Tkanka mięśniowa troponina tropomiozyna Aparat kurczliwy: miofilamenty cienkie ( i białka pomocnicze) miofilamenty grube (miozyna 2) białka pomocnicze łańcuchy lekkie miozyna 2 miozyna 2 pobudliwość kurczliwość Miofilamenty nie kurczą się, lecz przesuwają względem siebie ( główki miozyny kroczą po aktynie) Klasyfikacja tkanki mięśniowej: (1) mięśnie gładkie (2) mięśnie poprzecznie prążkowane Mięśnie gładkie: aparat kurczliwy o niższym poziomie uporządkowania reagują na różne bodźce unerwione przez autonomiczny układ nerwowy skurcz wolny, ale długotrwały komórki produkują własne blaszki podstawne i składniki substancji międzykomórkowej (m.in. włókna sprężyste i siateczkowe) mięśnie szkieletowe mięsień sercowy Komórki mięśniowe gładkie tworzą warstwy (błony mięśniowe) lub pęczki i są połączone połączeniami szczelinowymi, co umożliwia przewodzenie bodźców Komórka mięśniowa gładka wydłużona, wrzecionowata pałeczkowate jadro organelle zgrupowane na biegunach jądra pozostałą cytoplazmę zajmuje aparat kurczliwy otoczona blaszką podstawną Występowanie: warstwy: naczynia krwionośne, układ pokarmowy, drogi oddechowe, układ moczowo-płciowy (w tym macica, pęcherz) pęczki: mięśnie wyprostne włosa, tęczówka 1
Bardzo liczne cienkie i nieliczne grube miofilamenty tworzą wydłużoną sieć Miofilamenty cienkie są powiązane ze sobą i przyczepione do błony komórkowej za pośrednictwem białek wiążących aktynę ciałka gęste (α-aktynina) ciałko gęste podbłonowa płytka gęsta (α-aktynina, winkulina) kaweola podbłonowa płytka gęsta Aparat kurczliwy: miofilamenty cienkie: - - tropomiozyna miofilamenty grube: miozyna 2 6. Kinaza fosforyluje łańcuchy lekkie, co powoduje odsłonięcie miejsc wiążących aktynę miejsca wiążące aktynę zamknięte kinaza lekkich łańcuchów Molekularny mechanizm skurczu komórki mięśniowej gładkiej: 1. Bodziec 2. Otwarcie kanałów wapniowych 3. Wzrost poziomu Ca 2+ w cytoplazmie (sygnał wewnątrzkomórkowy) 4. Przyłączenie jonów Ca do kalmoduliny 5. Kompleks kalmodulina-ca aktywuje kinazę lekkich łańcuchów miozyny fosforylacja łańcuchów lekkich miozyny miejsca wiążące aktynę otwarte 7. Miozyna łączy się z aktyną 8. Skurcz Niemięśniowe komórki kurczliwe: - różne pochodzenie - aparat kurczliwy jak w komórkach mięśniowych gładkich Komórki mioepitelialne - pochodzenie nabłonkowe - obecne w niektórych gruczołach - wyciskają wydzielinę do przewodów Miofibroblasty - pochodzenie mezenchymatyczne (z komórek zrębowych szpiku) - obecne w skórze i niektórych narządach - w skórze uczestniczą w gojeniu ran, w warunkach patologicznych powodują zwłóknienie narządów Komórki mioidne - pochodzenie mezenchymatyczne - występują w jądrach, wokół kanalików nasiennych - wypychają plemniki z kanalików nasiennych Perycyty - pochodzenie mezenchymatyczne - występuja w ścianie naczyń włosowatych - regulują światło naczynia Mięśnie szkieletowe aparat kurczliwy o uporządkowanym układzie reagują wyłącznie na bodźce nerwowe unerwione przez ośrodkowy układ nerwowy skurcz szybki, ale krótkotrwały włókna mięśniowe wytwarzają własną blaszkę podstawną 2
Mięsień szkieletowy jest narządem zbudowanym z włókien mięśniowych i tkanki łącznej, która zawiera naczynia i włókna nerwowe Włókno mięśniowe szkieletowe jest wielojądrzastą zespólnią powstałą przez zespolenie wielu komórek prekursorowych (mioblastów) namięsna omięsna śródmięsna mięsień pęczek mięśniowy blaszka podstawna i śródmięsna Tkanka łączna: namięsna otacza brzusiec mięśnia omięsna otacza pęczki mięśniowe śródmięsna otacza włókna mięśniowe cytoplazma jądro włókno mięśniowe Średnica: 10-100 µm Długość: jak brzusiec mięśnia (kilka kilkadziesiąt cm) Budowa włókna mięśniowego szkieletowego: Budowa miofibryli: regularny układ cienkich i grubych miofilamentów tworzy segmenty - sarkomery pomiędzy miofibrylami: mitochondria, kanaliki T, siateczka sarkoplazmatyczna glikogen, mioglobina sarkolema (błona komórkowa + blaszka podstawna) wąska obwodowa warstwa cytoplazmy zawierająca jądra i organelle obszar centralny zawierający aparat kurczliwy - równolegle ułożone, poprzecznie prążkowane miofibryle I H M A linia Z: α-aktynina, mocuje końce cienkich miofilamentów linia M: miomezyna, tworzy mostki łączące bocznie grube miofilamenty H I A I Z M Z Filamenty i białka podporowe sarkomeru i miofibryli titina tropomodulina nebulina titina zapobiega nadmiernemu rozciągnięciu sarkomeru nebulina usztywnia cienki miofilament tropomodulina blokuje wolny koniec cienkiego miofilamentu, zapobiega jego wydłużaniu (polimeryzacji aktyny) dystrofina Dystrofina łączy obwodowe miofilamenty cienkie z błoną komórkową Miofibryle połączone są na wysokości linii Z sarkomerów poprzecznie biegnącymi filamentami pośrednimi (desmina) w ten sposób, że sarkomery znajdują się na tym samym poziomie - daje to efekt poprzecznego prążkowania całego włókna mięśniowego 3
Molekularna struktura miofilamentów cienkie grube główki (fragmenty S1) tropomiozyna troponina cząsteczka miozyny 2 Molekularny mechanizm skurczu 1. Wzrost poziomu jonów Ca 2+ (sygnał wewnątrzkomórkowy) 2. Jony Ca wiążą się z troponiną C 3. Troponina I poprzez troponinę T odsuwa tropomiozynę od aktyny, odsłaniając na aktynie miejsca wiążące miozynę 4. Główki miozyny wiążą się z aktyną 5. Miozyna kroczy po powierzchni aktyny - miofilamenty przesuwają się względem siebie, sarkomer się skraca miofilament tropomiozyna troponina (C, I, T) miozyna ale w miofybryli to nie ma prawa działać!... czyli dylemat skurczu mięśniowego (contraction dilemma) Bodziec dochodzi do każdego włókna mięśniowego z zakończenia włókna nerwowego, płytki motorycznej (synapsa nerwowo-mięśniowa) tak skierowane są wektory sił generowanych przez sarkomery? zakończenie włókna nerwowego fala skurczu To jednak działa, gdyż sarkomery nie kurczą się równocześnie, tylko po kolei, każdy z minimalnym opóźnieniem w stosunku do poprzedniego co pozwala na efektywne skrócenie miofibryli. fałdy sarkolemy kanały sodowe neuroprzekaźnik: acetylocholina Systemy błonowe otaczające miofibryle: kanaliki T i siateczka sarkoplazmatyczna błona komórkowa miofibryla cysterna brzeżna siateczki sarkopl. kanalik T Reakcja włókna mięśniowego na bodziec nerwowy - etapy 1. Przekazanie bodźca (płytka motoryczna) 2. Wprowadzenie bodźca w głąb włókna (kanaliki T) 3. Zmiana kształtu białka wrażliwego na bodziec (zmianę potencjału błony) w błonie kanalika T siateczka sarkoplazmatyczna 4. Mechaniczne otwarcie kanałów wapniowych w błonie cysterny brzeżnej kanaliki T rurkowate wpuklenia błony komórkowej zlokalizowane wzdłuż granic między prążkami I i A, przewodzą bodziec w głąb włókna mięśniowego siateczka sarkoplazmatyczna odpowiednik siateczki gładkiej/kalciosomu, o segmentowym układzie, gromadzi jony Ca triada mięśniowa: kanalik T + 2 cysterny brzeżne 5. Wzrost poziomu jonów Ca w cytoplazmie (czyli także w otoczeniu miofilamentów) błona kanalika T błona cysterny brzeżnej kanał wapniowy bodziec 4
Przemieszczanie się bodźca wzdłuż błony komórkowej włókna mięśniowego i aktywacja kolejnych triad mięśniowych tłumaczy powstanie fali skurczu przesuwającej się od rejonu płytki motorycznej Połączenie mięsień-ścięgno miofilamenty cienkie białka pośredniczące integryny kolagen Typy włókien mięśniowych szkieletowych: białe (typ IIX) pośrednie (typ IIA) czerwone (typ I) Komórki satelitarne IIX IIX I I IIA błona komórkowa komórki satelitarnej blaszka podstawna IIA mitochondria błona komórkowa włókna mięśniowego Włókna białe: większa średnica, mniej mioglobiny i mitochondriów, węższe linie Z, b. szybki skurcz, szybkie zmęczenie Włókna czerwone: mniejsza średnica, więcej mioglobiny i mitochondriów, szersze linie Z, wolniejszy skurcz, bardziej odporne na zmęczenie niezróżnicowane (macierzyste) leżą pod blaszką podstawną mogą się namnażać i wbudowywać do istniejących włókien odpowiadają za rozrost, przebudowę i regenerację mięśni Mięsień sercowy: zbudowany z oddzielnych komórek uporządkowany układ aparatu kurczliwego (sarkomery) reaguje na bodźce generowane przez własne komórki skurcz rytmiczny skurcz przestrzenny Z uwagi na przestrzenny charakter skurczu, komórki mięśnia sercowego (kardiomiocyty) oraz ich aparat kurczliwy tworzą przestrzenną sieć Pomiedzy rozgałęzionymi kardiomiocytami znajdują się bardzo liczne naczynia włosowate 5
Komórki mięśnia sercowego zawierają: centralne jądro, a wokół niego organelle rozgałęzione pęczki miofilamentów zorganizowanych w sarkomery, a między nimi bardzo liczne mitochondria Kanaliki T i siateczka sarkoplazmatyczna w komórkach mięśnia sercowego pełnią te same funkcje co w włóknach mięśniowych szkieletowych, choć nieco różnią się morfologią i mechanizmem działania szersze kanaliki T zlokalizowane na poziomie linii Z mniejsze cysterny brzeżne diady zamiast triad (kanalik T + 1 cysterna brzeżna) w błonie kanalików T kanały wapniowe otwierane zmianą potencjału, wstępny wzrost poziomu Ca aktywuje kanały wapniowe w siateczce sarkoplazmatycznej (wzmocnienie sygnału) Komórki robocze przedsionków Komórki mięśnia sercowego są połączone wstawkami - zespołami połączeń międzykomórkowych desmosom wstawka połączenie szczelinowe powięź przylegania mniejsze brak kanalików T niektóre komórki pełnią również funkcję dokrewną: produkują hormon: przedsionkowy peptyd natriuretyczny Komórki układu bodźcotwórczo-przewodzącego są prymitywnymi komórkami mięśnia sercowego 1 4 2 3 4 ubogi aparat kurczliwy brak kanalików T liczne połączenia szczelinowe Węzeł zatokowo-przedsionkowy (1), węzeł przedsionkowo-komorowy (2): spontaniczna, rytmiczna depolaryzacja Pęczek Hisa (3), włókna Purkiniego (4): pęczki komórek połączone między sobą i z kardiomiocytami roboczymi połączeniami szczelinowymi ( rozprowadzanie bodźców) Kardiomiopatie charakteryzują się osłabieniem kurczliwości mięśnia sercowego i prowadzą do niewydolności krążenia. Mogą się wiązać z poszerzeniem przedsionków i komór (kardiomiopatia dylatacyjna, częsta u psów) albo z przerostem mięśnia sercowego (kardiomiopatia hypertroficzna, częsta u kotów). Kardiomiopatia dylatacyjna w większości przypadków jest wynikiem niedoboru tauryny. Obecnie komercyjnie dostępna karma dla psów zawiera taurynę i częstość występowania tej choroby zmalała. 6