Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }"

Transkrypt

1 Zespół kanoniczny

2 Zespół kanoniczny N,V, T acc o n =min {1, exp [ U n U o ] }

3 Zespół izobaryczno-izotermiczny

4 Zespół izobaryczno-izotermiczny N P T acc o n =min {1, exp [ U n U o ] } acc o n =min {1, exp[ U s N ;V ' U s N ;V P V ' V N 1 ln V '/V ]}

5 Wielki zespół kanoniczny

6 Wielki kanoniczny V T acc o n =min {1, exp [ U n U o ] } acc N N 1 =min{ 1, V 3 N 1 exp [ U N 1 U N ] } acc N N 1 =min{ 1, 3 N V exp [ U N 1 U N ]}

7 Gibbs ensemble

8 1 N,V, T box 1, P??? n 1,V 1 n 1 n 2 =N V 1 V 2 =V 2 box 2 n 2,V 2

9 Gibbs ensemble Funkcja rozkładu dla układu składającego się z N cząsteczek rozłożonych w dwu objętościach V 1 i V 2 =V-V 1, gdzie cząsteczki oddziałują ze sobą w objętości 1 ale zachowują się jak gaz doskonały w objętości 2: N Q N,V 1, V 2, T = n 1 =0 V 1 n 1 V V 1 N n 1 3N n 1! N n 1! d s 2 N n 1 d s 1 n 1 exp [ U s 1 n 1 ]

10 Gibbs ensemble Rozważmy przypadek taki, że cząsteczki w obu objętościach oddziałują ze sobą w taki sam sposób. Ponadto załóżmy, że objętość V 1 i V 2 zmienia się w taki sposób, że całkowita objętość V=V 1 +V 2 pozostaje stała. W takim przypadku należy scałkować po objętości V 1, co daje następującą funkcję rozkładu: N Q G N,V,T n 1 =0 1 V 3N n 1! N n 1! 0 V dv 1 V 1 n 1 V V 1 N n 1 d s 1 n 1 exp [ U s 1 n 1 ] d s 2 N n 1 exp [ U s 2 N n 1 ]

11 Gibbs ensemble Prawdopodobieństwo znalezienia konfiguracji z n 1 cząsteczkami w pudle 1 o objętości V 1 i położeniach s 1 n1 s 1 N-n1 jest dane przez n n P n 1, V 1, s 1 n 1, s2 2 V 1 V 1 V 1 N n 1 n 1! N n 1! exp { [ U s 1 n 1 U s2 N n 1 ]}

12 Monte Carlo Symulacja Monte Carlo składa się z następujących kroków: 1. przemieszczanie losowo wybranej cząsteczki 2. Zmiana objętości w taki sposób, że całkowita objętość pozostaje bez zmian 3. Przeniesienie losowo wybranej cząsteczki z jednego pudla symulacyjnego do drugiego pudła K o n =K n o K o n =P o o n a c c o n

13 Monte Carlo Wymiana cząsteczek Przesuwanie cząsteczek Zmiana objętości

14 Przesunięcie cząsteczki Załóżmy, że stan n jest otrzymany ze stanu o przez przesunięcie losowo wybranej cząsteczki w pudle 1. Iloczyn odpowiednich statystycznych wag jest dany przez P n P o = exp n [ U s 1 ] n n exp[ U s 1 ] o Po podstawieniu do warunku równowagi szczegółowej otrzymuje się regułę akceptacji nowej konfiguracji. acc o n =min { 1, exp [ U s n n 1 U so n 1 ] } Ta reguła akceptacji nowej konfiguracji jest identyczna z reguła dla zwykłych symulacji w zespole kanonicznym NVT.

15 Zmiana objętości Dla zmiany objętości pudła 1 o V, V 1n =V 1o + V, iloczyn wag statystycznych konfiguracji przed i po zmianie objętości jest dany przez P n P o = V n 1 n 1 V V n 1 N n 1 V o 1 n 1 V V o 1 N n 1 exp[ U s n N ] exp[ U s o N ] Po podstawieniu do warunku równowagi szczegółowej otrzymuje się regułę akceptacji nowej konfiguracji dla zmiany objętości acc o n = V n 1 n 1 V V n 1 N n 1 V o 1 n 1 V V o 1 N n 1 exp [ U s n N U s o N ]

16 Gibbs ensemble Jeśli zamiast zmiany objętości będziemy zmieniać logarytm objętości, ln(v 1 /(V-V 1 )), funkcja rozkładu będzie miała następująca postać Q NVT = 1 N 3N N! N 1 n 1 =0 n V d ln 1 V V 1 V V V 1 1 V V 1 n 1 V V 1 N n 1 d s 1 n 1 exp [ U s 1 n 1 ] d s 2 N n 1 exp [ U s 2 N n 1 ]

17 Zmiana objętości Waga statystyczna konfiguracji n z objętością V 1 jest proporcjonalna do P n V n 1 n 1 1 V V n 1 N n 1 1 V n 1! N n 1! exp [ U s n N ] Z warunku równowagi szczegółowej otrzymuje się następującą regułę akceptacji { acc o n =min 1, V n1 1 n 1 o V 1 V V n N n1 1 1 exp[ o U s U s ] } V V nn on 1

18 Wymiana cząsteczki Załóżmy, że generujemy konfigurację n z konfiguracji o (n 1 cząsteczek w pudle 1) przez usunięcie cząsteczki z pudła 1 i dodanie cząsteczki do pudła 2. Iloczyn wag statystycznych jest dany przez. P n P o = n n 1! N n 1!V V V 1 N n 1 1 n n 1 1! N n 1 1!V 1 V 1 V 1 N n 1 exp[ U s n N U s o N ] Z warunku równowagi szczegółowej otrzymuje się następujące reguły akceptacji acc o n =min { 1, n 1 V V 1 exp [ U s N N n 1 1 V n U s N ] } o 1

19 Potencjał chemiczny W trakcie symulacji potencjał chemiczny może być wyznaczony bez przeprowadzania dodatkowych obliczeń. Wystarczy zbierać następująca średnią podczas obliczeń przeprowadzanych przy kroku wymiany cząsteczek miedzy pudłami symulacyjnymi. 1 = k B T ln 1 3 V 1 n 1 1 exp [ U 1 ] Gibbs,box 1 U 1+ jest energią związaną z cząsteczka dodaną do pudła 1, zawierającego n 1 cząsteczek. Ta dodana cząsteczka jest cząsteczką, która jest przenoszona z pudła 2. Średnia jest liczona w pudle 1. Oczywiście tak samo można postąpić w przypadku cząsteczek znajdujących się w pudle 2.

20 Monitorowanie gęstości Zmiana gęstości w pudłach symulacyjnych w trakcie trwania symulacji.

21 Wyznaczanie punktu krytycznego Diagram fazowy

22 Analiza danych

23 Analiza danych Zamiana faz w pudłach symulacyjnych

24 Gibbs ensemble dla mieszanin Dla mieszanin ciśnienie może być ustalone, a cały układ może być traktowany jako układ NPT, Gęstość prawdopodobieństwa dana jest przez następujące równanie P n 1, V 1 ; N, P, T N! n 1! N n 1! exp [ n 1 lnv 1 N n 1 ln V 2 U s N P V 1 V 2 ] Zmiana objętości w obu pudłach symulacyjnych jest teraz przeprowadzana niezależnie. Reguła akceptacji ruchu polegającego na zmianie objętości w pudle 1 o V 1 i w pudle 2 o V 2 jest dana przez acc o n =min {1, exp [ U s n 1 U s N n 1 n 1 ln V V 1 1 N n V 1 ln V V ]} 2 2 P V 1 V 1 V 2 2

25 Semigrand ensemble

26 Wielki zespół kanoniczny (wieloskładnikowy) Rozważmy funkcję rozkładu w wielkim zespole kanonicznym dla n-składnikowej mieszaniny. 1,, N, V,T = N 1, N 2,, N n n i=1 q i N i exp i N i N i! V N d s N exp[ U s N ] n N= i =1 N i q i wkład kinetyczny do funkcji rozkładu pochodzący od i-tej cząsteczki q i = i 3 i = h 2 / 2 m i k B T

27 Wieki zespół kanoniczny Jeśli N jest stałe, możemy wyeliminować jedną z N i, na przykład N 1, z sumy z poprzedniego równania. Otrzymujemy wtedy następujące wyrażenie: '= N 2,, N n q 1 N exp 1 N n i=1 q Ni i q 1 exp[ i 1 N i ] N i! V N d s N exp [ U s N ] Następnie mnożymy obie strony równania przez exp(- 1 N) i definiujemy nową funkcje rozkładu: Y ' exp 1 N

28 Semigrand ensemble N Y = q 1 N 2,, N n n i=1 q i q 1 Ni exp [ i 1 N i ] N i! V N d s N exp[ U s N ] Zamieniamy sumę po ilościach cząsteczek i-tego rodzaju przez sumę po wszystkich rodzajach cząsteczek. Ale wtedy musimy skorygować wzór aby wyeliminować podwójne zliczanie. Dzielimy więc przez N! N 1! N n!

29 Semigrand ensemble Po podzieleniu przez czynnik kombinatoryczny otrzymujemy Y = identities q 1 N n N! i=1 q N i i exp[ q i 1 N i ]V N 1 d s N exp[ U s N ]

30 Stałe ciśnienie Czasami wygodnie jest rozpatrywać odpowiedni zespół statystyczny uwzględniając stałe ciśnienie Y ' = P dv exp P V Vq 1 N N! identities N q 1 n N! i=1 q N i i exp [ q i 1 N i ]V N 1 d s N exp[ U s N ]

31 Lotność (fugacity) Ze względów kosmetycznych można zapisać funkcję rozkładu zastępując potencjał chemiczny przez lotność f i, zdefiniowana przez następujące równanie i P,T, x i i 0 k B T ln f i i0 (T) jest potencjałem chemicznym i-tego składnika względem stanu odniesienia, którym jest gaz doskonały pod ciśnieniem P=1. Dla gazu doskonałego f=p, więc i 0 T = k B T ln k B T q i Wstawiając powyższe równanie do wyrażenia na funkcje rozkładu otrzymujemy: Y ' = P dv exp PV Vq 1 N N! identities n i=1 f N i i d s N exp[ U s N ] f 1

32 Termodynamika Prześledźmy teraz jak zmieniała się charakterystyczna funkcja związana z kolejnymi postaciami funkcji rozkładu Wielki zespół kanoniczny PV =ln V, T,{ i } Transformacja do funkcji rozkładu Y P V 1 =lny V,T,{ i ;i 1 } Transformacja do funkcji rozkładu Y' 1 N= ln Y ' P,T,N,{ln f i / f 1 ;i 1}

33 Ułamek lotności Wygodnie jest używać jako zmiennej niezależnej ułamka lotności i zamiast ln(f i /f 1 ), gdzie i f i n f j j=1 Zaletą używania i jest to, że zmienia się od 0 do 1 podczas gdy ln(f i /f 1 ) zmienia się od minus do plus nieskończoności. Po odpowiednich podstawieniach otrzymujemy: 1 N = ln{ P dv exp P V Vq 1 N identities n i=1 i 1 N! Ni d s N exp [ U s N ] }

34 Zmiana potencjału chemicznego Możemy teraz obliczyć jak zmienia się potencjał chemiczny składnika odniesienia 1, ze względu na zmianę ułamka lotności innego składnika N 1 i N, P, T { j = N i N N 1 ; j i } i 1 d i = j i d j Rozważmy zastosowanie powyższego równania do równowag fazowych dla mieszaniny dwuskładnikowej. W tym przypadku zmieniamy tylko 2. Ma początku mierzymy potencjał chemiczny w fazie I składającej się wyłącznie ze składnika 1 oraz w fazie II składającej się wyłącznie ze składnika 2. (na przykład przez całkowanie termodynamiczne). Następnie obliczamy zmianę w fazie I spowodowana wzrostem 2 od 0 i odpowiadająca zmianę 1 w fazie II spowodowana zmniejszeniem 2 poniżej 1. Punkt, w którym potencjał chemiczny 1 składnika 1 w obu fazach jest taki sam jest punktem współistnienia. 1 I 2 = 1 II 2 f 1 I =f 1 II i f 2 I =f 2 II

35 Symulacje Monte Carlo W przypadku symulacji w semigrand ensemble oprócz ruchów związanych z przesuwaniem cząsteczek oraz zmianą objętości, należy również uwzględnić ruchy związane z zamianą jednych cząsteczek na inne. Robi się to w następujący sposób. Wybieramy losowo jedną cząsteczkę spośród wszystkich cząsteczek N i.z równym prawdopodobieństwem zamieniamy rodzaj tę cząsteczkę na cząsteczkę innego rodzaju. Prawdopodobieństwo akceptacji takiego ruchu dane jest przez: acc i i ' =min{ 1, i ' i exp [ U s N ] } gdzie U(s N ) oznacza zmianę energii potencjalnej układu jeśli zamienimy cząsteczkę i- tego rodzaju na cząsteczkę i'-tego rodzaju.

36 Nie-addytywne twarde kule U AA r ={ 0, r AA, r AA U AB r ={ 0, r AB, r AB

37 Semigrand Ensemble W przypadku mieszanin symetrycznych symulacje Monte Carlo można przeprowadzić dokonując jedynie dwu rodzajów ruchów przesuwania cząsteczek i zamiany cząsteczek A na cząsteczki B i odwrotnie. Składnik A Składnik B

38 Kombinacja Gibbs i semigrand enseble Rozważmy mieszaninę składającą się ze składników A i B. Niech składnik B będzie większy niż składnik A. Symulację przeprowadza się w taki sposób, że tylko składnik A jest bezpośrednio przenoszony miedzy pudłami symulacyjnymi. Składnik B jest przenoszony pośrednio przez zamianę składnika A na składnik B w jednym pudle symulacyjnym z jednoczesną zmianą składnika B na składnik A w drugim pudle symulacyjnym. Taki ruch jest akceptowany z następującym prawdopodobieństwem (poniższy warunek jest napisany dla zamiany zamiany składnika A w B w pudle 2): acc o n =min { 1, n A B 2 n 1 n A 1 1 n B 2 1 exp [ U 1 U ] } 2 Warunki równowagi potencjałów chemicznych dla składników A i B w obu pudłach symulacyjnych są dane przez: 1 A = 2 A 1 B 1 A = 2 B 2 A (z przenoszenia składnika A między pudłami) (z zamiany składnika A na B i B na A)

39 Mieszaniny asymetryczne 1 A = 2 A 1 B 1 A = 2 B 2 A

40 Mieszaniny symetryczne W przypadku mieszaniny symetrycznej podczas symulacji w Gibbs ensemble, wystarczy przeprowadzać dwa rodzaje ruchów przesuwanie cząsteczek oraz jednoczesna zamiana cząsteczki A na B w pudle 1 i cząsteczki B na A w pudle 2 albo odwrotnie.

41 Całkowanie termodynamiczne Swobodna energia Helmholtza jest bezpośrednio powiązana z kanoniczna funkcją rozkładu następującym równaniem F= k B T lnq N,V, T k B T ln d p N d r N exp [ H p N, r N ] dn N! Jasne jest, że Q(N,V,T) nie może być wyrażone w formie średniej kanonicznej po przestrzeni fazowej. Z tego powodu F (ale i inne funkcje takie jak S, G) nie może być obliczona bezpośrednio z w symulacjach Monte Carlo. W eksperymentach mierzy się pochodne swobodnej energii, takie jak pochodne względem temperatury T czy objętości V: F /T = E 1/T NV F = P V NT Ciśnienie P i energia E są wielkościami mechanicznymi i mogą być mierzone bezpośrednio w symulacjach. Aby obliczyć energię swobodną układu o danej gęstości i wdanej temperaturze należy znaleźć odwracalną ścieżkę na płaszczyźnie V-T, która łączy badany układ z układem o znanej energii swobodnej. Zmiana F wzdłuż tej ścieżki może być oszacowana przez całkowanie termodynamiczne, tzn. przez całkowanie powyższych równań.

42 Całkowanie termodynamiczne Rozważmy układ składający się z N cząsteczek oddziałujących energią potencjalną U. Zakładamy, że U zależy liniowo od parametry tak, że dla =0, U odpowiada energii potencjalnej układu odniesienia (oznaczonego przez I) a dla =1 jest odtwarzana energia potencjalna układu, który chcemy badać (oznaczanego II) U = 1 U I U II =U I U II U I Funkcja rozkładu dla dla układu, w którym funkcja energii potencjalnej odpowiada wartościom zmieniającym się od 0 do 1 jest dana przez Q N,V, T, = 1 3N N! d r N exp[ U ]

43 Całkowanie termodynamiczne Pochodna swobodnej energii Helmholtza F( ) względem może być zapisana jako średnia po zespole statystycznym: F = 1 N, V,T ln Q N,V,T, = 1 Q N,V, T, = d r N U / exp [ U ] d r N exp[ U ] Q N,V,T, = U gdzie <...> oznacza średnią po zespole dla układu z energią potencjalną dana przez U( )

44 Całkowanie termodynamiczne Różnica energii swobodnej między układem II a układem I może być obliczona przez scałkowanie poprzedniego równania: =1 F =1 F =0 = =0 d U Powyższe równanie wyraża różnicę energii swobodnej jako średnią po zespole, która może być obliczona bezpośrednio w symulacjach, w odróżnieniu od swobodnej energii, której nie można obliczyć bezpośrednio w symulacjach.

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r= Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną

Bardziej szczegółowo

e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii

e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii Metoda Metropolisa Z = e E P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = P E =Z 1 E e E Wartość średnia energii Średnia wartość A = d r N A r N exp[ U r N ] d r N exp[

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

Wielki rozkład kanoniczny

Wielki rozkład kanoniczny , granica termodynamiczna i przejścia fazowe Instytut Fizyki 2015 Podukład otwarty Podukład otwarty S opisywany układ + rezerwuar R Podukład otwarty S opisywany układ + rezerwuar R układ S + R jest izolowany

Bardziej szczegółowo

powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki

powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki Przejścia fazowe. powierzchnia rozdziału - skokowa zmiana niektórych parametrów na granicy faz. kropeki wody w atmosferze - dwie fazy ciekłe - jedna faza gazowa - dwa składniki Przykłady przejść fazowych:

Bardziej szczegółowo

Wykład 12. Rozkład wielki kanoniczny i statystyki kwantowe

Wykład 12. Rozkład wielki kanoniczny i statystyki kwantowe Wykład 12 Rozkład wielki kanoniczny i statystyki kwantowe dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

1 Kinetyka reakcji chemicznych

1 Kinetyka reakcji chemicznych Podstawy obliczeń chemicznych 1 1 Kinetyka reakcji chemicznych Szybkość reakcji chemicznej definiuje się jako ubytek stężenia substratu lub wzrost stężenia produktu w jednostce czasu. ν = c [ ] 2 c 1 mol

Bardziej szczegółowo

Wykład 6. Klasyfikacja przemian fazowych

Wykład 6. Klasyfikacja przemian fazowych Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

1 Całki funkcji wymiernych

1 Całki funkcji wymiernych Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska UKŁADY RÓWNOWAGI FAZOWEJ Równowaga termodynamiczna pojęcie stosowane w termodynamice. Oznacza stan, w którym makroskopowe

Bardziej szczegółowo

Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 15. Termodynamika statystyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA

Bardziej szczegółowo

Radialna funkcja korelacji g(r)

Radialna funkcja korelacji g(r) Radialna funkcja korelacji g(r) r1 Określa prawdopodobieństwo znalezienia innej cząsteczki w odległości r= r1-r od cząsteczki znajdującej się w punkcie r1 Definicja g(r) Aby zdefiniować g(r) całkuje się

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

Symulacja Monte Carlo izotermy adsorpcji w układzie. ciało stałe-gaz

Symulacja Monte Carlo izotermy adsorpcji w układzie. ciało stałe-gaz Ćwiczenie nr 2 Symulacja Monte Carlo izotermy adsorpcji w układzie ciało stałe-gaz I. Cel ćwiczenia Celem ćwiczenia jest określenie wpływu parametrów takich jak temperatura, energia oddziaływania cząsteczka-powierzchnia

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI. MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej 5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych

Bardziej szczegółowo

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A

Bardziej szczegółowo

chemia wykład 3 Przemiany fazowe

chemia wykład 3 Przemiany fazowe Przemiany fazowe Przemiany fazowe substancji czystych Wrzenie, krzepnięcie, przemiana grafitu w diament stanowią przykłady przemian fazowych, które zachodzą bez zmiany składu chemicznego. Diagramy fazowe

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości; WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie

Bardziej szczegółowo

Fizyka statystyczna Zespół kanoniczny i wielki zespół kanoniczny Statystyki kwantowe. P. F. Góra

Fizyka statystyczna Zespół kanoniczny i wielki zespół kanoniczny Statystyki kwantowe. P. F. Góra Fizyka statystyczna Zespół kanoniczny i wielki zespół kanoniczny Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Zespół kanoniczny Zespół mikrokanoniczny jest (przynajmniej w warstwie

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

Termodynamika Część 2

Termodynamika Część 2 Termodynamika Część 2 Równanie stanu Równanie stanu gazu doskonałego Równania stanu gazów rzeczywistych rozwinięcie wirialne równanie van der Waalsa hipoteza odpowiedniości stanów inne równania stanu Równanie

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

ROZWIĄZUJEMY ZADANIA Z FIZYKI

ROZWIĄZUJEMY ZADANIA Z FIZYKI ROZWIĄZUJEMY ZADANIA Z FIZYKI Rozwiązując zadnia otwarte PAMIĘTAJ o: wypisaniu danych i szukanych, zamianie jednostek na podstawowe, wypisaniu potrzebnych wzorów, w razie potrzeby przekształceniu wzorów,

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Budowa stopów. (układy równowagi fazowej)

Budowa stopów. (układy równowagi fazowej) Budowa stopów (układy równowagi fazowej) Równowaga termodynamiczna Stopy metali są trwałe w stanie równowagi termodynamicznej. Równowaga jest osiągnięta, gdy energia swobodna układu uzyska minimum lub

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

3 Potencjały termodynamiczne i transformacja Legendre a

3 Potencjały termodynamiczne i transformacja Legendre a 3 Potencjały termodynamiczne i transformacja Legendre a literatura: Ingarden, Jamiołkowski i Mrugała, Fizyka Statystyczna i ermodynamika, 9 W.I Arnold, Metody matematyczne mechaniki klasycznej, 14 3.1

Bardziej szczegółowo

Ćwiczenie 6. Symulacja komputerowa wybranych procesów farmakokinetycznych z uwzględnieniem farmakokinetyki bezmodelowej

Ćwiczenie 6. Symulacja komputerowa wybranych procesów farmakokinetycznych z uwzględnieniem farmakokinetyki bezmodelowej Ćwiczenie 6. Symulacja komputerowa wybranych procesów farmakokinetycznych z uwzględnieniem farmakokinetyki bezmodelowej Celem ćwiczenia jest wyznaczenie podstawowych parametrów farmakokinetycznych paracetamolu

Bardziej szczegółowo

Wykład 14. Termodynamika gazu fotnonowego

Wykład 14. Termodynamika gazu fotnonowego Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Chemia - laboratorium

Chemia - laboratorium Chemia - laboratorium Wydział Geologii, Geofizyki i Ochrony Środowiska Studia stacjonarne, Rok I, Semestr zimowy 013/14 Dr hab. inż. Tomasz Brylewski e-mail: brylew@agh.edu.pl tel. 1-617-59 Katedra Fizykochemii

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA . PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:

Bardziej szczegółowo

Rozwiązania zadań z podstaw fizyki kwantowej

Rozwiązania zadań z podstaw fizyki kwantowej Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze

Bardziej szczegółowo

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE 1 2 3 4 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy Poziom przedmiotu Symbole efektów kształcenia Symbole efektów dla obszaru kształcenia Symbole efektów kierunkowych

Bardziej szczegółowo

1 Warunkowe wartości oczekiwane

1 Warunkowe wartości oczekiwane Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie

Bardziej szczegółowo

WYMAGANIA na poszczególne oceny-klasa I Gimnazjum

WYMAGANIA na poszczególne oceny-klasa I Gimnazjum WYMAGANIA na poszczególne oceny-klasa I Gimnazjum Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej oceny głównej. (Znaki + i -

Bardziej szczegółowo

Fizyka statystyczna. This Book Is Generated By Wb2PDF. using

Fizyka statystyczna.  This Book Is Generated By Wb2PDF. using http://pl.wikibooks.org/wiki/fizyka_statystyczna This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF XSL-FO Formatter 18-05-2014 Table of Contents 1. Fizyka statystyczna...4 Spis treści..........................................................................?

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla klasy VII Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. 1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" LICZBY I DZIAŁANIA POZIOM KONIECZNY - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Testy Która kombinacja jednostek odpowiada paskalowi? N/m, N/m s 2, kg/m s 2,N/s, kg m/s 2

Testy Która kombinacja jednostek odpowiada paskalowi? N/m, N/m s 2, kg/m s 2,N/s, kg m/s 2 Testy 3 40. Która kombinacja jednostek odpowiada paskalowi? N/m, N/m s 2, kg/m s 2,N/s, kg m/s 2 41. Balonik o masie 10 g spada ze stałą prędkością w powietrzu. Jaka jest siła wyporu? Jaka jest średnica

Bardziej szczegółowo

I. Liczby i działania

I. Liczby i działania I. Liczby i działania porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na dziesiętne i odwrotnie, zaokrąglać liczby do danego rzędu, szacować wyniki działań,

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

WYKŁAD 5 RÓWNANIE EULERA I JEGO CAŁKI PIERWSZE 1/14

WYKŁAD 5 RÓWNANIE EULERA I JEGO CAŁKI PIERWSZE 1/14 WYKŁAD 5 RÓWNANIE EULERA I JEGO CAŁKI PIERWSZE /4 RÓWNANIE EULERA W Wykładzie nr 4 wyprowadziliśmy ogólne r-nie ruchu płynu i pokazaliśmy jego szczególny (de facto najprostszy) wariant zwany Równaniem

Bardziej szczegółowo

Elementy fizyki statystycznej

Elementy fizyki statystycznej 5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii Równowaga równowaga stabilna (pełna) równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) brak równowagi rozpraszanie energii energia swobodna Co jest warunkiem równowagi? temperatura W

Bardziej szczegółowo

Analiza termiczna Krzywe stygnięcia

Analiza termiczna Krzywe stygnięcia Analiza termiczna Krzywe stygnięcia 0 0,2 0,4 0,6 0,8 1,0 T a e j n s x p b t c o f g h k l p d i m y z q u v r w α T B T A T E T k P = const Chem. Fiz. TCH II/10 1 Rozpatrując stygnięcie wzdłuż kolejnych

Bardziej szczegółowo

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Mgr Kornelia Uczeń WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej

Bardziej szczegółowo

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Wykład 3. Fizykochemia biopolimerów- wykład 3. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego

Wykład 3. Fizykochemia biopolimerów- wykład 3. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego Wykład 3 - wykład 3 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 30 października 2013 1/56 Warunek równowagi fazowej Jakich układów dotyczy równowaga fazowa? Równowaga fazowa dotyczy układów: jednoskładnikowych

Bardziej szczegółowo

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009 MATURA EUROPEJSKA 2009 MATEMATYKA - CYKL 5 GODZINNY DATA : 8 czerwca 2009 CZAS TRWANIA EGZAMINU: 4 godziny (240 minut) DOZWOLONE POMOCE : Europejski zestaw wzorów Kalkulator (bez grafiki, bez możliwości

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci

Bardziej szczegółowo

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II Rozwiązania zadań z kolokwium w dniu 10.1.010r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Ćw. 4 Kinetyka reakcji chemicznych Zagadnienia do przygotowania: Szybkość reakcji chemicznej, zależność szybkości reakcji chemicznej

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo