Kombinatorika na slovech v kryptologii

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kombinatorika na slovech v kryptologii"

Transkrypt

1 Kombinatorika na slovech v kryptologii L ubomíra Balková Seminář současné matematiky březen 2014

2 Program 1 2 APRNG Statistické testy

3 Program 1 2 APRNG Statistické testy

4 Jednocestnost a bezkoliznost Definice (jednocestné funkce) f : X Y nazveme jednocestná (one-way), pokud 1 pro každé x X je snadné spočíst y = f(x), 2 pro náhodně vybrané y f(x) je výpočetně nemožné najít jeho vzor, tj. x X tak, že y = f(x). Definice (bezkolizní funkce) f : X Y nazveme bezkolizní (collision-free), pokud je výpočetně nemožné najít x,x X, x x, tak, že f(x) = f(x ).

5 Definice kryptografické hašovací funkce Definice (kryptografická hašovací funkce) Necht N,n N a n << N a f : {0,1} N {0,1} n nazveme hašovací (hash function), pokud je jednocestná a bezkolizní. f(m) nazýváme hash (otisk, hašový kód) zprávy M. Pozn. Obvykle N = , N = a n stovky bitů (pro MD5/SHA-1/SHA256/SHA512 je to 128/160/256/512 bitů).

6 Odolnost proti nalezení vzoru Chová-li se hašovací funkce f : {0,1} N {0,1} n jako náhodné orákulum, pak složitost nalezení vzoru (i druhého vzoru) k danému y = f(m) je 2 n. Pokud lze vzor hledat jednodušeji, hovoříme o prolomení hašovací funkce.

7 Odolnost proti nalezení kolize Chová-li se hašovací funkce f : {0,1} N {0,1} n jako náhodné orákulum, pak složitost nalezení kolize (dvou libovolných zpráv se stejnou haší) je 2 n/2. Pokud lze kolize hledat jednodušeji, hovoříme o prolomení hašovací funkce. Počet kolizí: v průměru 2 N n zpráv má stejnou haš.

8 Narozeninový paradox Pozn. množina o m prvcích, vybíráme k prvků po 1 s vracením pravděpodobnost, že ve výběru některý prvek aspoň 2krát: P(m,k) = 1 m(m 1)...(m k +1) m k pro k = O(m 1/2 ) a m jdoucí do nekonečna P(m,k). = 1 e k2 2m pro k = (2m ln2) 1/2. = m 1/2 je P(m,k). = 50% P(365,23) = 0,507 a P(365,30) = 0,706 ve skupině 23 lidí najdeme s pravděpodobností 50% dvojici slavící narozeniny ve stejný den, ve skupině 30 lidí s pravděpodobností 70%. Obvyklé vnímání: hledání jedněch konkrétních narozenin, proto paradox.

9 Damgardova Merkleova konstrukce Crypto 1989 iterativní hašovací funkce s využitím tzv. kompresní funkce zpráva dlouhá až např bitů hašování po blocích (M rozdělena na 512-bitové bloky m 1,m 2,...,m k, kde m k případně kratší) Damgardovo Merkleovo zesílení doplnění M na délku p 512: M doplněna bitem 1, poté bity 0 (může jich být 0 447) na délku p a nakonec binárním zápisem délky M kompresní funkce: 2 vstupy (aktuální blok zprávy m i a kontext h i 1 ) a 1 výstup (kontext h i ), tedy zpracovává širší vstup na užší výstup algoritmus: h 0 = IV, h i = f(h i 1,m i ) výstup hašovací funkce je h k nebo jeho část dokázáno, že bezkoliznost kompresní funkce bezkoliznost hašovací funkce (proto stačilo najít kvalitní kompresní funkce)

10 Útok na opakující se kontexty pokud h i 1 = h i = f(h i 1,m i ), pak haše m 1...m i 1 m i m i+1...m k a m 1...m i 1 m l i m i+1...m k stejné, což vede k nalezení 2. vzoru se složitostí t 2 n/ n t+1 pro zprávy s délkou 2 t bĺızkou 2 n/2 např. pro SHA-1 lze ke zprávě o délce 2 60 najít 2. vzor se složitostí na rozdíl od teoretické složitosti J. Kelsey, B. Schneier, Second preimages on n-bit hash functions for much less than 2 n work, 2005

11 Ditherování zpracování obrazu: simulace barev, které nemáme, náhodným mícháním pixelů podobných barev; cílem odstranění nežádoucích liníı

12 Ditherování hašovacích funkcí h i = f(h i 1,m i,d i ) 1 ditherování čítačem: d i := i (problém libovolných délek zpráv d i nad nekonečnou abecedou) 2 ditherování náhodnou posloupností: d i := r i (nechrání proti opakování bloků) 3 ditherování střídáním 0 a 1 (nechrání proti opakování bloků) 4 ditherování pomocí square-free a abelian square-free nekonečných slov R. Rivest, Abelian square-free dithering for iterated hash functions, 2005

13 Square-free slova square-free slovo neobsahuje ww Příklad abracadabra OK, banana NE neexistují square-free nekonečná slova nad {0, 1} existují square-free nekonečná slova nad {0, 1, 2} Příklad Thueovo Morseovo slovo t = je cube-free (Dokažte, že je dokonce overlap-free!, tj. neobsahuje faktor awawa, kde a {0,1} a w je slovo nad {0,1}, klidně i prázdné) odvozené slovo v = je square-free (Dokažte s využitím předchozí znalosti!)

14 Abelian square-free slova abelian square-free slovo neobsahuje ww, kde w permutace w Příklad abelianalien NE, obsahuje alien a elian Příklad magické slovo S = abcacdcbcdcadcdbdaba cabadbabcbdbcbacbcdc acbabdabacadcbcdcacd bcbacbcdcacdcbdcdadbdcbca délky 85 označme σ cyklický posun σ(abcacd) = bcdbda, pak Keränenovo abelian square-free slovo je pevný bod morfismu a S, b σ(s), c σ 2 (S), d σ 3 (S)

15 Otázky 1 Jsou abelian square-free slova v ditherování v něčem lepší než square-free slova? 2 Najděte vhodné ditherační posloupnosti (nesmí mít nízkou komplexitu). 3 Zkoumejte odolnost ditherovaných hašovacích funkcí vůči známým útokům. 4 Studujte jiné způsoby ditherování.

16 Kryptografické využití hašovacích funkcí jednoznačná identifikace dat (zejména pro digitální podpisy) kontrola integrity (kontrola shody velkých souborů dat) ukládání a kontrola přihlašovacích hesel prokazování autorství prokazování znalosti autentizace původu dat nepadělatelná kontrola integrity pseudonáhodné generátory

17 Prolomení hašovacích funkcí masová kryptografie na nedokazatelných (nedokázaných) principech prolomení je přirozená věc 2004 prolomena MD5 (2006 Kĺıma generování kolizí na notebooku během 1 minuty) 2010 konec platnosti SHA-1 současný platný standard SHA-2 je 3krát pomalejší

18 Soutěž o SHA-3 listopad 2007 NIST (americký úřad pro standardizaci) soutěž o nový hašovací standard SHA-3 požadavky: rychlost (SHA-1 7,5 cyklu procesoru/byte, SHA-2 20 cyklů procesoru/byte), nároky na pamět (stovky bytů) 64 algoritmů od 191 kryptologů (univerzity a elektronické giganty, ale i největší světoví výrobci z oblasti čipů) např. firmy: Microsoft, Sony, RSA, Intel, IBM, MIT, PGP, Hitachi, známá jména: Rivest, Schneier Češi spojeni s 2 kandidáty: EDON-R (Aleš Drápal, Vlastimil Kĺıma, vlastník a vynálezce Danilo Gligoroski), BMW (vlastník-vynálezce Gligoroski Kĺıma) červenec 2009 vybráno 14 kandidátů: BLAKE, BMW, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, Skein prosinec 2011 vybráno 5 finalistů: BLAKE, Grøstl, JH, Keccak, Skein

19 14 kandidátů

20 BMW = Blue Midnight Wish vznikla spoluprací Vlastimila Kĺımy na vylepšení Turbo-SHA Danila Gligoroského a Sveina Knapskoga po roce práce (konec 2008) odeslána do soutěže NISTu pracovní název nejprve Blue Wish, pak ale autoři zjistili, že jde o registrovanou značku, když se po x-té o půlnoci bĺıžili ke konečné variantě algoritmu, napadlo je Blue Midnight Wish

21 Nové nápady požadavek: větší bezpečnost i rychlost nutnost nových nápadů soustavy rovnic tvořené polynomy o mnoha neznámých (booleovské proměnné) nedovedeme řešit v polynomiálním čase ALE! spočíst hodnotu náhodného polynomu 32. stupně s proměnnými a 0,a 1,...,a 31 a b 0,b 1,...,b 31, např. a 0 a 1 a 31 a 0 b 0 b 1 b 2 a 12 je náročné na pamět i čas ( počtu a ) existuje operace, kterou moderní procesory zvládají v 1 taktu (nejrychleji, jak je to možné), a přesto poskytuje 32 polynomů vysokých řádů najednou!

22 Operace ADD jedná se o operaci ADD ( mod 2 32 )! označme a 31...a 1 a 0 binární zápis a a b 31...b 1 b 0 binární zápis b, s 31...s 1 s 0 binární zápis s = a+b mod 2 32 a c 31...c 2 c 1 bity přenosu (carry), pak s = (a 31 b 31 c 31,...,a 1 b 1 c 1,a 0 b 0 ) c 1 = a 0 b 0 c 2 = a 1 b 1 a 1 c 1 b 1 c 1 c 3 = a 2 b 2 a 2 c 2 b 2 c 2... c 31 = a 30 b 30 a 30 c 30 b 30 c 30

23 Kandidáti na SHA-3 dosadíme jednotlivé výrazy pro bity přenosu do vyšších bitů: c 1 = a 0 b 0 1 term řádu 2 c 2 = a 1 b 1 a 1 a 0 b 0 b 1 a 0 b 0 1 term řádu 2 a 2 termy řádu 3 jedinou operací a+b tak vznikne 32 polynomů, které dohromady obsahují přes 2 miliardy termů řádu 2 32

24 Termy v součtu 32-bitových čísel

25 Vlastnosti BMW používá jen operace ADD a XOR, operace bitových posunů a cyklických bitových posunů podobně vypadají všichni nejrychlejší kandidáti (požadavek na rychlost vedl logicky k využití operace ADD)

26 Společné prvky SHA-2 a BMW iterativní princip a kompresní funkce padding = doplnění hašované zprávy na potřebný počet bitů, zarovnání na nejbližší násobek 512 nebo 1024 bitů (podle toho, zda jde o BMW256/BMW512, resp. SHA256/SHA512)

27 Hašování 1 předzpracování doplň zprávu M jednoznačně definovaným způsobem o délku zprávy v bitech a doplněk rozděl zprávu na celistvý násobek N m-bitových bloků M 1,M 2,...,M N nastav počáteční hodnotu průběžné haše H 0 := IV 2 výpočet haše 3 závěr for i = 1 to N H i := f(m i,h i 1 ) H(M) := definovaných n bitů z hodnoty H N

28 Mouchy SHA-2 podle NISTu možnost nalezení multikolizí rychlejší než u náhodného orákula u náhodného orákula složitost nalezení r = 2 k multikolizí 2 n(r 1)/r operací, u SHA-2 pouze k2 n/2 (Joux) možnost nalezení kolize stejná jako u náhodného orákula (2 n/2 podle narozeninového paradoxu) náchylnost na útok prodloužením zprávy

29 Dvojnásobná pumpa využita částí kandidátů na SHA-3 navržena k řešení výše uvedených much Lucksem jde o zdvojnásobení šířky průběžné haše a výsledná haš je pak polovina průběžné haše k nalezení kolizí Jouxovým útokem je třeba k2 n operací výpočet ale pak trvá cca. 4krát déle

30 Pumpa BMW

31 Zdůvodnění NISTu Security: We preferred to be conservative about security, and in some cases did not select algorithms with exceptional performance, largely because something about them made us nervous, even though we knew of no clear attack against the full algorithm vyhlášení vítěze Keccak

32 APRNG Statistické testy Program 1 2 APRNG Statistické testy

33 APRNG Statistické testy rozlišujeme dva druhy generátorů: 1 generátor pravých náhodných čísel (RNG) založen na náhodnosti fyzikálních jevů 2 generátor pseudonáhodných čísel (PRNG) algoritmus vytvářející posloupnosti čísel chovající se zdánlivě náhodně

34 APRNG Statistické testy Lineární kongruenční generátor (LCG) definován rekurentním vztahem x n+1 = (ax n +c) mod m 0 < m modulo 0 a < m multiplikátor 0 c < m posunutí 0 x 0 < m seed nevýhody LCG: periodičnost mřížková struktura

35 APRNG Statistické testy Mrížková struktura LCG Obrázek: RANDU: a = 65539, m = 2 31, c = 0

36 APRNG Statistické testy APRNG dány dva LCG X = (x n ) n 0 a Y = (y n ) n 0 a nekonečné aperiodické slovo u = u 1 u 2 u 3... nad {0,1} pak APRNG Z = (z n ) n 0 založený na slově u získáme pomocí algoritmu: 1 postupně čteme písmena slova u 2 čteme-li ve slově u po i-té nulu, potom na konec posloupnosti Z přidáme i-tý člen posloupnosti X 3 čteme-li ve slově u po i-té jedničku, potom na konec posloupnosti Z přidáme i-tý člen posloupnosti Y

37 APRNG Statistické testy APRNG APRNG založené na podtřídě cut and project slov jsou aperiodické a nemají mřížkovou strukturu L.-S. Guimond, Jan Patera, Jiří Patera, Statistical properties and implementation of aperiodic pseudorandom number generators, 2003

38 APRNG Statistické testy Slova s dobře rozmístěnými výskyty APRNG založené na slovech splňujících vlastnost DRV nemají mřížkovou strukturu nekonečné aperiodické slovo u nad {0, 1} má vlastnost DRV právě tehdy, když pro libovolné m N a pro libovolný faktor w splňuje slovo u následující podmínku: označíme i 1,i 2,... výskyty w v u, pak { ( u1 u 2...u ij 0, u 1 u 2...u ij 1 ) mod m j N } = Z 2 m

39 APRNG Statistické testy Sturmovská slova nekonečné slovo u nazveme sturmovské, pokud jeho faktorová komplexita splňuje C u (n) = n+1 pro každé n N aperiodická mají vlastnost DRV sturmovská slova jsou šiřší třídou než cut and project slova uvažovaná v článku

40 APRNG Statistické testy Fibonacciho slovo sturmovské generování pomocí substituce ϕ : 0 01,1 0 f je pevný bod substituce ϕ f =

41 APRNG Statistické testy Thueovo Morseovo slovo není sturmovské generování pomocí substituce ϕ : 0 01,1 10 t je pevný bod substituce ϕ t =

42 APRNG Statistické testy Thueovo Morseovo slovo kombinace stejných LCG pomocí Thueova Morseova slova zachovává mřížkovou strukturu Thueovo Morseovo slovo tedy nemá vlastnost DRV (Dokažte přímo z definice, že Thueovo Morseovo slovo nemá vlastnost DRV!)

43 APRNG Statistické testy TestU01, PractRand výborné výsledky (ve srovnání s LCGs) časová penalizace malá, možný kompromis mezi pamětí a rychlostí generování vícepísmenná abeceda je lepší kombinování LCGs rozdílné kvality není dobré

44 APRNG Statistické testy Otázky Proč jsou vzniklé APRNGs tak dobré v testech? Existuje souvislost kvality generátoru s jinými kombinatorickými vlastnostmi slov (komplexita, palindromy, frekvence faktorů apod.)?

45 APRNG Statistické testy Otázky Proč jsou vzniklé APRNGs tak dobré v testech? Existuje souvislost kvality generátoru s jinými kombinatorickými vlastnostmi slov (komplexita, palindromy, frekvence faktorů apod.)?

46 APRNG Statistické testy Generator Time(10 10 ) BigCrush PractRand LCG( , ,0) TB LCG( , ,0) >16TB LCG(2 59,13 13,0) MB LCG(2 63,5 19,1) GB LCG(2 63, ,1) GB LCG(2 64, ,1) GB LCG(2 64, ,1) GB LCG(2 64, ,1) GB

47 APRNG Statistické testy Generator Time(10 10 ) BigCrush PractRand Combination Fibonacci 25.7 (8 ) 0 (0) (9 ) 2TB Total 9 combinations (1 ) 0 (1) {1,0} (22 ) 0 (0) (25 ) 1TB Total 27 combinations Fibonacci (4 ) 0 (1) {0,1,1} {0,2,1} {0,1,2} {0,2,2} (1 ) 0 (2) {0,0,0} (2 ) 0.5TB {0,0,2} (22 ) 0 (0) (16 ) 2TB Total 27 combinations (4 ) 0 (1) {1,1,0} {2,1,0} {1,2,0} {2,2,0} Tribonacci 25.7 (1 ) 0 (2) {0,0,0} (7 ) 4TB {0,0,0} {0,1,1} {0,2,1} {0,1,2} {0,2,2} {0,1,0} {0,2,0} (2 ) 8TB {0,0,2} {0,0,1} (2 ) 1TB {1,0,0} {2,0,0}

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou. Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování

Bardziej szczegółowo

1 Soustava lineárních rovnic

1 Soustava lineárních rovnic Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační

Bardziej szczegółowo

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální

Bardziej szczegółowo

Edita Pelantová, katedra matematiky / 16

Edita Pelantová, katedra matematiky / 16 Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a

Bardziej szczegółowo

TGH01 - Algoritmizace

TGH01 - Algoritmizace TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží

Bardziej szczegółowo

MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATIKA 3.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce

Bardziej szczegółowo

Numerické metody 8. května FJFI ČVUT v Praze

Numerické metody 8. května FJFI ČVUT v Praze Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme

Bardziej szczegółowo

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35 (1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst

Bardziej szczegółowo

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19

Kristýna Kuncová. Matematika B2 18/19 (6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)

Bardziej szczegółowo

Linea rnı (ne)za vislost

Linea rnı (ne)za vislost [1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,

Bardziej szczegółowo

Co nám prozradí derivace? 21. listopadu 2018

Co nám prozradí derivace? 21. listopadu 2018 Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y

Bardziej szczegółowo

TGH01 - Algoritmizace

TGH01 - Algoritmizace TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl

Bardziej szczegółowo

5. a 12. prosince 2018

5. a 12. prosince 2018 Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže

Bardziej szczegółowo

Matematika 2, vzorová písemka 1

Matematika 2, vzorová písemka 1 Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět

Bardziej szczegółowo

podle přednášky doc. Eduarda Fuchse 16. prosince 2010

podle přednášky doc. Eduarda Fuchse 16. prosince 2010 Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text

Bardziej szczegółowo

Úvodní informace. 18. února 2019

Úvodní informace. 18. února 2019 Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz

Bardziej szczegółowo

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter

Bardziej szczegółowo

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární

Bardziej szczegółowo

Funkce zadané implicitně. 4. března 2019

Funkce zadané implicitně. 4. března 2019 Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f

Bardziej szczegółowo

Definice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ;

Definice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ; Deterministické zásobníkové automaty Definice 3.72. Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je deterministický (DPDA), jestliže jsou splněny tyto podmínky: 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z),

Bardziej szczegółowo

Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Bardziej szczegółowo

kontaktní modely (Winklerův, Pasternakův)

kontaktní modely (Winklerův, Pasternakův) TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z

Bardziej szczegółowo

Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se

Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se Algebra I Cvičení Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se kterými jsem při přípravě cvičení spolupracoval. Sbírka vznikla modifikací některých

Bardziej szczegółowo

Numerické metody minimalizace

Numerické metody minimalizace Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2

Kristýna Kuncová. Matematika B2 (3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?

Bardziej szczegółowo

Paradoxy geometrické pravděpodobnosti

Paradoxy geometrické pravděpodobnosti Katedra aplikované matematiky 1. června 2009 Úvod Cíle práce : Analýza Bertrandova paradoxu. Tvorba simulačního softwaru. Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 V rovině je zadán kruh

Bardziej szczegółowo

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body. Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:

Bardziej szczegółowo

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :

Bardziej szczegółowo

DFT. verze:

DFT. verze: Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály

Bardziej szczegółowo

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25 (2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25

Bardziej szczegółowo

Diferenciální rovnice základní pojmy. Rovnice se

Diferenciální rovnice základní pojmy. Rovnice se Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské

Bardziej szczegółowo

Výzvy, které před matematiku staví

Výzvy, které před matematiku staví 1 / 21 Výzvy, které před matematiku staví výpočetní technika Edita Pelantová Katedra matematiky, FJFI, České vysoké učení technické v Praze 25. pledna 2018 Praha Zápisy čísel v minulosti 2 / 21 Římský

Bardziej szczegółowo

Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Automatové modely Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Stefan

Bardziej szczegółowo

Lineární algebra - iterační metody

Lineární algebra - iterační metody Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je

Bardziej szczegółowo

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více 5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme

Bardziej szczegółowo

PA152,Implementace databázových systémů 2 / 25

PA152,Implementace databázových systémů 2 / 25 PA152 Implementace databázových systémů Pavel Rychlý pary@fi.muni.cz Laboratoř zpracování přirozeného jazyka http://www.fi.muni.cz/nlp/ 19. září 2008 PA152,Implementace databázových systémů 1 / 25 Technické

Bardziej szczegółowo

Reprezentace dat. BI-PA1 Programování a Algoritmizace I. Ladislav Vagner

Reprezentace dat. BI-PA1 Programování a Algoritmizace I. Ladislav Vagner Reprezentace dat BI-PA1 Programování a Algoritmizace I. Ladislav Vagner Katedra teoretické informatiky Fakulta informačních technologíı ČVUT v Praze xvagner@fit.cvut.cz 9., 11. a 12. října 2017 Obsah Dvojková

Bardziej szczegółowo

Pojem množiny nedefinujeme, pouze připomínáme, že množina je. Nejprve shrneme pojmy a fakta, které znáte ze střední školy.

Pojem množiny nedefinujeme, pouze připomínáme, že množina je. Nejprve shrneme pojmy a fakta, které znáte ze střední školy. 1 Kapitola 1 Množiny 1.1 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky. Pro známé množiny

Bardziej szczegółowo

Inverzní Z-transformace

Inverzní Z-transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25

Bardziej szczegółowo

Rovnice proudění Slapový model

Rovnice proudění Slapový model do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,

Bardziej szczegółowo

Nekomutativní Gröbnerovy báze

Nekomutativní Gröbnerovy báze Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Zuzana Požárková Nekomutativní Gröbnerovy báze Katedra algebry Vedoucí diplomové práce: RNDr. Jan Št ovíček, Ph.D. Studijní

Bardziej szczegółowo

(a). Pak f. (a) pro i j a 2 f

(a). Pak f. (a) pro i j a 2 f Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na

Bardziej szczegółowo

Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156

Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156 Vysvětlování modelovacích chyb Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156 Co nás čeká 1 Konjunktivní dotazy 2 Vyhodnocování konjunktivních dotazů v jazyce ALC

Bardziej szczegółowo

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě

Bardziej szczegółowo

Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52

Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52 í150doc-start í251doc-start Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Matematika 1 Jiří Fišer 24. září 2013 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Zimní semestr

Bardziej szczegółowo

Matematika III Stechiometrie stručný

Matematika III Stechiometrie stručný Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup

Bardziej szczegółowo

Statistika (KMI/PSTAT)

Statistika (KMI/PSTAT) Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina

Bardziej szczegółowo

Kombinatorika a komplexní aritmetika

Kombinatorika a komplexní aritmetika a komplexní aritmetika katedra matematiky, FEL ČVUT v Praze, http://math.feld.cvut.cz/ Jan Hamhalter Datum Komplexní čísla, kombinatorika 1/56 Historie: Zavedení komplexních čísel bylo motivováno snahou

Bardziej szczegółowo

Geometrická nelinearita: úvod

Geometrická nelinearita: úvod Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,

Bardziej szczegółowo

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018 Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv

Bardziej szczegółowo

Petr Beremlijski, Marie Sadowská

Petr Beremlijski, Marie Sadowská Počítačová cvičení Petr Beremlijski, Marie Sadowská Katedra aplikované matematiky Fakulta elektrotechniky a informatiky VŠB - Technická univerzita Ostrava Cvičení : Matlab nástroj pro matematické modelování

Bardziej szczegółowo

NÁVOD K POUŽITÍ KEZELÉSI KÉZIKÖNYV INSTRUKCJA OBSŁUGI NÁVOD NA POUŽÍVANIE. Česky. Magyar. Polski. Slovensky

NÁVOD K POUŽITÍ KEZELÉSI KÉZIKÖNYV INSTRUKCJA OBSŁUGI NÁVOD NA POUŽÍVANIE. Česky. Magyar. Polski. Slovensky CANON INC. 30-2 Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan Europe, Africa & Middle East CANON EUROPA N.V. PO Box 2262, 1180 EG Amstelveen, The Netherlands For your local Canon office, please refer

Bardziej szczegółowo

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T

Bardziej szczegółowo

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií Náhodné vektory prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký,

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32 Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html

Bardziej szczegółowo

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy! Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.

Bardziej szczegółowo

Kapitola 2. Nelineární rovnice

Kapitola 2. Nelineární rovnice Kapitola. Nelineární rovnice Formulace: Je dána funkce f : R! R definovaná na intervalu ha; bi. Hledáme x ha; bi tak, aby f(x) = 0. (x... kořen rovnice) Poznámka: Najít přesné řešení analyticky je možné

Bardziej szczegółowo

MATEMATIKA 3 NUMERICKÉ METODY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATIKA 3 NUMERICKÉ METODY.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATIKA 3 NUMERICKÉ METODY Dana Černá http://kmd.fp.tul.cz Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci INFORMACE O PŘEDMĚTU Konzultační hodiny: ÚT 11:00-12:00, budova G,

Bardziej szczegółowo

Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17

Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17 Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí

Bardziej szczegółowo

Shrnutí. Vladimír Brablec

Shrnutí. Vladimír Brablec Řešení problému SAT s využitím lokálního prohledávání Vladimír Brablec Seminář z umělé inteligence II, 2010 Motivace Obsah referátů Články, podle nichž je prezentace vytvořena 1 Selman B., Kautz H., Cohen

Bardziej szczegółowo

1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A

1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A 1 Definice 1. Množiny: podmnožina: A B x(x A x B) průnik: A B = {x A x B} sjednocení: A B = {x x A x B} rozdíl: A B = {x A x B} A B A B vlastní podmnožina 2. uspořádaná dvojice: (x, y) = {{x}, {x, y}}

Bardziej szczegółowo

GEM a soustavy lineárních rovnic, část 2

GEM a soustavy lineárních rovnic, část 2 GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova

Bardziej szczegółowo

Návod k použití ovládacího panelu GZ-539 Serie

Návod k použití ovládacího panelu GZ-539 Serie Návod k použití ovládacího panelu ANITA B, sro Průmyslová 2453/7 680 01 Boskovice Czech Republic tel: +420 516 454 774 +420 516 453 496 fax: +420 516 452 751 e-mail: info@anitacz OBSAH I Ovládací panel

Bardziej szczegółowo

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument) KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A

Bardziej szczegółowo

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006 Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce

Bardziej szczegółowo

Tabulky, součin tabulek

Tabulky, součin tabulek Výpočet marginálních podmíněných pravděpodobností v bayesovské síti Úmluva: Zajímáme se pouze o bayesovské sítě, jejichž graf je spojitý. Jinak uvažujeme každou komponentu zvlášť. Tabulky, součin tabulek

Bardziej szczegółowo

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu   (reg. č. CZ.1.07/2.2.00/28. Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného

Bardziej szczegółowo

Západočeská univerzita v Plzni Fakulta aplikovaných věd. Katedra matematiky. Semestrální práce - matematika a byznys

Západočeská univerzita v Plzni Fakulta aplikovaných věd. Katedra matematiky. Semestrální práce - matematika a byznys Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Obor: Matematické inženýrství Optimální výrobní program Semestrální práce - matematika a byznys Vypracovala: Radka Zahradníková

Bardziej szczegółowo

Vladimír Ulman Centre for Biomedical Image Analysis. 10th October, 2007 FI MU, Brno

Vladimír Ulman Centre for Biomedical Image Analysis. 10th October, 2007 FI MU, Brno Gáborovy filtry nebo spíš rychlé počítání Gausse Vladimír Ulman Centre for Biomedical Image Analysis th October, 7 FI MU, Brno Vladimír Ulman (CBIA, FI MU) Gáborovy filtry th October, 7 / 39 Gáborovy filtry

Bardziej szczegółowo

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vytěžování dat Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 27

Bardziej szczegółowo

Škola matematického modelování 2017

Škola matematického modelování 2017 Počítačová cvičení Škola matematického modelování 2017 Petr Beremlijski, Rajko Ćosić, Marie Sadowská Počítačová cvičení Škola matematického modelování Petr Beremlijski, Rajko Ćosić, Marie Sadowská Katedra

Bardziej szczegółowo

Cauchyova úloha pro obyčejnou diferenciální rovnici

Cauchyova úloha pro obyčejnou diferenciální rovnici Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité

Bardziej szczegółowo

Martin Pergel. 26. února Martin Pergel

Martin Pergel. 26. února Martin Pergel 26. února 2017 Užitečné informace Navážeme na Programování I, změníme jazyk na C#, podrobnosti o C# budou v navazujícím kurzu, soustředíme se na totéž, co v zimě, tedy: technické programování, návrh a

Bardziej szczegółowo

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými

Bardziej szczegółowo

Kombinatorika a grafy I

Kombinatorika a grafy I Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky

Bardziej szczegółowo

Statistika (KMI/PSTAT)

Statistika (KMI/PSTAT) Cvičení sedmé (a asi i osmé a doufám, že ne deváté) aneb Náhodná veličina, rozdělení pravděpodobnosti náhodné veličiny Náhodná veličina Náhodná veličina Studenti skládají písemku sestávající ze tří úloh.

Bardziej szczegółowo

Úvod do umělé inteligence Prohledávání stavového prostoru -mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ bsah: Problém osmi dam Prohledávání stavového prostoru Prohledávání do hloubky Prohledávání

Bardziej szczegółowo

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D.   pf.jcu.cz Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/

Bardziej szczegółowo

Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn

Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové

Bardziej szczegółowo

Ústav teorie informace a automatizace RESEARCH REPORT. Pavel Boček, Karel Vrbenský: Implementace algoritmu MIDIA v prostředí Google Spreadsheets

Ústav teorie informace a automatizace RESEARCH REPORT. Pavel Boček, Karel Vrbenský: Implementace algoritmu MIDIA v prostředí Google Spreadsheets Akademie věd České republiky Ústav teorie informace a automatizace Academy of Sciences of the Czech Republic Institute of Information Theory and Automation RESEARCH REPORT Pavel Boček, Karel Vrbenský:

Bardziej szczegółowo

K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI. asta

K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI. asta N O V I N K A K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI asta MODULOVÉ SCHODY asta...jsou nejnovějším výrobkem švédsko-polského koncernu, který se již 10 let specializuje na výrobu schodů různého typu. Jednoduchá

Bardziej szczegółowo

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra. Lineární prostor Lineární kombinace Lineární prostory nad R Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 01A-2018: Lineární

Bardziej szczegółowo

Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17.

Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. Internet a zdroje (Zdroje na Internetu) Mgr. Petr Jakubec Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu 12 26. listopadu 2010 (KFC-INTZ) Databáze, citování 26. listopadu 2010

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen

Bardziej szczegółowo

Formálne jazyky Automaty. Formálne jazyky. 1 Automaty. IB110 Podzim

Formálne jazyky Automaty. Formálne jazyky. 1 Automaty. IB110 Podzim Formálne jazyky 1 Automaty 2 Generatívne výpočtové modely IB110 Podzim 2010 1 Jednosmerné TS alebo konečné automaty TS sú robustné voči modifikáciam existuje modifikácia, ktorá zmení (zmenší) výpočtovú

Bardziej szczegółowo

Anotace. Martin Pergel,

Anotace. Martin Pergel, Anotace Třídění, medián lineárně. Třídění Ukazovali jsme si: bubblesort, shakesort, zatřid ování (insert-sort), přímý výběr (select-sort) důležité je znát algoritmy, není nutné pamatovat si přesné přiřazení

Bardziej szczegółowo

RSA. Jakub Klemsa. 3. dubna Úvod do kryptologie

RSA. Jakub Klemsa. 3. dubna Úvod do kryptologie Úvod do kryptologie Fakulta jaderná a fyzikálně inženýrská 3. dubna 2013 1. Teorie Bude se hodit Asymetrická šifra 2. Lámání Fermatova metoda Pollardova p 1 metoda Wienerův útok Využití jiných chyb nepřítele

Bardziej szczegółowo

Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Univerzita Karlova v Praze Matematicko-fyzikální fakulta Univerzita arlova v Praze Matematicko-fyzikální fakulta BAALÁŘSÁ PRÁCE Matěj Novotný Operátory skládání na prostorech funkcí atedra matematické analýzy Vedoucí bakalářské práce: doc. RNDr. Jiří Spurný

Bardziej szczegółowo

Okrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být

Okrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být Obyčejné diferenciální rovnice 1 Úvod Obyčejnou diferenciální rovnici N-tého řádu f ( x,y,y,y,...,y (N)) = g(x) převádíme na soustavu N diferenciálních rovnic 1. řádu. Provedeme substituce y z 1 y z 2...

Bardziej szczegółowo

Populační algoritmy a jejich uplatnění pro segmentaci obrazu. Pavel Jedlička

Populační algoritmy a jejich uplatnění pro segmentaci obrazu. Pavel Jedlička Populační algoritmy a jejich uplatnění pro segmentaci obrazu Pavel Jedlička P R O H L Á Š E N Í Předkládám tímto k posouzení a obhajobě diplomovou práci zpracovanou na závěr studia na Fakultě aplikovaných

Bardziej szczegółowo

(A B) ij = k. (A) ik (B) jk.

(A B) ij = k. (A) ik (B) jk. Příklady z lineární algebry Michael Krbek 1 Opakování 1.1 Matice, determinanty 1. Je dána matice 1 2 0 M = 3 0 1. 1 0 1 Určete M 2, MM T, M T M a vyjádřete M jako součet symetrické a antisymetrické matice!

Bardziej szczegółowo

Register and win! www.kaercher.com

Register and win! www.kaercher.com Register and win! www.kaercher.com A B A, B A B 2 6 A régi készülékek értékes újrahasznosítható anyagokat tartalmaznak, amelyeket tanácsos újra felhasználni. Szárazelemek, olaj és hasonló anyagok ne kerüljenek

Bardziej szczegółowo

Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Univerzita Karlova v Praze Matematicko-fyzikální fakulta Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Lukáš Perůtka Hledání optimálních strategií číselného síta Katedra algebry Vedoucí diplomové práce: Prof. RNDr. Aleš Drápal, CSc.,

Bardziej szczegółowo

algebrou úzce souvisí V druhém tematickém celku se předpokládá základní znalosti z matematické analýzy

algebrou úzce souvisí V druhém tematickém celku se předpokládá základní znalosti z matematické analýzy 1 Úvodem Prezentace předmětu VMP je vytvořena pro nový předmět, který si klade za cíl seznámit studenty se základy lineární algebry a se základy numerické matematiky. Zejména v prvním tématu budeme pracovat

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

Obsah. 1.2 Integrály typu ( ) R x, s αx+β

Obsah. 1.2 Integrály typu ( ) R x, s αx+β Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................

Bardziej szczegółowo