. Szybkie powtórzenie materiału z ademecum maturalnego. 2. Rozwiązanie arkuszy opublikowanych na stronie ermin Równania i nierówności twierdzenie o postaci wymiernych pierwiastków wielomianu o współczynnikach całkowitych proste równania i nierówności z wartością bezwzględną typu ax b = c, ax b > c Równania i nierówności 6. Rozwiązanie testów sprawdzających z zestawu testów Matura esty i arkusze dla maturzysty, rozdz. III, zakres rozszerzony. różne sposoby określania funkcji Funkcje Funkcje odczytywanie własności funkcji z wykresu proste przekształcenia wykresów funkcji liczbowych funkcja liniowa Matura esty i arkusze dla maturzysty, rozdz. I, zakres rozszerzony. 2. owtórzenie tematów z podręcznika Matematyka 1, dział, rozdz. 1 12, podręcznika Matematyka 2, dział II, rozdz. 2 4, dział I, rozdz. 3 oraz Matematyka 3, dział 2, rozdz. 2,7.

5 wykonane yg. Dział ematy Zadania test podręcznik vademecum Święta Bożego Narodzenia, Nowy Rok , tydzień 19 i Funkcje Ciągi funkcja kwadratowa funkcja f(x)=a/x funkcja wykładnicza funkcja logarytmiczna przykłady ciągów ciąg arytmetyczny ciąg geometryczny Funkcje Ciągi 3. rzeczytanie materiału z ademecum maturalnego, rozdz. 2, Matura esty i arkusze dla maturzysty, rozdz. I, zakres rozszerzony. 5. owtórzenie pojęć z indeksu ademecum maturalnego. 6. Rozwiązanie testów sprawdzających z zestawu testów Matura esty i arkusze dla maturzysty, rozdz. I, zakres rozszerzony. Matura esty i arkusze dla maturzysty, rozdz., zakres rozszerzony. 2. owtórzenie tematów z podręcznika Matematyka 2, dział, rozdz rzeczytanie materiałów z ademecum maturalnego, dział I, rozdz Matura esty i arkusze dla maturzysty, rozdz., zakres rozszerzony. 5. owtórzenie pojęć z indeksu ademecum maturalnego. 6. Rozwiązanie testów sprawdzających z zestawu testów Matura esty i arkusze dla maturzysty, rozdz., zakres rozszerzony. ermin ermin funkcje sinus, cosinus i tangens kąta ostrego rygonometria rygonometria proste związki między funkcjami trygonometrycznymi miara łukowa kąta; funkcje trygonometryczne argumentu rzeczywistego proste równania i nierówności trygonometryczne Matura esty i arkusze dla maturzysty, rozdz. I, zakres rozszerzony. 2. owtórzenie tematów z podręcznika Matematyka 1, dział I, rozdz rzeczytanie materiału z ademecum maturalnego, dział. Matura esty i arkusze dla maturzysty, rozdz. I, zakres rozszerzony. 5. owtórzenie pojęć, z którymi były problemy, przy wykorzystaniu indeksu ademecum maturalnego. ermin 6. Rozwiązanie testów sprawdzających z zestawu testów Matura esty i arkusze dla maturzysty, rozdz. I, zakres rozszerzony.

6 wykonane yg. Dział ematy Zadania test podręcznik vademecum kąty w okręgu lanimetria 100 dni przed maturą czworokąty wpisane w okrąg i czworokąty opisane na okręgu figury podobne; figury jednokładne; twierdzenie o związkach miarowych między odcinkami stycznych i siecznych twierdzenie sinusów; twierdzenie cosinusów Matura esty i arkusze dla maturzysty, rozdz. II, zakres rozszerzony. 2. owtórzenie tematów z podręcznika Matematyka 1, dział II, rozdz oraz Matematyka 2, dział I, rozdz rzeczytanie materiału z ademecum maturalnego, dział 6, rozdz ermin Ferie zimowe W czasie należy zaplanować 2 tygodnie wolnego czasu na ferie zimowe, np. tydzień 13 i lanimetria zastosowania trygonometrii w planimetrii Matura esty i arkusze dla maturzysty, rozdz. II, zakres rozszerzony. 5. owtórzenie pojęć, z którymi były problemy, przy wykorzystaniu indeksu ademecum maturalnego. 6. Rozwiązanie testów sprawdzających z zestawu testów Matura esty i arkusze dla maturzysty, rozdz. II, zakres rozszerzony. Odległość na płaszczyźnie kartezjańskiej Geometria na płaszczyźnie kartezjańskiej Geometria na płaszczyźnie kartezjańskiej Rachunek wektorowy we współrzędnych Analityczny opis prostej, płaszczyzny, okręgu i koła Wzajemne położenie prostej i okręgu oraz dwóch okręgów w ujęciu analitycznym rzekształcenia geometryczne płaszczyzny z zastosowaniem współrzędnych Matura esty i arkusze dla maturzysty, rozdz. III, zakres rozszerzony. 2. owtórzenie tematów z podręcznika Matematyka 1, dział I, rozdz. 1 2 oraz Matematyka 2, dział II, rozdz rzeczytanie materiału z ademecum maturalnego, dział II, rozdz Matura esty i arkusze dla maturzysty, rozdz. III, zakres rozszerzony. 5. owtórzenie pojęć, z którymi były problemy, przy wykorzystaniu indeksu ademecum maturalnego. 6. Rozwiązanie testów sprawdzających z zestawu testów Matura esty i arkusze dla maturzysty, rozdz. III, zakres rozszerzony. ermin

7 wykonane yg. Dział ematy Zadania test podręcznik vademecum równoległość i prostopadłość w przestrzeni, rzut prostokątny na płaszczyznę, twierdzenie o trzech prostych prostopadłych kąt między prostą i płaszczyzną, kąt dwu - ścienny wyznaczanie przekrojów znanych brył zastosowania trygonometrii w stereometrii Stereometria 1. Rozwiązanie testu wstępnego z zestawu testów Matura esty i arkusze dla maturzysty, rozdział IX, zakres rozszerzony. 2. owtórzenie tematów z podręcznika Matematyka 3, dział I, rozdz rzeczytanie materiałów z ademecum maturalnego, dział 8 4. Rozwiązanie testu ćwiczeniowego z zestawu testów Matura esty i arkusze dla maturzysty, rozdz. IX, zakres rozszerzony. ermin Stereometria 5. owtórzenie pojęć, z którymi były problemy, przy wykorzystaniu indeksu ademecum maturalnego. 6. Rozwiązanie testu sprawdzającego z zestawu testów Matura esty i arkusze dla maturzysty, rozdz. IX, zakres rozszerzony Święta wielkanocne Elementy statystyki opisowej i rachunek prawdopodobieństwa średnia arytmetyczna, średnia ważona, mediana, odchylenie standardowe zliczanie przypadków w prostych sytuacjach kombinatorycznych, zasada mnożenia permutacje, kombinacje, wariacje obliczanie prawdopodobieństwa w przypadku skończonej liczby zdarzeń elementarnych Elementy statystyki opisowej i rachunek prawdopodobieństwa 1. Rozwiązanie testu wstępnego z zestawu testów Matura esty i arkusze dla maturzysty, rozdz. X, zakres rozszerzony. 2. owtórzenie tematów z podręcznika Matematyka 2, dział III, rozdz. 1 3 oraz Matematyka 3, dział III, rozdz. 1 4, dział I, rozdz rzeczytanie materiałów z ademecum maturalnego, dział 9, rozdz , Rozwiązanie testu ćwiczeniowego z zestawu testów Matura esty i arkusze dla maturzysty, rozdz. X, zakres rozszerzony. 5. owtórzenie pojęć, z którymi były problemy, przy wykorzystaniu indeksu ademecum maturalnego. 6. Rozwiązanie testu sprawdzającego z zestawu testów Matura esty i arkusze dla maturzysty, rozdz. X, zakres rozszerzony. ermin

8 wykonane yg. Dział ematy Zadania test podręcznik vademecum koniec odsumowanie przed maturą odsumowanie przed maturą 1. owtórzenie materiału z ademecum maturalnego. 2. Zapoznanie się ze wskazówkami, jak rozwiązywać zadania maturalne krok po kroku. 3. Rozwiązanie arkuszy zatytułowanych est końcowy opublikowanych na stronie ermin

9 Notatki

10 Notatki

11 ISBN

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

Kalendarz przygotowań plan pracy na rok szkolny

Kalendarz przygotowań plan pracy na rok szkolny Kalendarz przygotowań plan pracy na rok szkolny rogram Matura z Operonem Lista uczestników zaj ç przygotowujàcych do matury w 2010 roku Zakres... Zakres... Zakres... Zakres... Lp. Imi i nazwisko Lp. Imi

Bardziej szczegółowo

Matematyka Kalendarz przygotowaƒ do matury 2011

Matematyka Kalendarz przygotowaƒ do matury 2011 Matematyka Kalendarz przygotowaƒ do matury 2011 imi i nazwisko zakres podstawowy (wersja dla ucznia) 3 wykonane yg. Dzia ematy Zadania test podręcznik vademecum start 4.10 30 8.10 rzygotowanie do pracy

Bardziej szczegółowo

Matematyka Kalendarz przygotowaƒ do matury 2011

Matematyka Kalendarz przygotowaƒ do matury 2011 Matematyka Kalendarz przygotowaƒ do matury 2011 imi i nazwisko zakres podstawowy (wersja dla ucznia) 3 wykonane yg. Dzia ematy Zadania test podręcznik vademecum start 4.10 30 8.10 rzygotowanie do pracy

Bardziej szczegółowo

Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku

Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku C e l e e d u k a c y j n e 1. Przygotowanie do świadomego i

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura 2010

Standardy wymagań maturalnych z matematyki - matura 2010 Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub

Bardziej szczegółowo

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.

Bardziej szczegółowo

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)

Bardziej szczegółowo

Spis treści. Spis treści

Spis treści. Spis treści Spis treści 3 Spis treści I. Liczby rzeczywiste 1. Liczby naturalne, całkowite, wymierne... 5 2. Potęga o wykładniku naturalnym, całkowitym, wymiernym... 9 3. Pierwiastki, liczby niewymierne... 13 4. Wyrażenia

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Rozkład materiału: matematyka na poziomie rozszerzonym

Rozkład materiału: matematyka na poziomie rozszerzonym Rozkład materiału: matematyka na poziomie rozszerzonym KLASA I 105h Liczby (30h) 1. Zapis dziesiętny liczby rzeczywistej 2. Wzory skróconego mnoŝenia 3. Nierówności pierwszego stopnia 4. Przedziały liczbowe

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego

Bardziej szczegółowo

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji)

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Od roku 2010 matematyka będzie obowiązkowo zdawana przez wszystkich maturzystów. W ślad za tą decyzją podjęto prace nad

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

Zakres materiału obowiązujący do próbnej matury z matematyki

Zakres materiału obowiązujący do próbnej matury z matematyki ZAKRES PODSTAWOWY Zakres materiału obowiązujący do próbnej matury z matematyki 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli

Bardziej szczegółowo

Spis treści. Zadania z rozwiązaniem krok po kroku Arkusz maturalny przykładowy zestaw zadań Odpowiedzi do zadań Indeks...

Spis treści. Zadania z rozwiązaniem krok po kroku Arkusz maturalny przykładowy zestaw zadań Odpowiedzi do zadań Indeks... Spis treści 3 Spis treści I. Liczby rzeczywiste 1. Liczby naturalne, całkowite, wymierne... 5. Pierwiastki, liczby niewymierne... 11 3. Potęga o wykładniku naturalnym, całkowitym, wymiernym... 15 4. Wyrażenia

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

Rozkład materiału KLASA I

Rozkład materiału KLASA I I. Liczby (31 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy i rozszerzony (Na czerwono zaznaczono treści z zakresu rozszerzonego) KLASA I 1. Zapis dziesiętny liczby

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas - klasy pierwsze kolor zielony + gimnazjum - klasy drugie kolor zielony + kolor czerwony + gimnazjum, - klasy maturalne cały materiał 1.

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Kalendarium maturzysty

Kalendarium maturzysty Matura 2012 Kalendarium maturzysty matematyka poziom podstawowy Liczby i ich zbiory TYDZIEŃ 1-4 (4 tygodnie) 3-28 października liczby naturalne, całkowite, wymierne i niewymierne planowanie i wykonywanie

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Szczegółowy rozkład materiału dla klasy 3b poziom rozszerzny cz. 1 - liceum

Szczegółowy rozkład materiału dla klasy 3b poziom rozszerzny cz. 1 - liceum Szczegółowy rozkład materiału dla klasy b poziom rozszerzny cz. - liceum WYDAWNICTWO PAZDRO GODZINY Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna. Potęga o wykładniku

Bardziej szczegółowo

IV etap edukacyjny Cele kształcenia wymagania ogólne

IV etap edukacyjny Cele kształcenia wymagania ogólne IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji. Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń

Bardziej szczegółowo

IV etap edukacyjny. Cele kształcenia wymagania ogólne

IV etap edukacyjny. Cele kształcenia wymagania ogólne IV etap edukacyjny Cele kształcenia wymagania ogólne I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń używa prostych,

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 563/3/2014

Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 563/3/2014 Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 56//0 5 tygodni godzin = 75 godzin Lp. Tematyka zajęć I. Kombinatoryka i rachunek prawdopodobieństwa. Reguła

Bardziej szczegółowo

Zmiany dotyczące egzaminu maturalnego 2015 z matematyki

Zmiany dotyczące egzaminu maturalnego 2015 z matematyki Zmiany dotyczące egzaminu maturalnego 2015 z matematyki Egzamin maturalny od 2015 r. wieńczy proces wchodzenia w życie podstawy programowej kształcenia ogólnego, którą zaczęto stosować w klasach I liceum

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony

Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 9 tygodni 6 godzin = 7 godziny Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna.

Bardziej szczegółowo

09_WOS_kalendarz-okl 2012_01_04 LOWOSKal_cover :43 Strona 1. Kalendarz przygotowań plan pracy na rok szkolny

09_WOS_kalendarz-okl 2012_01_04 LOWOSKal_cover :43 Strona 1. Kalendarz przygotowań plan pracy na rok szkolny 09_WOS_kalendarz-okl 2012_01_04 LOWOSKal_cover 11-06-17 11:43 Strona 1 Kalendarz przygotowań plan pracy na rok szkolny ISBN 978-83-7680-387-6 9 788376 803876 rogram Matura z Operonem Lista uczestników

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

Od autorów... 7 Zamiast wstępu zrozumieć symbolikę... 9 Zdania Liczby rzeczywiste i ich zbiory... 15

Od autorów... 7 Zamiast wstępu zrozumieć symbolikę... 9 Zdania Liczby rzeczywiste i ich zbiory... 15 Spis treści Od autorów........................................... 7 Zamiast wstępu zrozumieć symbolikę................... 9 Zdania............................................... 10 1. Liczby rzeczywiste

Bardziej szczegółowo

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń:

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń: MATEMATYKA LICEUM Stopień niedostateczny otrzymuje uczeń, który nie opanował wiadomości i umiejętności określonych w podstawie programowej i braki uniemożliwiają dalsze zdobywanie wiedzy z tego przedmiotu,

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum, technikum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje

Bardziej szczegółowo

Rozkład. materiału nauczania

Rozkład. materiału nauczania Rozkład materiału nauczania Ramowy rozkład materiału nauczania Matematyka. Poznać, zrozumieć Klasa 1 42 Lp. Klasa 2 Dział Liczba godzin zakres podstawowy Liczba godzin zakres rozszerzony 1. 36 30 2. Funkcja

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY 1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne

Bardziej szczegółowo

M A T E M A T Y K A 8 KURSÓW OPISY KURSÓW. Rok szkolny 2015/2016. klasa III Zakres Trymestr I. Podstawowy 104 105 300

M A T E M A T Y K A 8 KURSÓW OPISY KURSÓW. Rok szkolny 2015/2016. klasa III Zakres Trymestr I. Podstawowy 104 105 300 M A T E M A T Y K A Podział kursów w procesie nauczania: -podstawowe 5 kursów (300 godzin) -rozszerzone 8 kursów (480 godzin) MATURA zakres podstawowy 5 KURSÓW PP: 101,102,103,104,105 MATURA zakres rozszerzony

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki

Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania został skonstruowany w oparciu o następujące dokumenty: 1. Rozporządzenie Ministra Edukacji Narodowej z dnia 7 września 2004 roku

Bardziej szczegółowo

Okręgi i proste na płaszczyźnie

Okręgi i proste na płaszczyźnie Okręgi i proste na płaszczyźnie 1 Kąt środkowy i pole wycinka koła rozpoznawać kąty środkowe, obliczać kąt środkowy oparty na zadanym łuku, obliczać długość okręgu i łuku okręgu, obliczać pole koła, pierścienia,

Bardziej szczegółowo

Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328

Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328 Drogi Czytelniku 9 Oznaczenia matematyczne 11 Podstawowe wzory 15 Rozdział I. Zbiory. Działania na zbiorach 21 1. Zbiór liczb naturalnych 22 1.1. Działania w zbiorze liczb naturalnych 22 1.2. Prawa działań

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole Cele kształcenia wymagania ogólne MATEMATYKA III etap edukacyjny I. Wykorzystanie

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

Procedury osiągania celów

Procedury osiągania celów Cele wychowawcze Istotną część procesu nauczania stanowi proces wychowywania. W nauczaniu matematyki szczególnie eksponowane są następujące cele wychowawcze: przygotowanie do życia we współczesnym świecie,

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

REGULAMIN KONKURSU MATEMATYCZNEGO DLA UCZNIÓW SZKÓŁ PONADGIMNAZJALNYCH CUBE

REGULAMIN KONKURSU MATEMATYCZNEGO DLA UCZNIÓW SZKÓŁ PONADGIMNAZJALNYCH CUBE REGULAMIN KONKURSU MATEMATYCZNEGO DLA UCZNIÓW SZKÓŁ PONADGIMNAZJALNYCH CUBE Wadowice 2015 1 Opis konkursu 1. Organizatorem konkursu jest I Liceum Ogólnokształcące im. Marcina Wadowity w Wadowicach. 2.

Bardziej szczegółowo

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO 2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Plan wynikowy z matematyki kl.i LO

Plan wynikowy z matematyki kl.i LO Literka.pl Plan wynikowy z matematyki kl.i LO Data dodania: 2006-09-23 09:27:55 Przedstawiam Państwu plan wynikowy z matematyki dla klasy pierwszej LO wg programu programu DKOS 4015-12/02 na rok szkolny

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste CZĘŚĆ I ZAKRES PODSTAWOWY W nawiasach proponowane oceny: 2 poziom konieczny wymagań edukacyjnych 3 poziom podstawowy wymagań edukacyjnych 4 poziom rozszerzający wymagań edukacyjnych 5 poziom dopełniający

Bardziej szczegółowo

Kryteria oceniania z matematyki Klasa III poziom rozszerzony

Kryteria oceniania z matematyki Klasa III poziom rozszerzony Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym

Bardziej szczegółowo

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,

Bardziej szczegółowo

Kalendarz przygotowań plan pracy na rok szkolny

Kalendarz przygotowań plan pracy na rok szkolny Kalendarz przygotowań plan pracy na rok szkolny rogram Matura z Operonem Lista uczestników zaj ç przygotowujàcych do matury w 2010 roku Zakres... Zakres... Zakres... Zakres... Lp. Imi i nazwisko Lp. Imi

Bardziej szczegółowo

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania

Bardziej szczegółowo

Załącznik nr 2 do PSO z matematyki, ZSP Nr 1 w Krośnie. Treści nauczania zakres rozszerzony

Załącznik nr 2 do PSO z matematyki, ZSP Nr 1 w Krośnie. Treści nauczania zakres rozszerzony Załącznik nr 2 do PSO z matematyki, ZSP Nr 1 w Krośnie. Treści nauczania zakres rozszerzony W poniższych tabelach: Pogrubieniem oznaczono te hasła i wymagania, które wykraczają poza podstawę programową

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny

MATEMATYKA IV etap edukacyjny MATEMATYKA IV etap edukacyjny Cele kształcenia wymagania ogólne POZIOM PODSTAWOWY POZIOM ROZSZERZONY Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik Uczeń uŝywa

Bardziej szczegółowo

Program nr w szkolnym zestawie programów nauczania r.szk.2013/2014 podręcznik 1A, 1B

Program nr w szkolnym zestawie programów nauczania r.szk.2013/2014 podręcznik 1A, 1B 1A, 1B Program nr w szkolnym zestawie programów nauczania r.szk.2013/2014 podręcznik Agata Faryniarz - Gumienna Program nauczania matematyki w liceach i technikach 16-2013/2014 Matematyka dla liceów i

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

Program zajęć rozszerzających z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do

Program zajęć rozszerzających z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Program zajęć rozszerzających z matematyki w ramach projektu Młodzieżowe

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI. MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. LICZBY RZECZYWISTE Kl. I poziom rozszerzony podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY 1. Funkcja wykładnicza i logarytmiczna Tematyka zajęć: Potęga o wykładniku rzeczywistym - powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Wymagania edukacyjne i kryteria oceniania. w nauczaniu matematyki w zakresie. podstawowym. dla uczniów technikum

Wymagania edukacyjne i kryteria oceniania. w nauczaniu matematyki w zakresie. podstawowym. dla uczniów technikum Wymagania edukacyjne i kryteria oceniania w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum Wymagania podstawowe obejmują wiedzę i umiejętności całkowicie niezbędne do dalszego kształcenia

Bardziej szczegółowo

Przedmiotowy System Oceniania z matematyki

Przedmiotowy System Oceniania z matematyki Przedmiotowy System Oceniania z matematyki Opracowany zgodnie ze Statutem oraz z Wewnątrzszkolnym Systemem Oceniania Liceum Ogólnokształcącego im. Janka Bytnara w Kolbuszowej. I. Kontrakt między nauczycielem

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo