Laboratorium Fizyczne Inżynieria materiałowa. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Laboratorium Fizyczne Inżynieria materiałowa. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego"

Transkrypt

1 Laboratorium Fizyczne Inżynieria materiałowa Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

2

3 błąd pomiaru = x i x 0 Błędy pomiaru dzielimy na: Błędy przybliżenia Błędy przeoczenia (systematyczne) Pomyłki

4 Niepewności ze względu na przyczyny występowania możemy podzielić na: Niepewność wzorcowania Niepewność eksperymentatora Niepewność przypadkowa

5 Niepewność wzorcownia przyrządów takich jak linijka czy termometr odpowiada tzw. działce elementarnej tzw. odstępowi sąsiadujących kresek podziałki zaznaczonej na skali przyrządu

6 Mikroamperomierz wskazówkowy na zakresie 200μA ze skalą podzieloną jest na 100 działek ma działkę elementarną Δ d I=2μA, natomiast cyfrowy mikroamperomierz wskazujący, na przykład, wartość 197,32μA ma działkę elementarną Δ d I=0,01μA. Typowa linijka lub miarka zwijana ma działkę elementarną Δ d I=1mm. Bardzo często w instrukcji przyrządu pomiarowego można odczytać np. dokładność (0,8%+dgd). Oznacza to, że niepewność wzorcowania Δ d X= 0,8%*odczytana wartość + działka (i) elementarna (e).

7 Dla przyrządów analogowych takich jak woltomierze niepewność wzorcowania jest obliczana na podstawie tzw. klasy przyrządu. Klasa przyrządu wyraża stosunek procentowy niepewności maksymalnej x do pełnego wychylenia miernika w danym zakresie. Oznacza to, że wartości odczytana z miernika może się różnić od wartości prawdziwej x 0 maksymalnie o ± x.

8 Niepewność eksperymentatora jest oceniana subiektywnie przez niego samego na podstawie informacji na temat samego pomiaru np. widoczności skali czy też stabilności pomiaru.

9 Linijką jednokrotnie zmierzyłem wysokość i szerokość książki. Mierząc wysokość H okładki i odczytałem: przyłożyłam linijkę do dobrze przyciętej H=228 mm. Dokładność eksperymentatora oceniłem na Δ e H=1mm (linijka dobrze przylegała do krawędzi, miałem tylko problem z odczytem). Niepewność wzorcowania linijki wynosi Δ d H=1mm. Wniosek: niepewność maksymalna pomiaru wysokości jest sumą obu niepewności ΔH= Δ d H + Δ e H= 2mm. Mogę teraz powiedzieć: wysokość książki wynosi mm. H=(228±2) Pomiar szerokości książki dał następujący wynik : L=165 mm. Ze względu na obły grzbiet książki, dokładność eksperymentatora pomiaru jej szerokości oceniłem na Δ e H=2mm. Dlatego wynik końcowy to: L=(165±3) mm

10 Mierzę woltomierzem napięcie baterii. Mimo iż miernik może mierzyć z dokładnością Δ d U=0,002V to wskutek zakłóceń ostania cyfra miga i daje się odczytać U=1,56 V. Muszę przyjąć, że o dokładności pomiaru decyduje niepewność eksperymentatora Δ e U=0,01 V. Wynik końcowy ma postać: U=(1,560±0,022) V (1,56±0,02) V

11 Niepewność przypadkowa występuje w trakcie pomiaru systematycznie i objawia się statystycznym rozrzutem wyników przy czym źródeł rozrzutu nie jesteśmy wstanie rozróżnić. Miarą rozrzutu jest odchylenie standardowe: S x

12 Kiedy w trakcie doświadczenia dokonujemy wielokrotnie pomiarów tej samej zmiennej to należy oprzeć się analizie niepewności na statystyce.

13 Z teorii wynika, że tzw. wartość najbardziej prawdopodobną (zbliżoną do rzeczywistości) dla serii pomiarów tej samej wielkości stanowi wartość średnia wszystkich wykonanych pomiarów:

14

15 Dla dużej ilości pomiarów do oceny statytycznej niepewności przypadkowej wartośći średniej korzystamy z rozkładu Gaussa. Odchylenie standardowe S x w rozkładzie Gaussa należy rozumieć w tym sensie, że wartość rzeczywista x 0 znajduje się w przedziale <x - S x, x + S x > z prawdopodobieństwem p wynoszącym około 0,683 (prawdopodobieństwo to nazywa się poziomem ufności).

16 Odchylenie standardowe w rozkładzie Gaussa obliczamy z zależności:

17 W przypadku mniejszej ilości pomiarów stosujemy tzw. rozkład Studenta do oceny statystycznej niepewności przypadkowej wartości średniej. Odchylenie standardowe w rozkładzie Studenta jest t n razy większe od odchylenia standardowego w rozkładzie Gaussa. Wartość t n zależy od ilości pomiarów oraz poziomu ufności.

18 Odchylenie standardowe wartości średniej dla rozkładu Studenta obliczamy z zależności: Wartości dla poziomu ufności p=0,683 n t n 1,11 1,09 1,08 1,07 1,06 1,05

19 Wynikiem wielokrotnego pomiaru tej samej wielkości w tych samych warunkach jest średnia arytmetyczna poszczególnych rezultatów, natomiast jej niepewnością przypadkową jest odchylenie standardowe S x Dodatkowo należy pamiętać o niepewnościach wzorcowania.

20 Przyjmując dla obu typów niepewności wzorcowania prostokątny rozkład prawdopodobieństwa, ich odchylenie standardowe wynosi:

21 W przypadku kiedy w eksperymencie występują wszystkie możliwe niepewności pomiaru odchylenie standardowe wyznaczamy za pomocą zależności: Zastosowanie tego wzoru daje 68,3% pewności, że rzeczywista wartość x mieści się w granicach ( -S x, +S x ).

22 W celu wyznaczenia niepewności maksymalnej pomiary możemy zastosować zależność: Zastosowanie powyższego wzoru daje 99,7% pewności, że rzeczywista wartość x mieści się w granicach ( -S x, +S x ).

23 Wykonałem serię pomiarów czasu spalania zapałek. Uzyskałem osiem wyników: t 1 = 15s, t 2 = 16s, t 3 = 13s, t 4 = 14s, t 5 = 7s, t 6 = 15s, t 7 = 17s, t 8 = 16s. Pierwsza analiza pozwala na wyeliminowanie 5 pomiaru jako pomyłki (błędu grubego). Wynikiem pomiaru jest obliczona na podstawie wzoru średnia = s. Z tabeli wynika, że dla n=7 współczynnik krytyczny rozkładu Studenta wynosi t n =1,09. Dlatego odchylenie standardowe wartości średniej S ts jest równe 0,554s (wzór 0.2). Po uwzględnieniu niepewności wzorcowania Δ d t=1s, można obliczyć (wzór 0.5) i zapisać, że z prawdopodobieństwem 0.68, średni czas palenia się zapałek z tej próby wynosi: =(15.14±0.94) s.

24 Wynik pomiaru linijką wysokości krawężnika jest następujący L=156mm. Ze względu na zużycie linijki oraz obły kształt krawędzi krawężnika oszacowałem niepewność eksperymentatora na Δ e L=3mm. W powiązaniu z niepewnością wzorcowania Δ d L=1mm wyliczona na podstawie wzoru, niepewność standardowa pomiaru wynosi: S L =1,82574 mm. Wynik końcowy: L=(156±2)mm.

25 Zmierzyłem suwmiarką średnicę pręta. Otrzymałem wynik Φ=12,1mm obarczony niepewnością wzorcowania Δ d Φ=0,1 mm. Ponieważ niepewność eksperymentatora uznałem za równą zero, dlatego na podstawie wzoru niepewność standartowa pomiaru średnicy jest równa S Φ =0, mm. Wynikiem końcowym jest wartość: Φ=(12,10±0,06)mm. Uwaga: Wynik zaokrąglony o jeszcze jedno miejsce znaczące Φ=(12,1±0,1)mm nie będzie błędem, lecz będzie wyrazem większej ostrożności w ocenie pomiaru. W praktyce to oznacza, że wykonując tylko jeden pomiar możemy oszacować jego niepewność jako Δx=Δ d x+δ e x.

26 Niepewność standardową wielkości złożonej tzn. takiej w wyznaczeniu której należy wykonać pomiar wielkości pośrednich wyznaczamy z zależności:

27 Celem obliczenia energii kinetycznej wagonu, zmierzyłem jego prędkość i masę uzyskując następujące rezultaty: V=(31±2) m/s i m=(15.0±0.5) t. Energia kinetyczna wagonu wynosi:. Na podstawie wzoru: Wynikiem końcowym jest wartość energii kinetycznej wagonu, czyli E=(721±52) 10 4 J.

28 Wyznaczone wielkości oraz ich niepewności należy zapisać w odpowiedni sposób. Możliwe jest wyznaczenie względnego odchylenia standardowego:

29 Obowiązują dwie przyjęte formy zapisu wyniku eksperymentu: X = (x ± u(x)) [jednostka] Bądź X= x [jednostka] ± w(x)

30 Prawidłowo zapisany wynik końcowy pomiaru wymaga, z reguły, zaokrąglenia. Zasada zaokrąglania jest następująca: odchylenie standardowe S x pomiaru pewnej wielkości X zaokrąglamy do takiego miejsca, aby pozostały tylko maksymalnie dwie cyfry znaczące, wynik pomiaru zaokrąglamy do tego samego miejsca dziesiętnego, do którego zostało zaokrąglone S x. Czasami się zdarza, że w przypadku pojedynczych pomiarów powinniśmy zaokrąglać błąd pozostawiając tylko jedną cyfrę znaczącą. Trzeba pamiętać, że zaokrąglamy wynik końcowy, a nie wyniki pośrednie!

31 Po opracowaniu pomiarów średnicy Φ drutu otrzymałem następujące wyniki: Φ=0, m i S Φ =5, m Po zaokrągleniu, wynik końcowy można przedstawić w formie Φ =(3,45±0.55) 10-3 m Φ =(345±55) 10-5 m Φ =345(55) 10-5 m

32 Wielu fizyków długo pracowało, aby uzyskać (i zapisać prawidłowo) tak dokładne stałe fizyczne np.: Ładunek elektronu (ładunek elementarny) e =(1, ± 0, ) C Stała Boltzmanna k = R/N A =(1, ± 0, ) J/K Stała Faradaya F = N A e =(96 485,3383 ± 0,0083) C/mol Stała grawitacyjna G N =(6,6742 ± 0,0010) m 3 /(kg s 2 ) itd.

33 Y [y] W celu graficznego przedstawienia wyników pomiarów można sporządzić wykres danej zależności X [x]

34 Y [y] ZLE X [x]

35 Kiedy przypuszczamy bądź wiemy, że jakaś wielkość z wielkością pośrednią jest związana zależnością funkcyjną typu: y=ax+b Możemy na podstawie wyników pomiaru wyznaczyć współczynniki prostej będącej wykresem tej zależności.

36 W celu wyznaczenia współczynników należy wykorzystać zależności: Gdzie:

37 Odchylenie standardowe dopasowania prostej można wyznaczyć z zależności: Istotnym parametrem jest również tzw. współczynnik korelacji, który powinien być jak najbliższy jedności;

38 Y[y] y = ax+b Parametr Wartosc Odchylenie stand A B R= X[x]

39 Na rysunku przedstawiono wyniki pomiaru długości fali dźwiękowej (λ=y) w funkcji częstotliwości tej fali (f=x).

40 Te same dane pomiarowe wykreślone są również poniżej. Tym razem zmienną x jest odwrotność częstotliwości fali, czyli 1/f. Ponieważ z wykresu można sądzić, że punkty układają się wzdłuż linii prostej można zastosować regresję (aproksymację) liniową.

41 Z wyników regresji liniowej przedstawionych na rysunku 3 można wyprowadzić następujące wnioski: 1. Wysoki współczynnik korelacji R= pozwala sądzić, że długość fali jest związana z jej częstotliwością zależnością λ =A+B/f, 2. Współczynnik proporcjonalności B mający wymiar [m/s] jest prędkością fali V=4897±35 [m/s], 3. Współczynnik A jest równy (0.025±0.047) [Hz] co jest zgodne z oczekiwaniem, że A=0, 4. Zależność λ =V/f jest potwierdzona przez powyższe dane doświadczalne, 5. Prędkość fali dźwiękowej o częstotliwości w zakresie od 800Hz do7500hz jest stała.

42 B. Kusz Metody wykonywania pomiarów oraz szacowanie niepewności pomiaru K. Kozłowski, R. Zieliński I Laboratorium z Fizyki część I Wydawnictwo PG

A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG.

A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG. A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG. B. Metodyka wykonywania pomiarów oraz szacowanie niepewności pomiaru. Celem każdego

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów

Bardziej szczegółowo

Metodyka wykonywania pomiarów oraz ocena niepewności i błędów pomiaru

Metodyka wykonywania pomiarów oraz ocena niepewności i błędów pomiaru Nie tylko dla studentów JAKOŚĆ BADAŃ Metodyka wykonywania pomiarów oraz ocena niepewności i błędów pomiaru Beata Bochentyn, Bogusław Kusz* Celem każdego ćwiczenia w laboratorium studenckim jest zmierzenie

Bardziej szczegółowo

Niepewności pomiarów

Niepewności pomiarów Niepewności pomiarów Międzynarodowa Organizacja Normalizacyjna (ISO) w roku 1995 opublikowała normy dotyczące terminologii i sposobu określania niepewności pomiarów [1]. W roku 1999 normy zostały opublikowane

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Biologii A i B dr hab. Paweł Korecki e-mail: pawel.korecki@uj.edu.pl http://www.if.uj.edu.pl/pl/edukacja/pracownia_i/

Bardziej szczegółowo

WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU

WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU 1. Błąd a niepewność pomiaru Pojęcia błędu i niepewności

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Laboratorium z Metrologii

Laboratorium z Metrologii Zachodniopomorski niwersytet Technologiczny w Szczecinie Wydział Elektryczny Katedra Sterowania i Pomiarów Zakład Metrologii Laboratorium z Metrologii Opracował: dr inż. A.Wollek 1 Prowadzący dr inż. Andrzej

Bardziej szczegółowo

Określanie niepewności pomiaru

Określanie niepewności pomiaru Określanie niepewności pomiaru (Materiały do ćwiczeń laboratoryjnych z przedmiotu Materiałoznawstwo na wydziale Górnictwa i Geoinżynierii) 1. Wprowadzenie Pomiar jest to zbiór czynności mających na celu

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH Temat: SZCOWNIE NIEPEWNOŚCI POMIROWYCH - Jak oszacować niepewność pomiarów bezpośrednich? - Jak oszacować niepewność pomiarów pośrednich? - Jak oszacować niepewność przeciętną i standardową? - Jak zapisywać

Bardziej szczegółowo

Wprowadzenie do rachunku niepewności pomiarowej. Jacek Pawlyta

Wprowadzenie do rachunku niepewności pomiarowej. Jacek Pawlyta Wprowadzenie do rachunku niepewności pomiarowej Jacek Pawlyta Fizyka Teorie Obserwacje Doświadczenia Fizyka Teorie Przykłady Obserwacje Przykłady Doświadczenia Przykłady Fizyka Potwierdzanie bądź obalanie

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.

Bardziej szczegółowo

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa

Bardziej szczegółowo

Charakterystyka mierników do badania oświetlenia Obiektywne badania warunków oświetlenia opierają się na wynikach pomiarów parametrów świetlnych. Podobnie jak każdy pomiar, również te pomiary, obarczone

Bardziej szczegółowo

Podstawy niepewności pomiarowych Ćwiczenia

Podstawy niepewności pomiarowych Ćwiczenia Podstawy niepewności pomiarowych Ćwiczenia 1. Zaokrąglij podane wartości pomiarów i ich niepewności. = (334,567 18,067) m/s = (153 450 000 1 034 000) km = (0,0004278 0,0000556) A = (2,0555 0,2014) s =

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

Dokładność pomiaru: Ogólne informacje o błędach pomiaru

Dokładność pomiaru: Ogólne informacje o błędach pomiaru Dokładność pomiaru: Rozumny człowiek nie dąży do osiągnięcia w określonej dziedzinie większej dokładności niż ta, którą dopuszcza istota przedmiotu jego badań. (Arystoteles) Nie można wykonać bezbłędnego

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo

Bardziej szczegółowo

BŁĘDY W POMIARACH BEZPOŚREDNICH

BŁĘDY W POMIARACH BEZPOŚREDNICH Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii

Bardziej szczegółowo

Analiza korelacyjna i regresyjna

Analiza korelacyjna i regresyjna Podstawy Metrologii i Technik Eksperymentu Laboratorium Analiza korelacyjna i regresyjna Instrukcja do ćwiczenia nr 5 Zakład Miernictwa i Ochrony Atmosfery Wrocław, kwiecień 2014 Podstawy Metrologii i

Bardziej szczegółowo

LABORATORIUM METROLOGII. Analiza błędów i niepewności wyników pomiarowych. dr inż. Piotr Burnos

LABORATORIUM METROLOGII. Analiza błędów i niepewności wyników pomiarowych. dr inż. Piotr Burnos AKADEMIA GÓRICZO - HTICZA IM. STAISŁAWA STASZICA w KRAKOWIE WYDZIAŁ ELEKTROTECHIKI, ATOMATYKI, IFORMATYKI i ELEKTROIKI KATEDRA METROLOGII LABORATORIM METROLOGII Analiza błędów i niepewności wyników pomiarowych

Bardziej szczegółowo

FIZYKA LABORATORIUM prawo Ohma

FIZYKA LABORATORIUM prawo Ohma FIZYKA LABORATORIUM prawo Ohma dr hab. inż. Michał K. Urbański, Wydział Fizyki Politechniki Warszawskiej, pok 18 Gmach Fizyki, murba@if.pw.edu.pl www.if.pw.edu.pl/ murba strona Wydziału Fizyki www.fizyka.pw.edu.pl

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Projektowanie systemów pomiarowych. 02 Dokładność pomiarów

Projektowanie systemów pomiarowych. 02 Dokładność pomiarów Projektowanie systemów pomiarowych 02 Dokładność pomiarów 1 www.technidyneblog.com 2 Jak dokładnie wykonaliśmy pomiar? Czy duża / wysoka dokładność jest zawsze konieczna? www.sparkfun.com 3 Błąd pomiaru.

Bardziej szczegółowo

Precyzja a dokładność

Precyzja a dokładność Precyzja a dokładność Precyzja pomiaru jest miarą rzetelności przeprowadzenia doświadczenia, lub mówi nam jak powtarzalny jest ten eksperyment. Dokładność pomiaru jest miarą tego jak wyniki doświadczalne

Bardziej szczegółowo

Ćwiczenie 1. Metody określania niepewności pomiaru

Ćwiczenie 1. Metody określania niepewności pomiaru Grzegorz Wielgoszewski Data wykonania ćwiczenia: Nr albumu 134651 7 października 01 Proszę podać obie daty. Grupa SO 7:30 Data sporządzenia sprawozdania: Stanowisko 13 3 listopada 01 Proszę pamiętać o

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 www: http://hirg.if.pw.edu.pl/~gos/students/kadd Politechnika Warszawska Wydział

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS AKUSTYCZNY

ĆWICZENIE 3 REZONANS AKUSTYCZNY ĆWICZENIE 3 REZONANS AKUSTYCZNY W trakcie doświadczenia przeprowadzono sześć pomiarów rezonansu akustycznego: dla dwóch różnych gazów (powietrza i CO), pięć pomiarów dla powietrza oraz jeden pomiar dla

Bardziej szczegółowo

DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności

DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM Procedura szacowania niepewności Szacowanie niepewności oznaczania / pomiaru zawartości... metodą... Data Imię i Nazwisko Podpis Opracował Sprawdził Zatwierdził

Bardziej szczegółowo

Niepewność pomiaru w fizyce.

Niepewność pomiaru w fizyce. Niepewność pomiaru w fizyce. 1. Niepewność pomiaru - wprowadzenie Każda badana doświadczalnie zależność fizyczna jest zależnością wyidealizowaną pomiędzy pewną liczbą wielkości fizycznych, to znaczy nie

Bardziej szczegółowo

Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.

Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów. Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.. KEITHLEY. Practical Solutions for Accurate. Test & Measurement. Training materials, www.keithley.com;. Janusz Piotrowski: Procedury

Bardziej szczegółowo

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wejściowych Paweł Fotowicz * Przedstawiono ścisłą metodę obliczania niepewności rozszerzonej, polegającą na wyznaczeniu

Bardziej szczegółowo

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników

Bardziej szczegółowo

DOKŁADNOŚĆ POMIARU DŁUGOŚCI

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1a DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1. ZAGADNIENIA TEORETYCZNE: sposoby wyznaczania niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa;

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: definicje i pojęcia podstawowe dr inż. Paweł Zalewski Akademia Morska w Szczecinie Pojęcia podstawowe: Metrologia jest nauką zajmująca się sposobami dokonywania pomiarów oraz zasadami interpretacji

Bardziej szczegółowo

Niepewność pomiaru masy w praktyce

Niepewność pomiaru masy w praktyce Niepewność pomiaru masy w praktyce RADWAG Wagi Elektroniczne Z wszystkimi pomiarami nierozłącznie jest związana Niepewność jest nierozerwalnie związana z wynimiarów niepewność ich wyników. Podając wyniki

Bardziej szczegółowo

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Doświadczenie: Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Cele doświadczenia Celem doświadczenia jest zbadanie zależności drogi przebytej w ruchu przyspieszonym od czasu dla kuli bilardowej

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 1 Metody określania niepewności pomiaru. I. Zagadnienia do przygotowania na kartkówkę: 1. Podstawowe założenia teorii niepewności. Wyjaśnić znaczenie pojęć randomizacja

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Dokumentowanie wyników pomiarów protokół pomiarowy Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między

Bardziej szczegółowo

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE

Bardziej szczegółowo

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia

Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia Zaznajomienie się z oznaczeniami umieszczonymi na przyrządach i obliczaniem błędów pomiarowych. Obsługa przyrządów

Bardziej szczegółowo

Szkoła Letnia STC Łódź mgr inż. Paulina Mikoś

Szkoła Letnia STC Łódź mgr inż. Paulina Mikoś 1 mgr inż. Paulina Mikoś Pomiar powinien dostarczyć miarodajnych informacji na temat badanego materiału, zarówno ilościowych jak i jakościowych. 2 Dzięki temu otrzymane wyniki mogą być wykorzystane do

Bardziej szczegółowo

Podstawy opracowywania wyników pomiarów. dr hab. inż. Piotr Zapotoczny, prof. UWM

Podstawy opracowywania wyników pomiarów. dr hab. inż. Piotr Zapotoczny, prof. UWM Podstawy opracowywania wyników pomiarów dr hab. inż. Piotr Zapotoczny, prof. UWM Badania Naukowe Badania naukowe prace podejmowane przez badacza lub zespół badaczy w celu osiągnięcia postępu wiedzy naukowej,

Bardziej szczegółowo

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC BADANIE SZEREGOWEGO OBWOD REZONANSOWEGO RLC Marek Górski Celem pomiarów było zbadanie krzywej rezonansowej oraz wyznaczenie częstotliwości rezonansowej. Parametry odu R=00Ω, L=9,8mH, C = 470 nf R=00Ω,

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

INFORMATYKA W CHEMII Dr Piotr Szczepański

INFORMATYKA W CHEMII Dr Piotr Szczepański INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizycznej i Fizykochemii Polimerów WPROWADZENIE DO STATYSTYCZNEJ OCENY WYNIKÓW DOŚWIADCZEŃ 1. BŁĄD I STATYSTYKA błąd systematyczny, błąd przypadkowy,

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

Plan metodyczny do lekcji fizyki. TEMAT: Prawo Ohma. Opór elektryczny.

Plan metodyczny do lekcji fizyki. TEMAT: Prawo Ohma. Opór elektryczny. Opracowała mgr Renata Kulińska Plan metodyczny do lekcji fizyki. TEMAT: Prawo Ohma. Opór elektryczny. Cel ogólny: Badanie zależność natężenia prądu od napięcia w obwodzie prądu stałego. Sporządzenie wykresu

Bardziej szczegółowo

Opracowanie danych doświadczalnych część 1

Opracowanie danych doświadczalnych część 1 Opracowanie danych doświadczalnych część 1 Jan Kurzyk Instytut Fizyki Politechniki Krakowskiej wersja z 15.10.2010 Pomiar to zespół czynności, których celem jest uzyskanie miary danej wielkości fizycznej,

Bardziej szczegółowo

1.Wstęp. Prąd elektryczny

1.Wstęp. Prąd elektryczny 1.Wstęp. Celem ćwiczenia pierwszego jest zapoznanie się z metodą wyznaczania charakterystyki regulacyjnej silnika prądu stałego n=f(u), jako zależności prędkości obrotowej n od wartości napięcia zasilania

Bardziej szczegółowo

przybliżeniema Definicja

przybliżeniema Definicja Podstawowe definicje Definicje i podstawowe pojęcia Opracowanie danych doświadczalnych Często zaokraglamy pewne wartości np. kupujac telewizor za999,99 zł. dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych w studenckim laboratorium podstaw fizyki

Podstawy analizy niepewności pomiarowych w studenckim laboratorium podstaw fizyki Podstawy analizy niepewności pomiarowych w studenckim laboratorium podstaw fizyki Włodzimierz Salejda Ryszard Poprawski Elektroniczna wersja opracowania dostępna w Internecie na stronach: http://www.if.pwr.wroc.pl/lpf/

Bardziej szczegółowo

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY

Bardziej szczegółowo

Laboratorium Podstaw Fizyki. Ćwiczenie 100a Wyznaczanie gęstości ciał stałych

Laboratorium Podstaw Fizyki. Ćwiczenie 100a Wyznaczanie gęstości ciał stałych Prowadzący: najlepszy Wykonawca: mgr Karolina Paradowska Termin zajęć: - Numer grupy ćwiczeniowej: - Data oddania sprawozdania: - Laboratorium Podstaw Fizyki Ćwiczenie 100a Wyznaczanie gęstości ciał stałych

Bardziej szczegółowo

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych. msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów

Bardziej szczegółowo

Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki?

Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? 1 Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? Sprawozdania należny oddać na kolejnych zajęciach laboratoryjnych. Każde opóźnienie powoduje obniżenie oceny za sprawozdanie o 0,

Bardziej szczegółowo

SPRAWDZENIE PRAWA STEFANA - BOLTZMANA

SPRAWDZENIE PRAWA STEFANA - BOLTZMANA Agnieszka Głąbała Karol Góralczyk Wrocław 5 listopada 008r. SPRAWDZENIE PRAWA STEFANA - BOLTZMANA LABORATORIUM FIZYKI OGÓLNEJ SPRAWOZDANIE z Ćwiczenia 88 1.Temat i cel ćwiczenia: Celem niniejszego ćwiczenia

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW 1. WSTĘP

METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW 1. WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW 1. WSTĘP U podstaw wszystkich nauk przyrodniczych leży zasada: sprawdzianem wszelkiej wiedzy jest eksperyment, tzn. jedyną miarą prawdy naukowej jest doświadczenie.

Bardziej szczegółowo

Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych

Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych Marcin Polkowski (251328) 1 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia

Bardziej szczegółowo

Badanie widma fali akustycznej

Badanie widma fali akustycznej Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 30 III 2009 Nr. ćwiczenia: 122 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta:... Nr. albumu: 150875

Bardziej szczegółowo

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADAIE STATYCZYCH WŁAŚCIWOŚCI PRZETWORIKÓW POMIAROWYCH 1. CEL ĆWICZEIA Celem ćwiczenia jest poznanie: podstawowych pojęć dotyczących statycznych właściwości przetworników pomiarowych analogowych i cyfrowych

Bardziej szczegółowo

F = e(v B) (2) F = evb (3)

F = e(v B) (2) F = evb (3) Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas

Bardziej szczegółowo

Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2

Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2 Łukasz Przywarty 171018 Data wykonania pomiarów: 0.10.009 r. Sala: 4.3 Prowadząca: dr inż. Ewa Oleszkiewicz Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników Temat: Wyznaczanie gęstości ciał

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk Konsultacje: Poniedziałek: 10.15-11.00 Piątek: 11.15-12.00 e-mail: gos@if.pw.edu.pl Tel: +48 22 234 58 51 Politechnika Warszawska

Bardziej szczegółowo

PRACOWNIA FIZYCZNA I

PRACOWNIA FIZYCZNA I Skrypt do laboratorium PRACOWNIA FIZYCZNA I Ćwiczenie 2: Wyznaczanie czasu zderzenia dwóch ciał. Opracowanie: mgr Tomasz Neumann Gdańsk, 2011 Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 5 Wyznaczanie przyspieszenia grawitacyjnego g za pomocą wahadła balistycznego Kalisz, luty 2005 r. Opracował: Ryszard

Bardziej szczegółowo

Wstęp do ćwiczeń na pracowni elektronicznej

Wstęp do ćwiczeń na pracowni elektronicznej Wstęp do ćwiczeń na pracowni elektronicznej Katarzyna Grzelak listopad 2011 K.Grzelak (IFD UW) listopad 2011 1 / 25 Zajęcia na pracowni elektronicznej Na kolejnych zajęciach spotykamy się na pracowni elektronicznej

Bardziej szczegółowo

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Ćwiczenie nr 1. Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy.

Ćwiczenie nr 1. Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy. Ćwiczenie nr 1 Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy. 1. Cel ćwiczenia Celem ćwiczenia jest analiza wpływów i sposobów włączania przyrządów pomiarowych do obwodu elektrycznego

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo