Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki?

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki?"

Transkrypt

1 1 Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? Sprawozdania należny oddać na kolejnych zajęciach laboratoryjnych. Każde opóźnienie powoduje obniżenie oceny za sprawozdanie o 0, 5 jednostki oceny. Sprawozdania z pierwszych kilku ćwiczeń zawieraja zwykle różne usterki i błędy, które prowadzacy zajęcia omawia ze studentem. Ważne jest by ten poczatkowy okres, gdy sprawozdania zawieraja błędy, skrócić do minimum. Student dostaje swoje sprawozdanie do poprawy i na następnych zajęciach ponownie przedstawia je prowadzacemu do oceny. Jeśli nadal sa usterki cykl się powtarza, aż wykona sprawozdanie poprawnie. Dostaje wówczas ocenę pozytywna, ale oczywiście niższa niż student, który przez te cykle nie przechodził. Poprawę należny wykonać w taki sposób, by poprzedni stan sprawozdania był widoczny, czyli poprzez skreślenia i zapisy obok, czy dodatkowe załaczniki. Nie wolno stosować korektorów czy podmieniania stron. 1. Sposób opracowania sprawozdania Sprawozdanie poza strona tytułowa musi zawierać następujace elementy: 1. Tabelkę lub tabelki pomiarowe z zatwierdzonymi przez prowadzacego ćwiczenia wynikami pomiarów (wraz z podpisem dyżurujacego pracownika obsługi technicznej). 2. Wzory według, których prowadzi się obliczenia wyznaczanych wielkości. 3. Objaśnienia występujacych w ćwiczeniu symboli wielkości fizycznych (ewentualnie krótki opis metody). 4. Wykresy badanej zależności, z uwzględnieniem, ewentualnie, metody najmniejszych kwadratów. 5. Obliczenia zawierajace podstawienia wartości mierzonych wielkości z uwzględnieniem działań na jednostkach. 6. Wynik końcowy. 7. Dyskusja wyniku i wnioski.

2 2 2. Treść sprawozdania 2.1. Wyniki pomiarów W tej części powinny znaleźć się: tabelkę lub tabelki z zatwierdzonymi przez prowadzacego ćwiczenia wynikami pomiarów (wraz z podpisem dyżurujacego pracownika obsługi technicznej). Tabelki pomiarowe powinny być wykonane wg wzoru znajdujacego się w instrukcji do ćwiczenia (lub można zastosować swój własny). Powinny tu również znaleźć się wartości błędów pomiarowych, klasy i zakresy pomiarowe mierników analogowych, formuły określajace błędy (niepewności) pomiarowe mierników cyfrowych i zapis wszelkich istotnych informacji dotyczacych warunków wykonywania pomiarów. W tej części ćwiczenia należy opisać wszystkie spostrzeżenia dokonane podczas pomiarów; moga one dotyczyć na przykład zachowania się przyrzadów, niestabilności wskazań, trudności w odczycie, itp Wstęp i opis metody pomiaru Wstęp powinien zawierać zwięzły opis podstaw fizycznych badanego zjawiska. Nie powinien on przekraczać kilku-kilkunastu zdań, a zawierać przede wszystkim cel wykonywanego ćwiczenia oraz podstawowe wzory opisujace badane zjawisko i wykorzystywane w obliczeniach. Nie należy przepisywać wstępów z instrukcji do ćwiczenia, ani umieszczać kilkustronicowych wypisów z Wikipedii, encyklopedii i ksiażek naukowych. Schemat pomiarowy powinien być czytelny i przejrzysty, a przede wszystkim rzeczywisty. Nie należy zamieszczać zdjęć z instrukcji do ćwiczenia lub układu pomiarowego. Jeśli układ pomiarowy zawiera przyrzady, to pod schematem układu musi się znaleźć informacja o tych przyrzadach (typ, klasa dokładności, zakres pomiarowy, dokładność odczytu) Obliczenia W tej części ćwiczenia należy przedstawić obliczenia prowadzace do wyznaczenia szukanej wielkości. Wyniki pomiarów najlepiej przedstawić w formie tabel, w których mierzone wartości sa przeliczane na wartości w jednostkach podstawowych układu SI, zawieraja obliczenia wielkości od nich zależnych, itp. Przeprowadzone obliczenia rachunkowe powinny być na tyle dokładne, aby nie wpływały na końcowy wynik pomiaru. Wskazówki, jakimi należy kierować się w obliczeniach:

3 3 1. Nie można stosować do wyników pośrednich reguł przewidzianych dla zapisu końcowego wyniku pomiaru. Potrzebne w dalszych obliczeniach wyniki powinny mieć stosownie większa dokładność zapisu. 2. Obliczenia niepewności powinny być prowadzone z dokładnościa co najmniej do 5 lub 6 cyfr znaczacych. Jeśli do obliczeń wykorzystywane sa programy komputerowe (OPRA, LOG- GER PRO), to do sprawozdania należy dołaczyć ODPOWIEDNI wydruk umożliwiajacy sprawdzenie poprawności obliczeń Zasady tworzenia wykresów Obliczenia często kończa się prezentacja graficzna wyników w postaci wykresu, który ułatwia analizę wyników i powinien być wykonany na papierze milimetrowym. Sporzadzaj ac wykres należy stosować się do poniższych reguł: Rodzaj wykresu winien być dostosowany do prezentowanego zagadnienia. Osie wykresu należy opisać przedstawiajac symbol i jednostkę wielkości fizycznej, pamiętajac o tym, że powinny to być jednostki podstawowe układu SI (lub ich wielokrotności). Punkty pomiarowe należy zaznaczyć wyraźnie i jednoznacznie (w postaci miniatur prostych figur geometrycznych krzyżyk, kółko, trójkat). Punktów pomiarowych nie wolno łaczyć ze soba (by nie powstała linia łamana). Należy dopasować punkty pomiarowe wykresem znanej zależności (pomiędzy punktami pomiarowymi poprowadzić linię gładka). Układ współrzędnych musi posiadać podziałkę. Skalę wykresu należy tak dobrać, by był on przejrzysty i dobrze wykorzystywał powierzchnię papieru.

4 4 Rysunek 2.1: Zależność względnej zmiany okresu drgań wahadła matematycznego od amplitudy drgań Współczynniki w równaniu prostej Celem dopasowania prostej do zbioru punktów doświadczalnych jest nie tylko uzyskanie efektu wizualnego, ale przede wszystkim uzyskanie wartości parametrów a i b opisujacych prosta y = ax + b, oraz ich błędów (niepewności pomiarowe) a i b. Metoda graficzna polega na wykonaniu wykresu, a następnie na wykreśleniu prostej tak, by odległości prosta punkty eksperymentalne były średnio jak najmniejsze. Rysunek 2.2: Zależność oporu żelaza od temperatury. Na wykresie pokazano interpretacje graficzna współczynników a i b w równaniu prostej.

5 5 Metoda najmniejszych kwadratów jest najpowszechniej stosowana metoda analityczna. Swoja nazwę zawdzięcza kryterium jakości dopasowania takiego doboru parametrów prostej, by suma kwadratów różnic wartości eksperymentalnych y i i obliczonych ax i + b była jak najmniejsza S 2 = n [y i (ax i + b)] 2 = min. i=1 Rozwiazanie odpowiedniego układu równań pozwala znaleźć wartości szukanych współczynników oraz ich błędów bezwzględnych: oraz współczynnika korelacji r =. a = a =, b = b =, 2.4. Wynik końcowy Należy przedstawić wartości liczbowe wyznaczonych wielkości wraz z ich niepewnościami, odpowiednio zaokraglone i zapisane w odpowiedni sposób: Bład pomiarowy (w zapisie wyniku końcowego) należy zaokraglić do jednej lub co najwyżej dwóch cyfr znaczacych. Wynik pomiaru (lub obliczeń) zaokragla się do tej pozycji dziesiętnej, na której znajduje się pierwsza od prawej cyfra zaokraglonego błędu pomiarowego (zapisać wynik z taka sama dokładnościa jak zapisano bład). Przykład: Jeżeli bład pomiarowy przyspieszenia ziemskiego zaokraglony do 4 cyfr znaczacych ma postac: g = 0, m s 2, to prawidłowo zaokraglony bład pomiaru przyspieszenia ziemskiego: g = 0, 4 m s 2. Obliczona wartość przyspieszenia ziemskiego : g = 9, m s 2, i wartość zaokraglona g = 9, 7 m s 2. Końcowy wynik pomiarów zapisuje się w postaci: g z = g ± g = (9, 7 ± 0, 4) m s 2.

6 Dyskusja wyników i wnioski Końcowa część sprawozdania powinna zawierać dyskusję wyników (wraz z błędami) oraz porównanie otrzymanych wartości z wartościami tablicowymi (źródłem informacji moga być tablice fizyczne, encyklopedie, poradniki, itp.). Dyskusja obejmuje porównanie wyników z wartościami teoretycznymi oraz opis niepewności i ich wpływ na wyznaczona wartość. Tutaj należy przeanalizować możliwe przyczyny, zaproponować wyjaśnienie zaobserwowanych różnic. Ponadto należy: przeanalizować warunki w jakich wykonywano pomiary i ocenić ich wpływ na uzyskane wyniki, rozważyć możliwości usprawnienia pomiarów, zwiększenia ich dokładności, przedstawić ewentualne inne uwagi dotyczace ćwiczenia.

przybliżeniema Definicja

przybliżeniema Definicja Podstawowe definicje Definicje i podstawowe pojęcia Opracowanie danych doświadczalnych Często zaokraglamy pewne wartości np. kupujac telewizor za999,99 zł. dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Graficzne opracowanie wyników pomiarów 1

Graficzne opracowanie wyników pomiarów 1 GRAFICZNE OPRACOWANIE WYNIKÓW POMIARÓW Celem pomiarów jest bardzo często potwierdzenie związku lub znalezienie zależności między wielkościami fizycznymi. Pomiar polega na wyznaczaniu wartości y wielkości

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

Podstawy niepewności pomiarowych Ćwiczenia

Podstawy niepewności pomiarowych Ćwiczenia Podstawy niepewności pomiarowych Ćwiczenia 1. Zaokrąglij podane wartości pomiarów i ich niepewności. = (334,567 18,067) m/s = (153 450 000 1 034 000) km = (0,0004278 0,0000556) A = (2,0555 0,2014) s =

Bardziej szczegółowo

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY

Bardziej szczegółowo

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Doświadczenie: Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Cele doświadczenia Celem doświadczenia jest zbadanie zależności drogi przebytej w ruchu przyspieszonym od czasu dla kuli bilardowej

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Biologii A i B dr hab. Paweł Korecki e-mail: pawel.korecki@uj.edu.pl http://www.if.uj.edu.pl/pl/edukacja/pracownia_i/

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Dokumentowanie wyników pomiarów protokół pomiarowy Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik

Bardziej szczegółowo

Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego

Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego 1 z 7 JM-test-MathJax Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego Korekta 24.03.2014 w Błąd maksymalny (poprawione formuły na niepewności maksymalne dla wzorów 41.1 i 41.11)

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

Zajęcia wstępne. mgr Kamila Haule pokój C KONSULTACJE. Wtorki Czwartki

Zajęcia wstępne. mgr Kamila Haule pokój C KONSULTACJE. Wtorki Czwartki Zajęcia wstępne mgr Kamila Haule pokój C 117 KONSULTACJE Wtorki 10.00 11.00 Czwartki 10.00 11.00 http://kepler.am.gdynia.pl/~karudz Kurtki zostawiamy w szatni. Nie wnosimy jedzenia ani picia. Gaśnica,

Bardziej szczegółowo

Niepewności pomiarów

Niepewności pomiarów Niepewności pomiarów Międzynarodowa Organizacja Normalizacyjna (ISO) w roku 1995 opublikowała normy dotyczące terminologii i sposobu określania niepewności pomiarów [1]. W roku 1999 normy zostały opublikowane

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU

WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU 1. Błąd a niepewność pomiaru Pojęcia błędu i niepewności

Bardziej szczegółowo

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH Temat: SZCOWNIE NIEPEWNOŚCI POMIROWYCH - Jak oszacować niepewność pomiarów bezpośrednich? - Jak oszacować niepewność pomiarów pośrednich? - Jak oszacować niepewność przeciętną i standardową? - Jak zapisywać

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów

Bardziej szczegółowo

Ćwiczenie nr 1. Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy.

Ćwiczenie nr 1. Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy. Ćwiczenie nr 1 Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy. 1. Cel ćwiczenia Celem ćwiczenia jest analiza wpływów i sposobów włączania przyrządów pomiarowych do obwodu elektrycznego

Bardziej szczegółowo

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia Termodynamika Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska AGH Kraków 2016 1. INSTRUKCJA

Bardziej szczegółowo

CO POWINNO ZAWIERAĆ SPRAWOZDANIE Z LABORATORIUM

CO POWINNO ZAWIERAĆ SPRAWOZDANIE Z LABORATORIUM CO POWINNO ZAWIERAĆ SPRAWOZDANIE Z LABORATORIUM STRONA TYTUŁOWA zgodnie z podanym wzorem - wypełniona dokładnie i wyraźnie: nazwiska studentów, specjalność, nr grupy, rok studiów, temat ćwiczenia, data

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz

Bardziej szczegółowo

Analiza korelacyjna i regresyjna

Analiza korelacyjna i regresyjna Podstawy Metrologii i Technik Eksperymentu Laboratorium Analiza korelacyjna i regresyjna Instrukcja do ćwiczenia nr 5 Zakład Miernictwa i Ochrony Atmosfery Wrocław, kwiecień 2014 Podstawy Metrologii i

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

Tranzystor bipolarny LABORATORIUM 5 i 6

Tranzystor bipolarny LABORATORIUM 5 i 6 Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia

Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia Zaznajomienie się z oznaczeniami umieszczonymi na przyrządach i obliczaniem błędów pomiarowych. Obsługa przyrządów

Bardziej szczegółowo

Ćw. 1&2: Wprowadzenie do obsługi przyrządów pomiarowych oraz analiza błędów i niepewności pomiarowych

Ćw. 1&2: Wprowadzenie do obsługi przyrządów pomiarowych oraz analiza błędów i niepewności pomiarowych Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2011/2012) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 1&2: Wprowadzenie do obsługi przyrządów

Bardziej szczegółowo

SPRAWDZENIE PRAWA STEFANA - BOLTZMANA

SPRAWDZENIE PRAWA STEFANA - BOLTZMANA Agnieszka Głąbała Karol Góralczyk Wrocław 5 listopada 008r. SPRAWDZENIE PRAWA STEFANA - BOLTZMANA LABORATORIUM FIZYKI OGÓLNEJ SPRAWOZDANIE z Ćwiczenia 88 1.Temat i cel ćwiczenia: Celem niniejszego ćwiczenia

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

DOKŁADNOŚĆ POMIARU DŁUGOŚCI

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1a DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1. ZAGADNIENIA TEORETYCZNE: sposoby wyznaczania niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa;

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie Cel ćwiczenia: Obserwacja swobodnego spadania z wykorzystaniem elektronicznej rejestracji czasu przelotu kuli przez punkty pomiarowe. Wyznaczenie

Bardziej szczegółowo

Scenariusz lekcji fizyki w klasie drugiej gimnazjum

Scenariusz lekcji fizyki w klasie drugiej gimnazjum Scenariusz lekcji fizyki w klasie drugiej gimnazjum Temat: Opór elektryczny, prawo Ohma. Czas trwania: 1 godzina lekcyjna Realizowane treści podstawy programowej Przedmiot fizyka matematyka Realizowana

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

Wyznaczanie cieplnego współczynnika oporności właściwej metali

Wyznaczanie cieplnego współczynnika oporności właściwej metali Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 5 V 2009 Nr. ćwiczenia: 303 Temat ćwiczenia: Wyznaczanie cieplnego współczynnika oporności właściwej metali

Bardziej szczegółowo

Laboratorium z Metrologii

Laboratorium z Metrologii Zachodniopomorski niwersytet Technologiczny w Szczecinie Wydział Elektryczny Katedra Sterowania i Pomiarów Zakład Metrologii Laboratorium z Metrologii Opracował: dr inż. A.Wollek 1 Prowadzący dr inż. Andrzej

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

Precyzja a dokładność

Precyzja a dokładność Precyzja a dokładność Precyzja pomiaru jest miarą rzetelności przeprowadzenia doświadczenia, lub mówi nam jak powtarzalny jest ten eksperyment. Dokładność pomiaru jest miarą tego jak wyniki doświadczalne

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia

Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia Wyrobienie umiejętności łączenia obwodów elektrycznych rozgałęzionych oraz sprawdzenie praw prądu stałego. Czytanie schematów

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się

Bardziej szczegółowo

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku w powietrzu

Wyznaczanie prędkości dźwięku w powietrzu Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:

Bardziej szczegółowo

FIZYKA LABORATORIUM prawo Ohma

FIZYKA LABORATORIUM prawo Ohma FIZYKA LABORATORIUM prawo Ohma dr hab. inż. Michał K. Urbański, Wydział Fizyki Politechniki Warszawskiej, pok 18 Gmach Fizyki, murba@if.pw.edu.pl www.if.pw.edu.pl/ murba strona Wydziału Fizyki www.fizyka.pw.edu.pl

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia

Bardziej szczegółowo

JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW

JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW Z tego dokumentu dowiesz się jak wykorzystać wbudowane funkcje arkusza kalkulacyjnego

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl 3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

SYLABUS. Nazwa jednostki prowadzącej Wydział Matematyczno Przyrodniczy Centrum Mikroelektroniki i Nanotechnologii

SYLABUS. Nazwa jednostki prowadzącej Wydział Matematyczno Przyrodniczy Centrum Mikroelektroniki i Nanotechnologii SYLABUS Nazwa Wprowadzenie do metrologii Nazwa jednostki prowadzącej Wydział Matematyczno Przyrodniczy przedmiot Centrum Mikroelektroniki i Nanotechnologii Kod Studia Kierunek studiów Poziom kształcenia

Bardziej szczegółowo

Dopasowanie prostej do wyników pomiarów.

Dopasowanie prostej do wyników pomiarów. Dopasowanie prostej do wyników pomiarów. Graficzna analiza zależności liniowej Założenie: każdy z pomiarów obarczony jest taką samą niepewnością pomiarową (takiej samej wielkości prostokąty niepewności).

Bardziej szczegółowo

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem

Bardziej szczegółowo

KONSPEKT ZAJĘĆ EDUKACYJNYCH

KONSPEKT ZAJĘĆ EDUKACYJNYCH KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Przedmiot: fizyka Klasa: II technikum poziom rozszerzony Czas trwania: 45 min. Data: Część merytoryczna: Dział programowy: Ruch harmoniczny i fale mechaniczne

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIERSYTET TECHNOLOGICZNO-PRZYRODNICZY BYDGOSZCZY YDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆICZENIE: E1 POSŁUGIANIE SIĘ MIERNIKAMI

Bardziej szczegółowo

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników

Bardziej szczegółowo

Określanie niepewności pomiaru

Określanie niepewności pomiaru Określanie niepewności pomiaru (Materiały do ćwiczeń laboratoryjnych z przedmiotu Materiałoznawstwo na wydziale Górnictwa i Geoinżynierii) 1. Wprowadzenie Pomiar jest to zbiór czynności mających na celu

Bardziej szczegółowo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM ROZSZERZONY Katalog zadań poziom rozszerzony

Bardziej szczegółowo

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Obowiązkowa znajomość zagadnień Charakterystyka drgań gasnących i niegasnących, ruch harmoniczny. Wahadło fizyczne, długość zredukowana

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej OSIĄGNIĘCIA UCZNIÓW Z ZAKRESIE KSZTAŁCENIA W kolumnie "wymagania na poziom podstawowy" opisano wymagania

Bardziej szczegółowo

LXV OLIMPIADA FIZYCZNA ZADANIA ZAWODÓW I STOPNIA

LXV OLIMPIADA FIZYCZNA ZADANIA ZAWODÓW I STOPNIA LXV OLIMPIADA FIZYCZNA ZADANIA ZAWODÓW I STOPNIA Rozwiazania zadań I stopnia należy przesyłać do Okręgowych Komitetów Olimpiady Fizycznej w terminach: część I do 9 października b.r., część II do 13 listopada

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

4. Schemat układu pomiarowego do badania przetwornika

4. Schemat układu pomiarowego do badania przetwornika 1 1. Projekt realizacji prac związanych z uruchomieniem i badaniem przetwornika napięcie/częstotliwość z układem AD654 2. Założenia do opracowania projektu a) Dane techniczne układu - Napięcie zasilające

Bardziej szczegółowo

ZASADY DOKUMENTACJI procesu pomiarowego

ZASADY DOKUMENTACJI procesu pomiarowego Laboratorium Podstaw Miernictwa Laboratorium Podstaw Elektrotechniki i Pomiarów ZASADY DOKUMENTACJI procesu pomiarowego Przykład PROTOKÓŁU POMIAROWEGO Opracowali : dr inż. Jacek Dusza mgr inż. Sławomir

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

F = e(v B) (2) F = evb (3)

F = e(v B) (2) F = evb (3) Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Cel ćwiczenia: Wyznaczenie modułu Younga i porównanie otrzymanych wartości dla różnych materiałów. Literatura [1] Wolny J., Podstawy fizyki,

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Temperaturowa charakterystyka termistora typu NTC ćwiczenie nr 37 Opracowanie ćwiczenia: dr J. Woźnicka, dr S. elica Zakres zagadnień obowiązujących do ćwiczenia

Bardziej szczegółowo

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r ) Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania

Bardziej szczegółowo

Laboratorium Fizyki WTiE Politechniki Koszalińskiej. Ćw. nr 26. Wyznaczanie pojemności kondensatora metodą drgań relaksacyjnych

Laboratorium Fizyki WTiE Politechniki Koszalińskiej. Ćw. nr 26. Wyznaczanie pojemności kondensatora metodą drgań relaksacyjnych z 5 Laboratorium Fizyki WTiE Politechniki Koszalińskiej Ćw. nr 26. Wyznaczanie pojemności kondensatora metodą drgań relaksacyjnych. el ćwiczenia Poznanie jednej z metod wyznaczania pojemności zalecanej

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

Wprowadzenie do rachunku niepewności pomiarowej. Jacek Pawlyta

Wprowadzenie do rachunku niepewności pomiarowej. Jacek Pawlyta Wprowadzenie do rachunku niepewności pomiarowej Jacek Pawlyta Fizyka Teorie Obserwacje Doświadczenia Fizyka Teorie Przykłady Obserwacje Przykłady Doświadczenia Przykłady Fizyka Potwierdzanie bądź obalanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Skrypt 23. Geometria analityczna. Opracowanie L7

Skrypt 23. Geometria analityczna. Opracowanie L7 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.

Bardziej szczegółowo

Wyznaczanie krzywej ładowania kondensatora

Wyznaczanie krzywej ładowania kondensatora Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.

Bardziej szczegółowo

Tomasz Skowron XIII LO w Szczecinie. Wyznaczanie przyspieszenia ziemskiego za pomocą spadku swobodnego

Tomasz Skowron XIII LO w Szczecinie. Wyznaczanie przyspieszenia ziemskiego za pomocą spadku swobodnego Logo designed by Armella Leung, www.armella.fr.to Ten projekt został zrealizowany przy wsparciu finansowym Komisji Europejskiej. Projekt lub publikacja odzwierciedlają jedynie stanowisko ich autora i Komisja

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

Wyznaczanie ciepła topnienia lodu za pomocą kalorymetru

Wyznaczanie ciepła topnienia lodu za pomocą kalorymetru Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 7 IV 2009 Nr. ćwiczenia: 212 Temat ćwiczenia: Wyznaczanie ciepła topnienia lodu za pomocą kalorymetru

Bardziej szczegółowo

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0 2014 Katedra Fizyki Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg... Godzina... Ćwiczenie 425 Wyznaczanie ciepła właściwego ciał stałych Masa suchego kalorymetru m k = kg Opór grzałki

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe

Bardziej szczegółowo

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 19 V 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spektrometru

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Reprezentacja

Bardziej szczegółowo

Pomiar parametrów tranzystorów

Pomiar parametrów tranzystorów Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin Pracownia Elektroniki Pomiar parametrów tranzystorów (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: zasada działania tranzystora

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio

Bardziej szczegółowo

Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2

Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2 Łukasz Przywarty 171018 Data wykonania pomiarów: 0.10.009 r. Sala: 4.3 Prowadząca: dr inż. Ewa Oleszkiewicz Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników Temat: Wyznaczanie gęstości ciał

Bardziej szczegółowo

Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa

Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa Celem doświadczenia jest wyznaczenie charakterystyk prądowo-napięciowych oraz zależności

Bardziej szczegółowo