Dokładność pomiaru: Ogólne informacje o błędach pomiaru

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dokładność pomiaru: Ogólne informacje o błędach pomiaru"

Transkrypt

1 Dokładność pomiaru: Rozumny człowiek nie dąży do osiągnięcia w określonej dziedzinie większej dokładności niż ta, którą dopuszcza istota przedmiotu jego badań. (Arystoteles) Nie można wykonać bezbłędnego wyznaczenia wielkości fizycznej tzw. pomiaru absolutnie dokładnego. Ogólne informacje o błędach pomiaru Wynik pomiaru na ogół różni się od wartości prawdziwej (rzeczywistej) wielkości mierzonej. Różnica między wynikiem a wartością prawdziwą nazywana jest błędem pomiaru. W praktyce wartość prawdziwa nie jest znana i zastępowana jest wartością umownie prawdziwą (poprawną) akceptowalną w danych okolicznościach. W praktyce pomiarowej wyróżnia się trzy rodzaje błędów: błędy systematyczne, przypadkowe oraz nadmierne.

2 Błędami systematycznymi są błędy, które podczas pomiarów tej samej wartości pewnej wielkości, wykonywanych w tych samych warunkach, pozostają stałe zarówno co do wartości bezwzględnej jak i co do znaku lub błędy zmieniające się według określonego prawa wraz ze zmianą warunków. Źródłami błędów systematycznych są metody i przyrządy pomiarowe, niezachowanie wymaganych warunków pomiaru, obserwator. Charakterystyczną cechą błędów systematycznych jest możliwość całkowitego lub częściowego ich usunięcia z wyniku pomiaru. Wśród błędów systematycznych wyróżnia się trzy ważne grupy: Błędy podstawowe -są to błędy przyrządów pomiarowych występujące podczas stosowania ich w tzw. warunkach odniesienia (lub inaczej znamionowych) podanych przez producenta. Głównymi ich przyczynami są: niedokładność wzorcowania i niedokładności konstrukcyjne oraz technologiczne narzędzi pomiarowych. Błędy podstawowe są błędami stałymi i mogą być w czasie pomiaru kompensowane przez stosowanie poprawek do wskazań przyrządów. Poprawka jest równa wartości oszacowanego błędu systematycznego ze znakiem przeciwnym. Błędy dodatkowe - są to błędy, których źródłem są zmiany właściwości przyrządów pomiarowych i obiektu pomiaru pod wpływem zmian warunków pomiaru w stosunku do przyjętych jako warunki odniesienia. Cechą charakterystyczną błędów dodatkowych jest to, że ich wartości zmieniają się przy ustalonej wartości wielkości mierzonej, według znanego prawa jako funkcje wielkości wpływowych. Normalne warunki wpływowe i wartości błędów dodatkowych podawane sa przez producentów aparatury pomiarowej. Błędy metody wynikające głównie z oddziaływania przyrządów pomiarowych na obiekt pomiaru, np. powodowane poborem energii przez przyrząd ze źródła sygnału mierzonego. Wśród błędów metody ważną grupę stanowią błędy związane ze stosowaniem przybliżonych modeli badanych zjawisk lub wzorów empirycznych. Błędy metody można na ogół sprowadzić do wartości pomijalnych przez stosowanie odpowiednich poprawek rachunkowych lub właściwy dobór warunków pomiaru.

3 Przykład błędu systematycznego związanego z metodą pomiarową Pomiar prądu w obwodzie elektrycznym złożonym ze źródła napięcia i obciążenia: a) obwód pierwotny; b) obwód pomiarowy po włączeniu amperomierza Włączenie do obwodu amperomierza powoduje zmianę warunków pracy obwodu i prądu płynącego w obwodzie Spowoduje to powstanie błędu względnego gdzie: Błąd ten będzie mało istotny przy spełnieniu warunku R a <<R o +R z Można również wyznaczyć odpowiednią poprawkę i skorygować wynik

4 Błędami przypadkowymi są błędy zmieniające się w sposób nieprzewidziany podczas wykonywania dużej liczby pomiarów tej samej wielkości w warunkach praktycznie niezmiennych. Główne przyczyny powstawania: niedoskonałość zmysłów obserwatora i brak dostatecznej koncentracji podczas pomiarów, rozrzut wskazań przyrządów pomiarowych powodowany niestałością ich właściwości statycznych i dynamicznych, krótkotrwałe zmiany wielkości wpływowych. Ograniczenie wpływu błędów przypadkowych uzyskuje się przez wielokrotny pomiar tej samej wartości wielkości i przyjęcie średniej arytmetycznej jako wyniku ostatecznego. Osobną grupą błędów są błędy nadmierne, zwane omyłkami lub błędami grubymi. Powodują one jawne zniekształcenie wyniku pomiaru. Najczęstszymi przyczynami pojawienia się tych błędów są: nieprawidłowy odczyt lub błędny zapis wyniku pomiaru, zastosowanie niewłaściwego przyrządu lub pomiar przyrządem uszkodzonym.

5 Rozróżniamy następujące rodzaje błędów pomiarowych ze względu na źródła ich powstania: a) błędy powodowane przez przyrządy pomiarowe, np. skończona rezystancja wewnętrzna woltomierzy, nieliniowość wskazań przyrządów pomiarowych lub niedoskonałość ich wzorcowania, b) błędy powodowane przez metody pomiarowe, c) błędy powodowane przez mierzącego, np. brak doświadczenia, zmęczenie, skłonności, nawyki, d) błędy powodowane przez obliczenia to błędy przy niewłaściwym zaokrągleniu, niewłaściwe metody wyrównywania błędów, e) błędy powodowane przez wpływ otoczenia na mierzącego, na przyrządy i na mierzoną wielkość. Czynnikami wywołującymi te błędy to temperatura ciśnienie, wilgotność powietrza, zakłócenia elektromagnetyczne.

6 Zapis wyniku pomiaru powinien umożliwiać ocenę dokładności z jaką została określona wartość wielkości mierzonej. W tym celu podaje się jednocześnie z wynikiem pomiaru x wartość błędu x g x p = x ± x g gdzie x p jest poprawną wartością wielkości x. Zaleca się obliczania błędu zgodnie z następującymi zasadami: wartość liczbową błędu należy zaokrąglać "w górę" i zapisywać liczbą o jednym miejscu znaczącym, np.: 2; 0,02; zapis błędu pomiaru w postaci dwu cyfr znaczących jest zalecany w pomiarach dokładnych oraz wówczas, gdy wskutek zaokrąglenia do jednej cyfry znaczącej wartość błędu zwiększyłaby się więcej niż o 10%. Wynik pomiaru oblicza się z jednym miejscem dziesiętnym więcej niż to, na którym zaokrąglono błąd, po czym zaokrągla go się (zgodnie z regułą zaokrąglania liczb) tak, aby ostatnia cyfra wyniku odpowiadała miejscem wartości liczbowej błędu, np.: (121±1) cm, (19,45±0,13) ma.

7 Błąd bezwzględny definiowany jest jako różnica wyniku pomiaru X i wartości rzeczywistej X R Niedokładność pomiaru wynika głównie z istnienia dopuszczalnego błędu systematycznego narzędzia pomiarowego określonego jego klasą dokładności. Błąd względny definiowany jest jako stosunek błędu bezwzględnego do wartości rzeczywistej Wyniki pomiarów w serii rozkładają się wokół wartości średniej Histogram Miarą rozproszenia wyników jest odchylenie standardowe

8 Rozkład pomiarów w serii wokół wartości średniej X jest rozkładem Gaussa. Prawdopodobieństwem, z jakim w zadanym przedziale znajdzie się dowolny pomiar z serii, nazywa się poziomem ufności, a przedział przedziałem ufności. W przedziale <X-σ, X+σ> mieści się 68,26% wyników z serii. W przedziale <X-2σ, X+2σ> mieści się 95,45% wyników z serii. W przedziale <X-3σ, X+3σ> mieści się 99,73% wyników z serii. Średni błąd kwadratowy wartości średniej wyraża się wzorem:

9 Niepewność pomiaru jest parametrem związanym z wynikiem pomiaru charakteryzującym rozrzut wartości, które można w sposób uzasadniony przypisać wielkości mierzonej. Wielkości mierzone są szczególnymi wielkościami, których wartość należy określić poprzez pomiar. Przy wzorcowaniu mamy zwykle do czynienia tylko z jedną wielkością mierzoną, nazywaną również wielkością wyjściową Y, która jest związana z wielkościami wejściowymi X i (i = 1, 2,..., N) funkcją Y = f (X 1, X 2,..., X N ) Funkcja pomiaru f opisuje zarówno metodę pomiarową jak i metodę obliczeniową. Podaje ona, jak z wartości wielkości wejściowych X i otrzymuje się wartość wielkości wyjściowej Y. Niepewność pomiaru związana z estymatami wielkości wejściowych jest obliczana metodą typu A lub typu B. Metoda typu A obliczania niepewności standardowej jest metodą, w której niepewność jest obliczana za pomocą analizy statystycznej serii obserwacji. Niepewność standardowa jest w tym przypadku odchyleniem standardowym eksperymentalnym średniej otrzymanej metodą uśredniania lub odpowiednią analizą regresji. Metoda typu B obliczania niepewności standardowej jest metodą, w której niepewność jest obliczana innym sposobem niż analiza statystyczna serii obserwacji. W takim przypadku obliczanie niepewności oparte jest na innego rodzaju przesłankach naukowych.

10 Metodę typu A obliczania niepewności standardowej stosuje się wtedy, gdy istnieje możliwość przeprowadzenia w identycznych warunkach pomiarowych wielu niezależnych obserwacji jednej z wielkości wejściowych. Jeżeli rozdzielczość procesu pomiarowego jest wystarczająca, otrzymane wyniki charakteryzuje zauważalny rozrzut. Obliczanie niepewności standardowej metodą typu B jest obliczaniem niepewności związanej z estymatą x i wielkości wejściowej X i inną metodą niż analiza statystyczna serii obserwacji. Niepewność standardowa u(x i ) jest określana za pomocą analizy naukowej opartej na wszystkich dostępnych informacjach nt. możliwej zmienności X i. W tej kategorii informacji mogą znajdować się: dane uzyskane z wcześniej przeprowadzonych pomiarów, posiadane doświadczenie lub ogólna znajomość zachowania się i właściwości odpowiednich materiałów i przyrządów pomiarowych, specyfikacje producenta, dane uzyskane ze świadectw wzorcowania i z innych certyfikatów, niepewności związane z danymi odniesienia, uzyskane z podręczników.

11 W praktyce istnieje wiele możliwych źródeł niepewności pomiaru, są to m.in.: (a) niepełna definicja wielkości mierzonej, (b) niedoskonała realizacja definicji wielkości mierzonej, (c) niereprezentatywne pobieranie próbek, tzn. mierzona próbka nie jest reprezentatywna dla definiowanej wielkości mierzonej, (d) niepełna znajomość wpływu warunków środowiskowych na procedurę pomiarową lub niedoskonały pomiar parametrów charakteryzujących te warunki, (e) subiektywne błędy w odczytywaniu wskazań przyrządów analogowych, (f) skończona rozdzielczość lub próg pobudliwości przyrządu, (g) niedokładnie znane wartości przypisane wzorcom i materiałom odniesienia, (h) niedokładnie znane wartości stałych i innych parametrów, otrzymanych ze źródeł zewnętrznych i stosowanych w procedurach przetwarzania danych, (i) upraszczające przybliżenia i założenia stosowane w metodach i procedurach pomiarowych, (j) rozrzut wartości wielkości mierzonej uzyskanych podczas obserwacji powtarzanych w warunkach pozornie identycznych.

12 Analiza dokładności pomiarów bezpośrednich W charakterze najlepszej oceny wartości rzeczywistej X przyjmuje się średnią arytmetyczną Za miarę niepewności pojedynczego pomiaru z próby {x 1, x 2,,, x n } przyjmujemy odchyleniem standardowym pojedynczego pomiaru Niepewnością pomiarową s x, zwaną niepewnością standardową, obarczona jest również wartość średnia x Jeśli chcesz zwiększyć dokładność dwukrotnie, liczność próbki musisz zwiększyć cztery razy Jeśli dostępny jest tylko jeden wynik pomiaru lub wyniki pomiarów nie wykazują rozrzutu, to w charakterze niepewności wartości średniej przyjmujemy gdzie d.e. jest wartością działki elementarnej przyrządu. W przypadkach, gdy w pomiarach uwzględniamy niepewność statystyczną i niepewność przyrządu pomiarowego, to należy wyznaczyć oszacowanie całkowitej niepewności standardowej wartości średniej ze wzoru

13 Błędy przypadkowe w pomiarach pośrednich Niech wynik pomiaru y będzie funkcją N różnych pomiarów x i, których niepewności u i potrafimy oszacować Złożona niepewność standardowa Jeżeli zmienne losowe x 1,x 2, są parami niezależne to drugi człon jest równy zeru i wzór uproszczony nazywany jest metodą różniczki zupełnej. Podane prawa propagacji niepewności obowiązują, gdy niepewności cząstkowe są małe (pominięcie mniej znaczących wyrazów szeregu Taylora). Oszacowanie niepewności metodą najgorszego przypadku

14 Przykład: Obliczanie przyspieszenia grawitacyjnego za pomocą wahadła matematycznego. Okres drgań wahadła matematycznego dany jest wzorem: stąd: Obliczamy pochodne cząstkowe i podstawiamy do wzoru: otrzymując

Określanie niepewności pomiaru

Określanie niepewności pomiaru Określanie niepewności pomiaru (Materiały do ćwiczeń laboratoryjnych z przedmiotu Materiałoznawstwo na wydziale Górnictwa i Geoinżynierii) 1. Wprowadzenie Pomiar jest to zbiór czynności mających na celu

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

Niepewność pomiaru masy w praktyce

Niepewność pomiaru masy w praktyce Niepewność pomiaru masy w praktyce RADWAG Wagi Elektroniczne Z wszystkimi pomiarami nierozłącznie jest związana Niepewność jest nierozerwalnie związana z wynimiarów niepewność ich wyników. Podając wyniki

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Charakterystyka mierników do badania oświetlenia Obiektywne badania warunków oświetlenia opierają się na wynikach pomiarów parametrów świetlnych. Podobnie jak każdy pomiar, również te pomiary, obarczone

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów

Bardziej szczegółowo

Niepewności pomiarów

Niepewności pomiarów Niepewności pomiarów Międzynarodowa Organizacja Normalizacyjna (ISO) w roku 1995 opublikowała normy dotyczące terminologii i sposobu określania niepewności pomiarów [1]. W roku 1999 normy zostały opublikowane

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

Projektowanie systemów pomiarowych. 02 Dokładność pomiarów

Projektowanie systemów pomiarowych. 02 Dokładność pomiarów Projektowanie systemów pomiarowych 02 Dokładność pomiarów 1 www.technidyneblog.com 2 Jak dokładnie wykonaliśmy pomiar? Czy duża / wysoka dokładność jest zawsze konieczna? www.sparkfun.com 3 Błąd pomiaru.

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio

Bardziej szczegółowo

Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia

Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia Zaznajomienie się z oznaczeniami umieszczonymi na przyrządach i obliczaniem błędów pomiarowych. Obsługa przyrządów

Bardziej szczegółowo

Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.

Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów. Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.. KEITHLEY. Practical Solutions for Accurate. Test & Measurement. Training materials, www.keithley.com;. Janusz Piotrowski: Procedury

Bardziej szczegółowo

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

Laboratorium z Metrologii

Laboratorium z Metrologii Zachodniopomorski niwersytet Technologiczny w Szczecinie Wydział Elektryczny Katedra Sterowania i Pomiarów Zakład Metrologii Laboratorium z Metrologii Opracował: dr inż. A.Wollek 1 Prowadzący dr inż. Andrzej

Bardziej szczegółowo

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: definicje i pojęcia podstawowe dr inż. Paweł Zalewski Akademia Morska w Szczecinie Pojęcia podstawowe: Metrologia jest nauką zajmująca się sposobami dokonywania pomiarów oraz zasadami interpretacji

Bardziej szczegółowo

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH Temat: SZCOWNIE NIEPEWNOŚCI POMIROWYCH - Jak oszacować niepewność pomiarów bezpośrednich? - Jak oszacować niepewność pomiarów pośrednich? - Jak oszacować niepewność przeciętną i standardową? - Jak zapisywać

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 1 Metody określania niepewności pomiaru. I. Zagadnienia do przygotowania na kartkówkę: 1. Podstawowe założenia teorii niepewności. Wyjaśnić znaczenie pojęć randomizacja

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Reprezentacja

Bardziej szczegółowo

DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności

DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM Procedura szacowania niepewności Szacowanie niepewności oznaczania / pomiaru zawartości... metodą... Data Imię i Nazwisko Podpis Opracował Sprawdził Zatwierdził

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Wprowadzenie do rachunku niepewności pomiarowej. Jacek Pawlyta

Wprowadzenie do rachunku niepewności pomiarowej. Jacek Pawlyta Wprowadzenie do rachunku niepewności pomiarowej Jacek Pawlyta Fizyka Teorie Obserwacje Doświadczenia Fizyka Teorie Przykłady Obserwacje Przykłady Doświadczenia Przykłady Fizyka Potwierdzanie bądź obalanie

Bardziej szczegółowo

Teoria błędów pomiarów geodezyjnych

Teoria błędów pomiarów geodezyjnych PodstawyGeodezji Teoria błędów pomiarów geodezyjnych mgr inŝ. Geodeta Tomasz Miszczak e-mail: tomasz@miszczak.waw.pl Wyniki pomiarów geodezyjnych będące obserwacjami (L1, L2,, Ln) nigdy nie są bezbłędne.

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Biologii A i B dr hab. Paweł Korecki e-mail: pawel.korecki@uj.edu.pl http://www.if.uj.edu.pl/pl/edukacja/pracownia_i/

Bardziej szczegółowo

WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU

WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU 1. Błąd a niepewność pomiaru Pojęcia błędu i niepewności

Bardziej szczegółowo

Laboratorium Fizyczne Inżynieria materiałowa. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Laboratorium Fizyczne Inżynieria materiałowa. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Laboratorium Fizyczne Inżynieria materiałowa Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego błąd pomiaru = x i x 0 Błędy pomiaru dzielimy na: Błędy

Bardziej szczegółowo

Problem testowania/wzorcowania instrumentów geodezyjnych

Problem testowania/wzorcowania instrumentów geodezyjnych Problem testowania/wzorcowania instrumentów geodezyjnych Realizacja Osnów Geodezyjnych a Problemy Geodynamiki Grybów, 25-27 września 2014 Ryszard Szpunar, Dominik Próchniewicz, Janusz Walo Politechnika

Bardziej szczegółowo

Szkoła Letnia STC Łódź mgr inż. Paulina Mikoś

Szkoła Letnia STC Łódź mgr inż. Paulina Mikoś 1 mgr inż. Paulina Mikoś Pomiar powinien dostarczyć miarodajnych informacji na temat badanego materiału, zarówno ilościowych jak i jakościowych. 2 Dzięki temu otrzymane wyniki mogą być wykorzystane do

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:

Bardziej szczegółowo

INFORMATYKA W CHEMII Dr Piotr Szczepański

INFORMATYKA W CHEMII Dr Piotr Szczepański INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizycznej i Fizykochemii Polimerów WPROWADZENIE DO STATYSTYCZNEJ OCENY WYNIKÓW DOŚWIADCZEŃ 1. BŁĄD I STATYSTYKA błąd systematyczny, błąd przypadkowy,

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

BŁĘDY W POMIARACH BEZPOŚREDNICH

BŁĘDY W POMIARACH BEZPOŚREDNICH Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

LABORATORIUM METROLOGII. Analiza błędów i niepewności wyników pomiarowych. dr inż. Piotr Burnos

LABORATORIUM METROLOGII. Analiza błędów i niepewności wyników pomiarowych. dr inż. Piotr Burnos AKADEMIA GÓRICZO - HTICZA IM. STAISŁAWA STASZICA w KRAKOWIE WYDZIAŁ ELEKTROTECHIKI, ATOMATYKI, IFORMATYKI i ELEKTROIKI KATEDRA METROLOGII LABORATORIM METROLOGII Analiza błędów i niepewności wyników pomiarowych

Bardziej szczegółowo

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia Pomiar napięć stałych 1 POMIA NAPIĘCIA STAŁEGO PZYZĄDAMI ANALOGOWYMI I CYFOWYMI Cel ćwiczenia Celem ćwiczenia jest poznanie: - parametrów typowych woltomierzy prądu stałego oraz z warunków poprawnej ich

Bardziej szczegółowo

Laboratorium miernictwa elektronicznego - Narzędzia pomiarowe 1 NARZĘDZIA POMIAROWE

Laboratorium miernictwa elektronicznego - Narzędzia pomiarowe 1 NARZĘDZIA POMIAROWE Laboratorium miernictwa elektronicznego - Narzędzia pomiarowe 1 NARZĘDZIA POMIAROWE CEL ĆWICZENIA Poznanie źródeł informacji o parametrach i warunkach eksploatacji narzędzi pomiarowych, zapoznanie ze sposobami

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wejściowych Paweł Fotowicz * Przedstawiono ścisłą metodę obliczania niepewności rozszerzonej, polegającą na wyznaczeniu

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

Metody szacowania niepewności pomiarów w Laboratorium Automatyki i Telekomunikacji

Metody szacowania niepewności pomiarów w Laboratorium Automatyki i Telekomunikacji Metody szacowania niepewności pomiarów w Laboratorium Automatyki i Telekomunikacji mgr inż. Krzysztof Olszewski, inż. Tadeusz Główka Seminarium IK - Warszawa 21.06.2016 r. Plan prezentacji 1. Wstęp 2.

Bardziej szczegółowo

Komputerowe systemy pomiarowe. Podstawowe elementy sprzętowe elektronicznych układów pomiarowych

Komputerowe systemy pomiarowe. Podstawowe elementy sprzętowe elektronicznych układów pomiarowych Komputerowe systemy pomiarowe Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny laboratorium Wykład III Podstawowe elementy sprzętowe elektronicznych układów pomiarowych 1 - Linearyzatory, wzmacniacze, wzmacniacze

Bardziej szczegółowo

Walidacja metod analitycznych Raport z walidacji

Walidacja metod analitycznych Raport z walidacji Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH Walidacja metod analitycznych (według ISO) to proces ustalania parametrów charakteryzujących

Bardziej szczegółowo

DOKUMENT EA-4/02. Wyrażanie niepewności pomiaru przy wzorcowaniu. Europejska Współpraca w dziedzinie Akredytacji. Cel

DOKUMENT EA-4/02. Wyrażanie niepewności pomiaru przy wzorcowaniu. Europejska Współpraca w dziedzinie Akredytacji. Cel Europejska Współpraca w dziedzinie Akredytacji DOKUMENT EA-4/0 Wyrażanie niepewności pomiaru przy wzorcowaniu Cel Przedstawiony dokument opracowano w celu ujednolicenia metod obliczania niepewności pomiaru

Bardziej szczegółowo

Niepewność pomiaru w fizyce.

Niepewność pomiaru w fizyce. Niepewność pomiaru w fizyce. 1. Niepewność pomiaru - wprowadzenie Każda badana doświadczalnie zależność fizyczna jest zależnością wyidealizowaną pomiędzy pewną liczbą wielkości fizycznych, to znaczy nie

Bardziej szczegółowo

Podstawowe funkcje przetwornika C/A

Podstawowe funkcje przetwornika C/A ELEKTRONIKA CYFROWA PRZETWORNIKI CYFROWO-ANALOGOWE I ANALOGOWO-CYFROWE Literatura: 1. Rudy van de Plassche: Scalone przetworniki analogowo-cyfrowe i cyfrowo-analogowe, WKŁ 1997 2. Marian Łakomy, Jan Zabrodzki:

Bardziej szczegółowo

P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9.

P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9. Literatura: P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9. A. Zięba, 2001, Natura rachunku niepewności a

Bardziej szczegółowo

Analiza niepewności pomiarów Rozważania praktyczne

Analiza niepewności pomiarów Rozważania praktyczne Teoria pomiarów Analiza niepewności pomiarów Rozważania praktyczne Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Teoria naukowa... Teoria jest modelem wszechświata lub jego części, oraz zbiorem reguł

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych w studenckim laboratorium podstaw fizyki

Podstawy analizy niepewności pomiarowych w studenckim laboratorium podstaw fizyki Podstawy analizy niepewności pomiarowych w studenckim laboratorium podstaw fizyki Włodzimierz Salejda Ryszard Poprawski Elektroniczna wersja opracowania dostępna w Internecie na stronach: http://www.if.pwr.wroc.pl/lpf/

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 www: http://hirg.if.pw.edu.pl/~gos/students/kadd Politechnika Warszawska Wydział

Bardziej szczegółowo

Przyrządy i przetworniki pomiarowe

Przyrządy i przetworniki pomiarowe Przyrządy i przetworniki pomiarowe Są to narzędzia pomiarowe: Przyrządy -służące do wykonywania pomiaru i służące do zamiany wielkości mierzonej na sygnał pomiarowy Znajomość zasady działania przyrządów

Bardziej szczegółowo

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że

Bardziej szczegółowo

Wstęp do ćwiczeń na pracowni elektronicznej

Wstęp do ćwiczeń na pracowni elektronicznej Wstęp do ćwiczeń na pracowni elektronicznej Katarzyna Grzelak listopad 2011 K.Grzelak (IFD UW) listopad 2011 1 / 25 Zajęcia na pracowni elektronicznej Na kolejnych zajęciach spotykamy się na pracowni elektronicznej

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

BŁĘDY GRANICZNE PRZYRZĄDÓW POMIAROWYCH POMIARY NAPIĘCIA I PRĄDU PRZYRZĄDAMI ANALOGO- WYMI I CYFROWYMI

BŁĘDY GRANICZNE PRZYRZĄDÓW POMIAROWYCH POMIARY NAPIĘCIA I PRĄDU PRZYRZĄDAMI ANALOGO- WYMI I CYFROWYMI BŁĘDY GANICZNE PZYZĄDÓW POMIAOWYCH POMIAY NAPIĘCIA I PĄDU PZYZĄDAMI ANALOGO- WYMI I CYFOWYMI 1. CEL ĆWICZENIA Poznanie źródeł informacji o warunkach użytkowania przyrządów pomiarowych, przyswojenie pojęć

Bardziej szczegółowo

Opracowanie danych doświadczalnych część 1

Opracowanie danych doświadczalnych część 1 Opracowanie danych doświadczalnych część 1 Jan Kurzyk Instytut Fizyki Politechniki Krakowskiej wersja z 15.10.2010 Pomiar to zespół czynności, których celem jest uzyskanie miary danej wielkości fizycznej,

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Analiza statystyczna w naukach przyrodniczych

Analiza statystyczna w naukach przyrodniczych Analiza statystyczna w naukach przyrodniczych Po co statystyka? Człowiek otoczony jest różnymi zjawiskami i próbuje je poznać, dowiedzieć się w jaki sposób funkcjonują, jakie relacje między nimi zachodzą.

Bardziej szczegółowo

Ćwiczenie 1. Metody określania niepewności pomiaru

Ćwiczenie 1. Metody określania niepewności pomiaru Grzegorz Wielgoszewski Data wykonania ćwiczenia: Nr albumu 134651 7 października 01 Proszę podać obie daty. Grupa SO 7:30 Data sporządzenia sprawozdania: Stanowisko 13 3 listopada 01 Proszę pamiętać o

Bardziej szczegółowo

Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania

Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania 1.1. Przedmiot metrologii 1.2. Rola i zadania metrologii współczesnej w procesach produkcyjnych 1.3. Główny Urząd Miar i inne instytucje ważne

Bardziej szczegółowo

Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych

Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych Marcin Polkowski (251328) 1 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia

Bardziej szczegółowo

Precyzja a dokładność

Precyzja a dokładność Precyzja a dokładność Precyzja pomiaru jest miarą rzetelności przeprowadzenia doświadczenia, lub mówi nam jak powtarzalny jest ten eksperyment. Dokładność pomiaru jest miarą tego jak wyniki doświadczalne

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Ćwiczenie nr 10. Pomiar rezystancji metodą techniczną. Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji.

Ćwiczenie nr 10. Pomiar rezystancji metodą techniczną. Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji. Ćwiczenie nr 10 Pomiar rezystancji metodą techniczną. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji. 2. Dane znamionowe Przed przystąpieniem do

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRZYRZĄDY POMIAROWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przyrządy pomiarowe Ogólny podział: mierniki, rejestratory, detektory, charakterografy.

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Sympozjum Trwałość Budowli

Sympozjum Trwałość Budowli Sympozjum Trwałość Budowli Andrzej ownuk ROJEKTOWANIE UKŁADÓW Z NIEEWNYMI ARAMETRAMI Zakład Mechaniki Teoretycznej olitechnika Śląska pownuk@zeus.polsl.gliwice.pl URL: http://zeus.polsl.gliwice.pl/~pownuk

Bardziej szczegółowo

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.

Bardziej szczegółowo

ĆWICZENIE 6 POMIARY REZYSTANCJI

ĆWICZENIE 6 POMIARY REZYSTANCJI ĆWICZENIE 6 POMIAY EZYSTANCJI Opracowała: E. Dziuban I. Cel ćwiczenia Celem ćwiczenia jest wdrożenie umiejętności poprawnego wyboru metody pomiaru w zależności od wartości mierzonej rezystancji oraz postulowanej

Bardziej szczegółowo

A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG.

A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG. A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG. B. Metodyka wykonywania pomiarów oraz szacowanie niepewności pomiaru. Celem każdego

Bardziej szczegółowo

Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"

Ćwiczenie: Pomiary rezystancji przy prądzie stałym Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej.

Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej. Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej. Andrzej Hantz Dyrektor Centrum Metrologii RADWAG Wagi Elektroniczne Pomiary w laboratorium

Bardziej szczegółowo

METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW 1. WSTĘP

METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW 1. WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW 1. WSTĘP U podstaw wszystkich nauk przyrodniczych leży zasada: sprawdzianem wszelkiej wiedzy jest eksperyment, tzn. jedyną miarą prawdy naukowej jest doświadczenie.

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Podstawy niepewności pomiarowych Ćwiczenia

Podstawy niepewności pomiarowych Ćwiczenia Podstawy niepewności pomiarowych Ćwiczenia 1. Zaokrąglij podane wartości pomiarów i ich niepewności. = (334,567 18,067) m/s = (153 450 000 1 034 000) km = (0,0004278 0,0000556) A = (2,0555 0,2014) s =

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADAIE STATYCZYCH WŁAŚCIWOŚCI PRZETWORIKÓW POMIAROWYCH 1. CEL ĆWICZEIA Celem ćwiczenia jest poznanie: podstawowych pojęć dotyczących statycznych właściwości przetworników pomiarowych analogowych i cyfrowych

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy)

Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy) Wykład 4 Próbkowanie i rozkłady próbkowe µ = średnia w populacji, µ=ey, wartość oczekiwana zmiennej Y σ= odchylenie standardowe w populacji, σ =(Var Y) 1/2, pierwiastek kwadratowy wariancji zmiennej Y,

Bardziej szczegółowo

Agrofi k zy a Wyk Wy ł k ad I Marek Kasprowicz

Agrofi k zy a Wyk Wy ł k ad I Marek Kasprowicz Agrofizyka Wykład I Marek Kasprowicz Agrofizyka nauka z pogranicza fizyki i agronomii, której obiektem badawczym jest ekosystem i obiekty biologiczne kształtowane poprzez działalność człowieka, badane

Bardziej szczegółowo

Sposób wykorzystywania świadectw wzorcowania do ustalania okresów między wzorcowaniami

Sposób wykorzystywania świadectw wzorcowania do ustalania okresów między wzorcowaniami EuroLab 2010 Warszawa 3.03.2010 r. Sposób wykorzystywania świadectw wzorcowania do ustalania okresów między wzorcowaniami Ryszard Malesa Polskie Centrum Akredytacji Kierownik Działu Akredytacji Laboratoriów

Bardziej szczegółowo

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,

Bardziej szczegółowo

WOLTOMIERZ CYFROWY. Metoda czasowa prosta. gdzie: stała całkowania integratora. stąd: Ponieważ z. int

WOLTOMIERZ CYFROWY. Metoda czasowa prosta. gdzie: stała całkowania integratora. stąd: Ponieważ z. int WOLOMIEZ CYFOWY Metoda czasowa prosta int o t gdzie: stała całkowania integratora o we stąd: o we Ponieważ z f z więc N w f z f z a stąd: N f o z we Wpływ zakłóceń na pracę woltomierza cyfrowego realizującego

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Wprowadzenie 2010-10-20

Wprowadzenie 2010-10-20 PODSTAWY STATYSTYKI Dr hab. inż. Piotr Konieczka piotr.konieczka@pg.gda.pl 1 Wprowadzenie Wynik analityczny to efekt przeprowadzonego pomiaru(ów). Pomiar to zatem narzędzie wykorzystywane w celu uzyskania

Bardziej szczegółowo

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1) 1 Ćwiczenie nr.14 Pomiar mocy biernej prądu trójfazowego 1. Zasada pomiaru Przy prądzie jednofazowym moc bierna wyraża się wzorem: Q=UIsinϕ (1) Do pomiaru tej mocy stosuje się waromierze jednofazowe typu

Bardziej szczegółowo