Komputerowa Analiza Danych Doświadczalnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Komputerowa Analiza Danych Doświadczalnych"

Transkrypt

1 Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk tel: www: Politechnika Warszawska Wydział Fizyki Pok. 117b (wejście przez 115) 1

2 Regulamin przedmiotu - Zajęcia trwają 15 tygodni (1 godzina wykładu, 2 godziny laboratorium) - Warunki zaliczenia: a) zaliczenie wykładu (kolokwium z teorii na ostatnim wykładzie ) b) zaliczenie laboratorium: - przewidzianych jest 15 zajęć laboratoryjnych (pierwsze zajęcia wprowadzające, 2 kolokwia, ostatnie zajęcia będą przeznaczone na wystawianie ocen i ewentualne poprawy; jest 11 zajęć punktowanych); - obecność jest obowiązkowa na każdych zajęciach (możliwe 2 nieobecności); - spóźnienie na zajęcia powyżej 15 minut automatycznie jest odnotowane jako nieobecność; - programy należy oddać na tych samych zajęciach- nie ma możliwości oddania za tydzień; - programy oddane na zajęciach są oceniane w skali 0-5 pkt (pierwsze zajęcia bez punktów); - w przypadku nie skończenia programu na zajęciach oceniony zostanie napisany fragment; - w przypadku usprawiedliwionej nieobecności można z prowadzącym ustalić formę zaliczenia zaległego programu na mniejszą (4 pkt) ilość punktów; - w trakcie semestru będą 2 kolokwia: jedno w połowie semestru, drugie na końcu; - kolokwium będzie polegało na napisaniu 3 programów z materiału zrealizowanego na zajęciach, o podobnym stopniu trudności, każde zadanie będzie punktowane w skali 0-5 pkt; maksymalna liczba punktów z jednego kolokwium to 15 pkt; Na ocenę końcowa wpływają wyniki z kolokwium z wykładu (z wagą 0.3), z kolokwium z laboratorium (0.4) oraz z programów napisanych na zajęciach (z wagą 0.3). 2

3 Zalecana literatura 1. S. Brandt; Analiza danych, PWN, Warszawa (1999) 2. R. Nowak, Statystyka dla fizyków, PWN, Warszawa (2002) 3. W.T.Eadie, D.Drijard, F.E.James, M.Ross, B.Sadoulet; Metody statystyczne w fizyce doświadczalnej, PWN, Warszawa (1989) 4. A.Plucińska, E.Pluciński; Elementy probabilistyki, PWN, Warszawa (1979) 5. Programy biblioteki CERN : CERNLIB, HBOOK, PAW, ROOT Matriał tego wykładu został opracowany m. in. na podstawie skryptu: Jolanta Gałązka-Friedman, Irma Śledzińska Metody opracowania I analizy wyników pomiarowych ; skrypt wykorzystywany w Laboratorium Fizyki I 3

4 Program wykładu 1) Pomiary w eksperymentach fizycznych (przypomnienie z rachunku błędów). 2) Zmienne losowe i ich rozkłady (1D, 2D, nd, propagacja błędów). 3) Elementy metody Monte Carlo, generacja liczb pseudolosowych za pomocą komputera. 5) Podstawowe rozkłady statystyczne (dyskretne i ciągłe; centralne twierdzenie graniczne). 6) Pomiar jako pobieranie próby. Estymatory. 7) Metoda największej wiarygodności. 8) Weryfikacja hipotez statystycznych (m. in. test χ 2 ) 9) Metoda najmniejszych kwadratów (przypadek liniowy, wielomianowy,...) 11) Zagadnienie minimalizacji i optymalizacji. 13) Modelowanie komputerowe eksperymentu. 14) Współczesna realizacja eksperymentów fizycznych. 4

5 Błędy i niepewności pomiarowe Dokonując pomiaru danej wielkości (np. fizycznej), niezwykle ważne jest: - poprawne wykonanie tego pomiaru, - analiza końcowych wyników pod względem ich wiarygodności, poprawności, - przedstawienie uzyskanych rezultatów tak, by możliwe było ich poprawne zinterpretowanie. Bardzo często dzieje się tak, że mierzona wielkość nie pokrywa się z jej wartością rzeczywistą. Przyczyny tego faktu mogą być bardzo różne. Wyniki pomiarów są obarczone błędami pomiarowymi. 5

6 Błędy i niepewności pomiarowe Rodzaje błędów pomiarowych: - błędy grube,, tzw. pomyłki, które należy wyeliminować (np. wykonujemy serię pomiarową 1000 zliczeń rozpadu danego pierwiastka, faktycznie zostało zmierzone 999 zliczeń) - niepewności przypadkowe,, związane z mierzoną wielkością lub samą metodą pomiaru: eksperymentatorem wraz z otoczeniem lub przyrządem, jakim mierzymy (np. pomiar średnicy pręta ołowianego: niepewność systematyczna obiektu wynikać może z różnicami średnicy w różnych miejsach pręta, niepewność systematyczne metody: różnice w dociskaniu śruby mikrometrycznej); związane z wieloma niezależnymi od siebie przyczynami, ich cecha charakterystyczną jest to, że układają się one symetrycznie wokół wartości rzeczywistej - niepewności systematyczne,, których źródłem są ograniczone możliwości pomiarowe związane np. z klasą użytego przyrządu oraz możliwością odczytu jego wskazań przez eksperymentatora. 6

7 Prezentacja wyników pomiaru - Bezwzględna niepewność pomiarowa x x określa o ile wynik pomiaru x może różnić się od wartości rzeczywistej x 0 : x-x 0 x Zapis ten oznacza, że nie znamy wartości rzeczywistej, ale zakładamy, że mieści się ona w przedziale: (x- x) x) x (x+ x) 0 x) Wynik końcowy zapisujemy jako: x x 0 = x± x - Niepewność względna pomiaru to stosunek wartości niepewności bezwzględnej do wartości otrzymanego wyniku, wyrażony w procentach: x wzgl = ( x( x / x) * 100% 7

8 Prezentacja wyników pomiaru Końcowe wyniki należy prezentować wraz z odpowiednio dobraną jednostką oraz z odpowiednią precyzją. O precyzji świadczy ilość cyfr znaczących (od 1 do 9, 0 jest cyfrą znaczącą tylko wtedy, kiedy znajdyje się pomiędzy cyframi znaczącymi, np cyfry znaczące; 30 1 cyfra znacząca, ponieważ 300 = 3*10 2, w przypadku 2 cyfr znaczących: 30 = 3,0 *10 1 ). Niepewności pomiarowe podajemy zawsze z dokładnością do co najwyżej 2 miejsc znaczących i tylko wtedy, kiedy cyfrą znaczącą jest 1 lub 2. W pozostałych przypadkach wyniki są zaokrąglane do 1 cyfry znaczącej. 8

9 Prezentacja wyników pomiaru Zaokrąglanie: : ostatnia cyfra nie ulega zmianie, jeśli cyfrą następną jest cyfra z przedziału [0,4], jeśli cyfra kolejna jest z przedziału [5,9], to ostatnia cyfra zostaje zwiększona o 1. Wynik pomiaru jest zakrąglony zawsze do tego samego miejsca dziesiętnego, co jego niepewność. Przykłady poprawnie zapisanych wielkości: m = (92,34 ± 0,12) * 10-3 kg m wzgl = 0,13% I = (12,7 ± 0,8) ) ma I wzgl = 6% 9

10 Niepewności pomiarowe Pomiary wielkości fizycznych oraz szacowanie ich niepewności zasadniczono można podzielić na 3 kategorie: 1) przewaga niepewności systematycznych nad przypadkowymi, 2) przewaga niepewności przypadkowych nad systematycznymi, 3) niepewności przypadkowe są porównywalne z systematycznymi. W każdej z tych kategorii dodatkowo należy rozważyć przypadki, kiedy: - pomiar mierzonej wielkości następuje bezpośrednio (np. pomiar średnicy pręta śrubą mikrometryczną), - pomiar mierzonej wielkości następuje pośrednio (np. wyznaczenie objętości ołowianej kulki poprzez pomiar jej średnicy). 10

11 Ogólne zasady sporządzania wykresu 1) Mierzona wartość jest odkładana na osi odciętych (X). Osie powinny zostać oznaczone symbolem lub nazwą zmiennej wraz z odpowiednią jednostką 2) Skale obu osi należy dobrać w taki sposób, aby krzywa wykresu przebiegała możlwie przez całą (większość) powierzchnię. W praktyce: osie nie muszą zaczynać się od 0, lecz od wartości mniejszej niż wartość zmierzona, a kończyć na wartości większej niż wartość zmierzona. 3) Przedziałki skali muszą być wyrażnie zaznaczone, tak, by łatwo było odczytać punkty pomiarowe. 4) Punkty doświadczalne powinny być wyrażnie zaznaczone, tak, aby łatwo było je odróżnić od przeprowadzonej krzywej (teoretycznej). 5) Należy nanieść niepewności pomiarowe, jeśli znane są niepewności zarówno wartości odłożonej na osi odciętych, jak i rzędnych, to zaznaczane są kreski przechodzące przez środek zmierzonego punktu (np, jeśli błąd zmierzonej wartości odłożonej na osi x wynosi a, to rysowana jest pozioma kreska o długości 2a, gdzie środek przechodzi dokładnie przez wartość punktu na osi odciętych) 11

12 Przykłady poprawnych wykresów 6) Prowadząc krzywą teoretyczną, nie łączymy ze sobą punktów pomiarowych. Wartości zmierzone powinny fluktuować wokół krzywej. Krzywa powinna mieścić się w granicach punktów pomiarowych. Krzywa powinna zostać przeprowadzona w sposób ciągły. f x = 1 2 exp x x x 0 wartość oczekiwana odchylenie standardowe Przykłady poprawnie zaprezentowanych danych 12

13 Niepewności systematyczne (duże( w porównaniu z przypadkowymi) 1) Pomiar bezpośredni Na wielkość niepewności systematycznej składają się: - użyty przyrząd (klasa przyrządu): np. pomiar napięcia woltomierzem analogowym na zakresie 300V, klasa miernika to 1%: błąd związany z przyrządem wynosi V 1 = 300V * 1% = 3V - wykonanie czynności pomiarowej przez eksperymentatora: jeśli niepewność wychylenia się wskazówki w mierniku ocenimy na 1V, to całkowita niepewność pomiaru wyniesie V V = 4V Oba przyczynki nie kompensują się, lecz dodają z jednakowymi znakami. 13

14 Niepewności systematyczne (duże( w porównaniu z przypadkowymi) 2a) Pomiar pośredni metoda różniczki zupełnej Przypadek ten dotyczy większości pomiarów, gdzie niepewności systematyczne dominują nad przypadkowymi: np. pomiar objętości walca poprzez pomiar jego wysokości oraz średnicy podstawy. Na przykładzie funkcji jednej zmiennej: Chcemy obliczyć zmianę ΔY Y funkcji f(x) przy zmianie jej arumentu Δx Y ± Y = f x± x Rozwijając w szereg Taylora mamy oraz zaniedbując wyrazy, gdzie Δx występuje w potędze wyższa niż 1: 1 Y ± Y = f x ± x df x dx 14

15 Niepewności systematyczne (duże( w porównaniu z przypadkowymi) Ponieważ: Y = f x Y = Bezwzględna niepewność wielkości będącej funkcją jednej zmiennej (której wartość mierzymy) równa jest bezwzględnej niepewności wielkości mierzonej pomnozonej przez pochodną funkcji. df x dx x Uogólniając ten przypadek na funkcję wielu zmiennych Y= f(x, x,..., x ): 1 2 n Y = f x x 1 x 1 f x x 2 x 2... f x x x n n 15

16 Niepewności systematyczne (duże( w porównaniu z przypadkowymi) 2a) Pomiar pośredni metoda różniczki zupełnej - przykład Mamy 2 równolegle połączone oporniki R oraz R 1. Błąd wyznaczenia oporności 2 każdego z nich wynosi 10%. Wyznaczyć wartość oporu zastępczego. R 1 =40, R 2 =60, R 1 =0,4, R 2 =0,6 1 R = 1 R 1 1 R 2 R= R 1 R 2 R 1 R 2 =24 R= R R 1 R 1 R R 2 R 2 R R 1 = R 2 R 1 R 2 R 1 R 2 R 1 R 2 2 R R 2 = R 1 R 1 R 2 R 1 R 2 R 1 R 2 2 R 1 R R 2 R=0,84 0, ,6 [ ]=0,72 R= 24,0±0,7 16

17 Niepewności systematyczne (duże( w porównaniu z przypadkowymi) 2a) Pomiar pośredni metoda różniczki logarytmicznej W przypadku, kiedy funkcja Y= f(x, x,..., x 1 ) ma postać iloczynową, 2 n wygodniej jest stosować tę metodę. a Y = A x 1 a 1 x a n xn Po zlogarytmowaniu: ln Y =ln A a 1 ln x 1 a 2 ln x 2... a n ln x n Różniczka: dy Y =a 1 dx 1 x 1 a 2 dx 1 x 2 ln Y... a n dx n x n Y Y = x i a i x i 17

18 Niepewności systematyczne (duże( w porównaniu z przypadkowymi) Y = A x 1 a 1 x2 a 2... xn a n Y Y = x i a i x i Przykład: wyznaczenie oporności opornika, na którym zmierzono spadek napięcia U oraz przez który przepłynął prąd stały o natężeniu I U = 31,07±0,52 V I = 2,01±0,07 A R= U I = 31,07 2,01 V / A=15,46 R R = U U I =0,0167 0,0348=0,515 I R R= 15,4±0,8 18

19 Niepewności przypadkowe (duże( w porównaniu z systematycznymi) 1) Pomiar bezpośredni Przykład: została zmierzona n=1000 razy grubość ołowianego pręta za pomocą śruby mikrometrycznej (niepewność systematyczna od śruby to x x = 0,01 mm). Wyniki zestawiono na histogramie, gdzie szerokość jednego przedziału wynosi x =. 0,05 mm. Rysujemy rozkład częstości, a następnie dopasowujemy rozkład Gaussa, charakteryzujący się parametrami: wartością średnią a oraz odchyleniem standardowym σ. 19

20 Niepewności przypadkowe (duże( w porównaniu z systematycznymi) Średnia arytmetyczna: Odchylenie standardowe pojedynczego pomiaru: Średni błąd kwadratowy średniej: x m=x= i n x x i 2 n 1 S x = S x = S x 2 n = x x i n n 1 Wartości x±s x określają przedział, w jakim z prawdopodobieństwem 68% nalezy oczekiwać wartości rzeczywistej. Wzięcie przedziału równego x±2s x lub x±3s x spowoduje wzrost tego prawdopodobieństwa do 95,4% oraz 99,7%. W praktyce podajemy wynik na poziomie 1 odchylenia standardowego. 20

21 Niepewności przypadkowe (duże( w porównaniu z systematycznymi) 2) Pomiar pośredni Załóżmy, że przedmiotem pomiary jest wielkość Z=f(X, X,...X ). 1 2 n Mierzone bezpośrednio są wielkości wraz z ich niepewnościami: Można wykazać, że Z = f X 1, X 1,..., X n X 1, X 2,... X n S X 1,S X 1,..., S X n A także: S Z = f x 1, x 2,..., x n x i 2 2 x 1, x 2,..., x n s xi Przykład: Zmierzona została długość ołowianego pręta: Celem jest wyznaczenie objętości tego pręta. Zmierzono także średnice, otrzymano wynik: d±s d = 5,02±0,12 cm l±s l = 1,05±0,11 cm Objętość: V = d / 2 2 l=20,78 cm 3 Błąd: S V = f l, d 2 l s 2 l f l, d 2 s 2 d d =2.39cm 3 V = 20,8±2,4 cm 3 21

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH Temat: SZCOWNIE NIEPEWNOŚCI POMIROWYCH - Jak oszacować niepewność pomiarów bezpośrednich? - Jak oszacować niepewność pomiarów pośrednich? - Jak oszacować niepewność przeciętną i standardową? - Jak zapisywać

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Dokładność pomiaru: Ogólne informacje o błędach pomiaru

Dokładność pomiaru: Ogólne informacje o błędach pomiaru Dokładność pomiaru: Rozumny człowiek nie dąży do osiągnięcia w określonej dziedzinie większej dokładności niż ta, którą dopuszcza istota przedmiotu jego badań. (Arystoteles) Nie można wykonać bezbłędnego

Bardziej szczegółowo

A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG.

A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG. A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG. B. Metodyka wykonywania pomiarów oraz szacowanie niepewności pomiaru. Celem każdego

Bardziej szczegółowo

Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych

Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych Marcin Polkowski (251328) 1 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników

Bardziej szczegółowo

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Precyzja a dokładność

Precyzja a dokładność Precyzja a dokładność Precyzja pomiaru jest miarą rzetelności przeprowadzenia doświadczenia, lub mówi nam jak powtarzalny jest ten eksperyment. Dokładność pomiaru jest miarą tego jak wyniki doświadczalne

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

LABORATORIUM METROLOGII. Analiza błędów i niepewności wyników pomiarowych. dr inż. Piotr Burnos

LABORATORIUM METROLOGII. Analiza błędów i niepewności wyników pomiarowych. dr inż. Piotr Burnos AKADEMIA GÓRICZO - HTICZA IM. STAISŁAWA STASZICA w KRAKOWIE WYDZIAŁ ELEKTROTECHIKI, ATOMATYKI, IFORMATYKI i ELEKTROIKI KATEDRA METROLOGII LABORATORIM METROLOGII Analiza błędów i niepewności wyników pomiarowych

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo

Bardziej szczegółowo

Opracowanie danych doświadczalnych część 1

Opracowanie danych doświadczalnych część 1 Opracowanie danych doświadczalnych część 1 Jan Kurzyk Instytut Fizyki Politechniki Krakowskiej wersja z 15.10.2010 Pomiar to zespół czynności, których celem jest uzyskanie miary danej wielkości fizycznej,

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych w studenckim laboratorium podstaw fizyki

Podstawy analizy niepewności pomiarowych w studenckim laboratorium podstaw fizyki Podstawy analizy niepewności pomiarowych w studenckim laboratorium podstaw fizyki Włodzimierz Salejda Ryszard Poprawski Elektroniczna wersja opracowania dostępna w Internecie na stronach: http://www.if.pwr.wroc.pl/lpf/

Bardziej szczegółowo

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: definicje i pojęcia podstawowe dr inż. Paweł Zalewski Akademia Morska w Szczecinie Pojęcia podstawowe: Metrologia jest nauką zajmująca się sposobami dokonywania pomiarów oraz zasadami interpretacji

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIERSYTET TECHNOLOGICZNO-PRZYRODNICZY BYDGOSZCZY YDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆICZENIE: E1 POSŁUGIANIE SIĘ MIERNIKAMI

Bardziej szczegółowo

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego: Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 3, wykład nr 5, 6 Prawo autorskie Niniejsze materiały podlegają ochronie

Bardziej szczegółowo

Ćwiczenie nr 1. Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy.

Ćwiczenie nr 1. Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy. Ćwiczenie nr 1 Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy. 1. Cel ćwiczenia Celem ćwiczenia jest analiza wpływów i sposobów włączania przyrządów pomiarowych do obwodu elektrycznego

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III ZALICZENIA W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III 1 Wariant I. PROBLEM WŁASNY Sformułować własne zadanie statystyczne związane z własną pracą badawczą

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0 2014 Katedra Fizyki Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg... Godzina... Ćwiczenie 425 Wyznaczanie ciepła właściwego ciał stałych Masa suchego kalorymetru m k = kg Opór grzałki

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl 3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar

Bardziej szczegółowo

P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9.

P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9. Literatura: P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9. A. Zięba, 2001, Natura rachunku niepewności a

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Zajęcia 2 Metody analizy pomiarów

Zajęcia 2 Metody analizy pomiarów Konkurs fizyka cząstek elementarnych Sandomierz 2015 Zajęcia 2 Metody analizy pomiarów Rafał Staszewski Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauk Jak wygląda sprawozdanie z pomiaru?

Bardziej szczegółowo

Instytut Politechniczny Zakład Elektrotechniki i Elektroniki

Instytut Politechniczny Zakład Elektrotechniki i Elektroniki Instytut Politechniczny Kod przedmiotu: PLPILA02-IPELE-I-IIIkC5-2013-S Pozycja planu: C5 1. INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Metrologia I 2 Kierunek studiów Elektrotechnika

Bardziej szczegółowo

Niepewność pomiaru masy w praktyce

Niepewność pomiaru masy w praktyce Niepewność pomiaru masy w praktyce RADWAG Wagi Elektroniczne Z wszystkimi pomiarami nierozłącznie jest związana Niepewność jest nierozerwalnie związana z wynimiarów niepewność ich wyników. Podając wyniki

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI Gimnazjum WYMAGANIA PODSTAWOWE ( OCENA dopuszczająca, dostateczna) Uczeń : Zna i prawidłowo posługuje się symbolami wielkości fizycznych Zna jednostki wielkości fizycznych

Bardziej szczegółowo

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej Wydział Imię i nazwisko 1. 2. Rok Grupa Zespół PRACOWNIA Temat: Nr ćwiczenia FIZYCZNA WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 71: Dyfrakcja

Bardziej szczegółowo

POWTÓRZENIE - GEODEZJA OGÓLNA dział 9 ELEMENTY RACHUNKU WYRÓWNAWCZEGO

POWTÓRZENIE - GEODEZJA OGÓLNA dział 9 ELEMENTY RACHUNKU WYRÓWNAWCZEGO POWTÓRZENIE - GEODEZJA OGÓLNA dział 9 ELEMENTY RACHUNKU WYRÓWNAWCZEGO SPOSTRZEŻENIA JEDNAKOWO DOKŁADNE. Spostrzeżenia jednakowo dokładne to takie, które wykonane są: tym samym przyrządem, tą samą metodą

Bardziej szczegółowo

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa,

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, Poziom dźwięku Decybel (db) jest jednostką poziomu; Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, co obejmuje 8 rzędów wielkości

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

SPRAWOZDANIE Z BADAŃ

SPRAWOZDANIE Z BADAŃ POLITECHNIKA ŁÓDZKA ul. Żeromskiego 116 90-924 Łódź KATEDRA BUDOWNICTWA BETONOWEGO NIP: 727 002 18 95 REGON: 000001583 LABORATORIUM BADAWCZE MATERIAŁÓW I KONSTRUKCJI BUDOWLANYCH Al. Politechniki 6 90-924

Bardziej szczegółowo

Statystyka matematyczna SYLABUS

Statystyka matematyczna SYLABUS Statystyka matematyczna nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe sylabusu Nazwa przedmiotu Statystyka matematyczna Kod przedmiotu 0600-FS2-2SM Nazwa jednostki prowadzącej Wydział

Bardziej szczegółowo

Zadania statystyka semestr 6TUZ

Zadania statystyka semestr 6TUZ Zadania statystyka semestr 6TUZ Zad.1. W pewnym liceum, wśród uczniów 30 osobowej klasy (kaŝdy uczeń pochodzi z innej rodziny), zebrano dane na temat posiadanego rodzeństwa. Wyniki badań przedstawiono

Bardziej szczegółowo

Pomiar współczynnika pochłaniania światła

Pomiar współczynnika pochłaniania światła Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 12 V 2009 Nr. ćwiczenia: 431 Temat ćwiczenia: Pomiar współczynnika pochłaniania światła Nr. studenta:

Bardziej szczegółowo

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne ZADANIE D2 Nazwa zadania: Światełko na tafli wody Mając do dyspozycji fotodiodę, źródło prądu stałego (4,5V bateryjkę), przewody, mikroamperomierz oraz

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW

JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW Z tego dokumentu dowiesz się jak wykorzystać wbudowane funkcje arkusza kalkulacyjnego

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: STATYSTYCZNA KONTROLA PROCESU 1. Cel ćwiczenia Zapoznanie studentów z podstawami wdrażania i stosowania metod

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Wprowadzenie 2010-10-20

Wprowadzenie 2010-10-20 PODSTAWY STATYSTYKI Dr hab. inż. Piotr Konieczka piotr.konieczka@pg.gda.pl 1 Wprowadzenie Wynik analityczny to efekt przeprowadzonego pomiaru(ów). Pomiar to zatem narzędzie wykorzystywane w celu uzyskania

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek: 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY.

SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY. SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca.

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

LABORATORIUM Z MECHANIKI PŁYNÓW I HYDRAULIKI

LABORATORIUM Z MECHANIKI PŁYNÓW I HYDRAULIKI Politechnika Gdańska LABORATORIUM Z MECHANIKI PŁYNÓW I HYDRAULIKI praca zbiorowa pod redakcją Katarzyny Weinerowskiej autorzy Jerzy Sawicki, Wojciech Szpakowski Katarzyna Weinerowska, Elżbieta Wołoszyn,

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.04.01.01-00-59/08 INSTYTUT FIZYKI WYDZIAŁINśYNIERII

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Obowiązkowa znajomość zagadnień Charakterystyka drgań gasnących i niegasnących, ruch harmoniczny. Wahadło fizyczne, długość zredukowana

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA

POLITECHNIKA WARSZAWSKA POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ STATYSTYCZNA KONTROLA PROCESU (SPC) Ocena i weryfikacja statystyczna założeń przyjętych przy sporządzaniu

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia...2006 r.

ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia...2006 r. ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia...2006 r. w sprawie wymagań, którym powinny odpowiadać instalacje pomiarowe do ciągłego i dynamicznego pomiaru ilości cieczy innych niż woda oraz szczegółowego

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 1 Temat: Kontrola odbiorcza partii wyrobów z selekcją

Bardziej szczegółowo

Sylabus modułu: Matematyka stosowana z elementami chemometrii (0310-CH-S1-018)

Sylabus modułu: Matematyka stosowana z elementami chemometrii (0310-CH-S1-018) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: chemia, poziom pierwszy Sylabus modułu: Matematyka stosowana z elementami chemometrii (018) 1. Informacje ogólne koordynator modułu dr

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

Elementarz rachunku błędu pomiarowego /warsztaty pomiarowe/

Elementarz rachunku błędu pomiarowego /warsztaty pomiarowe/ Elementarz rachunku błędu pomiarowego /warsztaty pomiarowe/ Piotr Jaracz, Zygmunt Szefliński (współpraca) Pracownia Fizyczna I Wydział Fizyki Uniwersytet Warszawski 005 1. Podstawy 1.1. Czy ogólna teoria

Bardziej szczegółowo

Ć W I C Z E N I E N R E-15

Ć W I C Z E N I E N R E-15 NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ

Bardziej szczegółowo

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI ĆWICZENIE 43 BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI Układ optyczny mikroskopu składa się z obiektywu i okularu rozmieszczonych na końcach rury zwanej tubusem. Przedmiot ustawia się w odległości większej

Bardziej szczegółowo

Laboratorum 4 Dioda półprzewodnikowa

Laboratorum 4 Dioda półprzewodnikowa Laboratorum 4 Dioda półprzewodnikowa Marcin Polkowski (251328) 19 kwietnia 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Opis ćwiczenia 2 3 Wykonane pomiary 3 3.1 Dioda krzemowa...............................................

Bardziej szczegółowo

Laboratorium Telewizji Cyfrowej

Laboratorium Telewizji Cyfrowej Laboratorium Telewizji Cyfrowej Badanie wybranych elementów sieci TV kablowej Jarosław Marek Gliwiński Robert Sadowski Przemysław Szczerbicki Paweł Urbanek 14 maja 2009 1 Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Celem ćwiczenia jest poznanie metody sprawdzania dokładności cyfrowych przyrządów pomiarowych wielkości elektrycznych.

Celem ćwiczenia jest poznanie metody sprawdzania dokładności cyfrowych przyrządów pomiarowych wielkości elektrycznych. Ćwiczenie nr 4 Temat: Kalibracja przyrządów pomiarowych.. Cel ćwiczenia: Celem ćwiczenia jest poznanie metody sprawdzania dokładności cyfrowych przyrządów pomiarowych wielkości elektrycznych.. Podstawy

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRZYRZĄDY POMIAROWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przyrządy pomiarowe Ogólny podział: mierniki, rejestratory, detektory, charakterografy.

Bardziej szczegółowo

Pracownia fizyczna analiza wyników pomiarów i ich niepewności.

Pracownia fizyczna analiza wyników pomiarów i ich niepewności. 005-0-0 Pracownia fizyczna analiza wyników pomiarów i ich niepewności... Wstęp Zjawiska zachodzące w przyrodzie opisywane są za pomocą odpowiednio zdefiniowanych pojęć zwanych wielkościami fizycznymi.

Bardziej szczegółowo

Badanie własności diód krzemowej, germanowej, oraz diody Zenera

Badanie własności diód krzemowej, germanowej, oraz diody Zenera 23 kwietnia 2001 Ryszard Kostecki Badanie własności diód krzemowej, germanowej, oraz diody Zenera Streszczenie Celem tej pracy jest zapoznanie się z tematyką i zbadanie diód krzemowej, germanowej, oraz

Bardziej szczegółowo

W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: POWIERZCHNIA SWOBODNA CIECZY W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ Ćwiczenie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Energetyka Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie podstawowej wiedzy

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

WYKRESY FUNKCJI LINIOWEJ

WYKRESY FUNKCJI LINIOWEJ GIMNAZJUM NR 2 W KAMIENNEJ GÓRZE WYKRESY FUNKCJI LINIOWEJ Oprcowała Wiesława Kurnyta Kamienna Góra, 2006 Oto wypisy z Podstawy programowej o nauczaniu matematyki w gimnazjum Cele edukacyjne 1. E Przyswajanie

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

12.2. Kompensator o regulowanym prądzie i stałym rezystorze (Lindecka)

12.2. Kompensator o regulowanym prądzie i stałym rezystorze (Lindecka) . POMARY METODĄ KOMPENSACYJNĄ Opracowała: R. Antkowiak Na format elektroniczny przetworzył: A. Wollek Niniejszy rozdział stanowi część skryptu: Materiały pomocnicze do laboratorium z Metrologii elektrycznej

Bardziej szczegółowo

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych. msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów

Bardziej szczegółowo