Zbigniew Osiak. Od Kopernika do Newtona

Podobne dokumenty
Zbigniew Osiak. Od Kopernika do Newtona

Teoria Względności. Podstawy

Teoria Względności. Prekursorzy

Fizyka mało znana. Doświadczenia myślowe i rozstrzygające

Wykłady z Fizyki. Grawitacja

Fizyka mało znana. Słynne paradoksy fizyki

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Wykłady z Fizyki. Optyka

Wykłady z Fizyki. Magnetyzm

Fizyka mało znana. Zasady zachowania w fizyce

Wykłady z Fizyki. Ciało Stałe

Wykłady z Fizyki. Teoria Względności

Historia Fizyki. O tym, jak w XVII wieku fizyka stała się nauką

Wykłady z Fizyki. Elektromagnetyzm

Wykłady z Fizyki. Hydromechanika

Wyk³ady z Fizyki. J¹dra. Zbigniew Osiak

Plan wykładu. Mechanika Układu Słonecznego

Nowożytne poglądy na ruch, czas i przestrzeń

Wykłady z Fizyki. Kwanty

NIE FAŁSZOWAĆ FIZYKI!

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego)

FIZYKA 2. Janusz Andrzejewski

Wykład Prawa Keplera Wyznaczenie stałej grawitacji Równania opisujące ruch planet

Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego)

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 5. Początki nauki nowożytnej część 1 (prawo powszechnego ciążenia)

FIZYKA-egzamin opracowanie pozostałych pytań

Szkoła Podstawowa nr 2 im. Mikołaja Kopernika w Łobzie

Historia myśli naukowej. Ewolucja poglądów związanych z budową Wszechświata. dr inż. Romuald Kędzierski

Obraz Ziemi widzianej z Księżyca

Plan wykładu i ćwiczeń.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Ruchy planet. Wykład 29 listopada 2005 roku

IŚ / OŚ. Grawitacja. Droga Mleczna

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.

Fizyka ma³o znana. Zbigniew Osiak. Zapomniane definicje, zasady, hipotezy i teorie

Kinematyka relatywistyczna

Elementy fizyki relatywistycznej

Wstęp do astrofizyki I

Czy da się zastosować teorię względności do celów praktycznych?

Kinematyka relatywistyczna

PodziaŁ planet: Zewnętrzne: Wewnętrzne: Merkury. Jowisz. Wenus. Saturn. Ziemia. Uran. Mars. Neptun

Szczególna teoria względności

Mikołaj Kopernik patron naszej szkoły

O układzie współrzędnych. Kinga Kolczyńska - Przybycień

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna

A S T R O N O M W S Z E C H C Z A S Ó W

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego

Elementy astronomii w nauczaniu przyrody. dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK 2011

Podstawy fizyki wykład 9

O "światopogladzie wariacyjnym"

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Wyk³ady z Fizyki. Zbigniew Osiak. Cz¹stki Elementarne

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego

DYNAMIKA dr Mikolaj Szopa

140. ROCZNICA URODZIN ALBERTA EINSTEINA

Spis treści: 3. Geometrii innych niż euklidesowa.

Naukowcy, którzy nie bali się wierzyć

Treści dopełniające Uczeń potrafi:

Arystoteles ( p.n.e.) pierwsza teoria (spójny system opisu) świata

Wyk³ady z Fizyki. Zbigniew Osiak. Grawitacja

ver grawitacja

GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA.

WSZECHŚWIAT = KOSMOS

Majowe przebudzenie...

Wenus na tle Słońca. Sylwester Kołomański Tomasz Mrozek. Instytut Astronomiczny Uniwersytetu Wrocławskiego

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

New Theory About Light and Colors Philosophiae Naturalis Principia Mathematica Opticks

Kontrola wiadomości Grawitacja i elementy astronomii

Grawitacja okiem biol chemów i Linuxów.

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI

Krzywe stożkowe Lekcja I: Wprowadzenie

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Jak poznawaliśmy. Marek Stęślicki. Instytut Astronomiczny UWr

Satelity Ziemi. Ruch w polu grawitacyjnym. dr inż. Stefan Jankowski

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

PODSTAWY FIZYKI - WYKŁAD 2 DYNAMIKA: MASA PED SIŁA MOMENT PEDU ENERGIA MECHANICZNA. Piotr Nieżurawski.

OPTYKA. Leszek Błaszkieiwcz

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy

Elementy rachunku różniczkowego i całkowego

Historia Fizyki. Zbigniew Osiak. O tym, jak w XVII wieku fizyka sta³a siê nauk¹

Grawitacja - powtórka

Wędrówki między układami współrzędnych

Wielcy rewolucjoniści nauki

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1

Klasa I Część wspólna Klasa II Kształtowane dyspozycja Temat tygodniowy Temat dnia Mikołaj Kopernik. Mikołaj Kopernik.

Carl Friderich Gauss notka biograficzna. Nina Ulicka 22 stycznia 2019

Sławni Polscy Fizycy i Matematycy. Matematycy Fizycy Najważniejsi

Zasady względności w fizyce

Krzywe stożkowe Lekcja V: Elipsa

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)

Transkrypt:

Historia Teorii Wzglêdnoœci Zbigniew Osiak Od Kopernika do Newtona 01

Linki do moich publikacji naukowych i popularnonaukowych, e-booków oraz audycji telewizyjnych i radiowych są dostępne w bazie ORCID pod adresem internetowym: http://orcid.org/0000-0002-5007-306x

Zbigniew Osiak (Tekst) HISTORIA TEORII WZGLĘD OŚCI Od Kopernika do Newtona Małgorzata Osiak (Ilustracje)

Copyright 2015 by Zbigniew Osiak (text) and Małgorzata Osiak (illustrations) Wszelkie prawa zastrzeżone. Rozpowszechnianie i kopiowanie całości lub części publikacji zabronione bez pisemnej zgody autora tekstu i autorki ilustracji. Portret autora zamieszczony na okładkach przedniej i tylnej Rafał Pudło Wydawnictwo: Self Publishing ISBN: 978-83-272-4473-4 e-mail: zbigniew.osiak@gmail.com

Wstęp 5 Historia Teorii Względności Od Kopernika do ewtona jest pierwszym z pięciu tomów pomocniczych materiałów do prowadzonego przeze mnie seminarium dla słuchaczy Uniwersytetu Trzeciego Wieku w Uniwersytecie Wrocławskim. Szczegółowe informacje dotyczące sygnalizowanych tam zagadnień zainteresowani Czytelnicy znajdą w innych moich ebookach: Z. Osiak: Szczególna Teoria Względności. Self Publishing (2012). Z. Osiak: Ogólna Teoria Względności. Self Publishing (2012). Z. Osiak: Antygrawitacja. Self Publishing (2012). Z. Osiak: Energia w Szczególnej Teorii Względności. SP (2012). Z. Osiak: Giganci Teorii Względności. Self Publishing (2012). Z. Osiak: Teoria Względności Prekursorzy. Self Publishing (2012). Z. Osiak: Teoria Względności Twórcy. Self Publishing (2013). Z. Osiak: Teoria Względności Kulisy. Self Publishing (2012). Z. Osiak: Teoria Względności Kalendarium. SP (2013).

Wstęp 6 Zapis wszystkich pomocniczych materiałów zgrupowanych w pięciu tomach zostanie zamieszczony w internecie w postaci ebooków. Z. Osiak: Historia Teorii Względności Od Kopernika do ewtona Z. Osiak: Historia Teorii Względności Od ewtona do Maxwella Z. Osiak: Historia Teorii Względności Od Maxwella do Einsteina Z. Osiak: Historia Teorii Względności Era Einsteina 1905-1955 Z. Osiak: Historia Teorii Względności Ciekawe wyniki po 1955

Seminarium HISTORIA TEORII WZGLĘD OŚCI Od Kopernika do Newtona dr Zbigniew Osiak Portrety i rysunki wykonała Małgorzata Osiak

Spis treści 8 Kalendarium 10 Notki biograficzne 14 Mikołaj Kopernik (1473-1543) 15 Giordano Bruno (1548-1600) 17 Galileo Galilei [Galileusz] (1564-1642) 19 Zasada bezwładności 21 Zasada względności 22 Johannes Kepler (1571-1630) 23 Prawa Keplera 25 René du Perron Descartes [Kartezjusz] (1596-1650) 26 Pierre de Fermat (1601-1665) 28 Sir Isaac Newton (1643-1727) 30 Ole (Olaus) Christiansen Römer (1644-1710) 32 Gotfried Wilhelm Leibniz (1646-1716) 34 Giovanni Girolamo Saccheri (1667-1733) 36 James Bradley (1693-1762) 38

Spis treści 9 James Bradley (1693-1762) 38 Aberracja światła gwiazd 40 Alfabetyczny indeks nazwisk 41 Chronologiczny indeks nazwisk 43

Kalendarium 10

Od Kopernika do ewtona 11 1543 Mikołaj Kopernik (1473-1543) zaproponował do opisu ruchu planet i Słońca układ heliocentryczny. Zwrócił jako pierwszy uwagę na względność ruchu i rolę układu odniesienia. 1600 Giordano Bruno (1548-1600) 17 lutego w Rzymie został spalony na stosie wyrokiem Inkwizycji za popieranie poglądów Kopernika. 1609, 1619 Johannes Kepler (1571-1630) odkrył trzy prawa rządzące ruchem planet. 1632, 1638 Galileo Galilei [Galileusz] (1564-1642) sformułował zasadę względności, zwrócił uwagę na rolę doświadczenia w fizyce.

Od Kopernika do ewtona 12 1637, 1644 René Descartes [Kartezjusz] (1596-1650) przekonywał, że językiem nauki powinna być matematyka. Największym jego osiągnięciem było wprowadzenie (1637) pojęcia układu współrzędnych. Precyzyjne sformułował (1644) zasadę bezwładności. 1675 Ole (lub Olaus) Christiansen Rømer (1644-1710) na podstawie obserwacji księżyców Jowisza doszedł do wniosku, że prędkość światła ma skończoną wartość. 1665, 1687 Sir Isaac Newton (1643-1727) sformułował (1665) prawo grawitacji, stworzył (1687) podstawy mechaniki. Opracował (1665/1687) rachunek różniczkowy i całkowy.

Od Kopernika do ewtona 13 1684 Gotfried Wilhelm Leibniz (1646-1716) opracował (1684) niezależnie od Isaaca Newtona rachunek różniczkowy i całkowy.

otki biograficzne 14

Mikołaj Kopernik (1473-1543) 15 polski astronom, matematyk, ekonomista i lekarz 1473 - Urodził się 19 lutego w Toruniu. 1491/1495 - Studiował na uniwersytecie w Krakowie. 1496/1503 - Kontynuował z przerwami naukę we Włoszech, studiując od 1496 prawo w Bolonii, a od 1501 medycynę w Padwie. 1503 - Doktoryzował się z prawa kanonicznego w Ferrarze. 1543 - Zmarł 24 maja 1543 roku we Fromborku.

Mikołaj Kopernik (1473-1543) 16 Wyniki Zaproponował (1543) do opisu ruchu planet i Słońca układ heliocentryczny. Zwrócił jako pierwszy uwagę na względność ruchu i rolę układu odniesienia. M. Kopernik: De revolutionibus orbium coelestium. 1543. O obrotach sfer niebieskich.

Giordano Bruno (1548-1600) 17 włoski filozof 1548 - Urodził się w styczniu w Nola. 1572 - Przyjął święcenia kapłańskie. 1600 - Zmarł 17 lutego w Rzymie, spalony na stosie wyrokiem Inkwizycji za popieranie poglądów Kopernika.

Giordano Bruno (1548-1600) 18 Komentarz Za twierdzenie, że wszelaki ruch jest względny, można było stracić życie. G. Bruno: Cena de le Ceneri. 1584. G. Bruno: Opera latine. Edited by Francisco Fiorentino, Vittorio Imbriani, C. M. Talarigo, Felice Tocco, Girolamo Vitelli. Napoli-Firenze, 1879-1891. [3 tomy]

Galileo Galilei [Galileusz] (1564-1642) 19 włoski fizyk, matematyk, astronom i filozof 1564 - Urodził się 15 lutego w Pizie. 1581/1585 - Studiował medycynę, matematykę i fizykę na uniwersytetach w Pizie i we Florencji. 1589 - Otrzymał katedrę matematyki na uniwersytecie w Pizie. 1592 - Objął katedrę matematyki na uniwersytecie w Padwie. e 1610 - Powrócił do Pizy. 1633 - Wyrokiem Inkwizycji został skazany na bezterminowy areszt domowy za popieranie heliocentrycznej teorii Kopernika. 1642 - Zmarł 8 stycznia w Arcetri koło Florencji.

Galileo Galilei [Galileusz] (1564-1642) 20 Wyniki Sformułował (1632, 1638) zasadę względności i błędnie zasadę bezwładności. Zwrócił uwagę na rolę doświadczenia w fizyce. Ciekawostki Poprawną postać zasady bezwładności podał (1644) Kartezjusz. Galileuszowi przypisywane są słowa a jednak się kręci, które miał szeptem wypowiedzieć po ogłoszeniu wyroku skazującego go na areszt domowy i wyparcie się poglądów popierających teorię Kopernika. G. Galilei: Dialogo sopra i due massimi sistemi del mondo Tolemaico e Copernicano. Fiorenza 1632. Istnieje polski przekład: Dialog o dwu najważniejszych układach świata: ptolemeuszowym i kopernikowym. PWN, Warszawa 1962. G. Galilei: Discorsi e dimostrazioni matematiche intorno a due nuove scienze attenenti ala mecaanica e i movimenti locali. Leida 1638. Rozmowy i dowodzenia matematyczne z zakresu dwóch nowych umiejętności dotyczących mechaniki i ruchów miejscowych.

Zasada bezwładności 21 Zasada bezwładności Istnieje układ odniesienia (zwany układem inercjalnym), w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, gdy nie działa na to ciało żadna siła lub siły działające znoszą się. Zasada bezwładności jest hipotezą! Czy istnieją globalne układy inercjalne? Brutalna odpowiedź brzmi nie! W jakościowych sformułowaniach Ogólnej Teorii Względności zakłada się istnienie lokalnych układów inercjalnych.

Zasada względności 22 Zasada względności Galileusza W układach inercjalnych wszystkie zjawiska z zakresu mechaniki przebiegają tak samo. Ogólna zasada względności, będąca jednym z założeń OTW, bywa formułowana jak poniżej: Definicje wielkości fizycznych oraz równania (prawa) fizyki można tak sformułować, aby ich ogólne postacie były takie same we wszystkich układach odniesienia. Z. Osiak: Ogólna Teoria Względności. Self Publishing (2012). ISBN: 978-83-272-3515-2 Z. Osiak: Teoria Względności - Podstawy. Self Publishing (2012). ISBN: 978-83-272-3800-9

Johannes Kepler (1571-1630) 23 niemiecki astronom i matematyk 1571 - Urodził się 27 grudnia w Weil der Stadt. 1589/91 - Studiował na uniwersytecie w Tybindze. 1601 - Został astronomem cesarskim. 1612 - Objął katedrę matematyki w Linzu. 1630 - Zmarł 15 listopada w Regensburgu.

Johannes Kepler (1571-1630) 24 Wyniki Odkrył (1609 i 1619) trzy prawa rządzące ruchem planet. Kepler był asystentem Tychona Brahego. Prawa opisujące ruch planet wokół Słońca Kepler sformułował na podstawie danych obserwacyjnych zebranych przez Tychona Brahego, który był przeciwnikiem teorii Kopernika. Tycho Brahe (1546-1601) duński astronom J. Kepler: Astronomia nova. 1609. owa astronomia [oparta na przyczynach, czyli fizyka nieba, wyłożona przez objaśnienia ruchu gwiazdy Mars podług obserwacji Tychona Brahego]. Rozprawa ta zawiera pierwsze dwa prawa Keplera. J. Kepler: Harmonices mundi libri. 1619. Harmonia świata. W traktacie tym zostało sformułowane trzecie prawo Keplera.

Prawa Keplera 25 Pierwsze prawo Keplera Każda planeta porusza się po orbicie eliptycznej. W jednym z ognisk elipsy znajduje się Słońce (środek masy układu Słońce-planety). Drugie prawo Keplera Promień wodzący planety zakreśla w równych przedziałach czasu równe pola. Trzecie prawo Keplera Kwadrat okresu obiegu orbity jest proporcjonalny do sześcianu jej wielkiej półosi.

René du Perron Descartes [Kartezjusz] (1596-1650) 26 francuski filozof, fizyk, matematyk i fizjolog 1596 - Urodził się 31 marca w La Haye. 1612 - Ukończył jezuickie kolegium w La Fleche. 1616 - Ukończył uniwersytet w Poitiers. 1650 - Zmarł 11 lutego w Sztokholmie.

René du Perron Descartes [Kartezjusz] (1596-1650) 27 Wyniki Przekonywał, że językiem nauki powinna być matematyka. Największym jego osiągnięciem było wprowadzenie (1637) pojęcia układu współrzędnych. Precyzyjne sformułował (1644) zasadę bezwładności. R. Descartes: Discours de la méthode pour bien conduire sa raison et cherches la verite. 1637. Rozprawa o metodzie właściwego kierowania rozumem i poszukiwania prawdy w naukach. Dołączono do niej trzy eseje, w tym: La dioptrique. Pojawiło się tu pojęcie eteru jako nośnika światła. La géométrie. Sformułował podstawy geometrii analitycznej, dzięki wprowadzeniu pojęcia układu współrzędnych. R. Descartes: Principia philosophiae. 1644. Zasady filozofii. Rozprawa ta zawiera precyzyjne sformułowanie zasady bezwładności.

Pierre de Fermat (1601-1665) 28 francuski matematyk i fizyk 1601 - Urodził się 17 sierpnia w Beaumont-de-Lomagne. 1665 - Zmarł 12 stycznia w Castres.

Pierre de Fermat (1601-1665) 29 Wyniki Sformułował (1662) zasadę głoszącą, że światło w ośrodku niejednorodnym porusza się między dwoma danymi punktami po torze, który pokonuje w jak najkrótszym czasie. Torowi temu odpowiada najmniejsza wartość drogi optycznej. Z zasady Fermata, nazywanej też zasadą najkrótszego czasu, wynika między innymi prawo załamania światła.

Sir Isaac ewton (1642-1727) 30 angielski fizyk i matematyk 1643 - Urodził się 4 stycznia w Woolsthorpe. 1661/65 - Studiował w Trinity College w Cambridge. 1667 - Został minor fellow w Trinity College. 1668 - Został major fellow w Trinity College. 1669 - Został Lucasian professor w Trinity College. 1705 - Otrzymał tytuł szlachecki. 1727 - Zmarł 31 marca w Londynie.

Sir Isaac ewton (1642-1727) 31 Wyniki Opracował (1665/1687) rachunek różniczkowy i całkowy. Sformułował (1665) prawo grawitacji. F= GMm 2 r Stworzył (1687) podstawy mechaniki. F= ma Opisał (1704) podstawowe zjawiska z zakresu optyki. Isaac Newton: Philosophiae naturalis principia mathematica. London 1687. [po łacinie] Matematyczne zasady filozofii naturalnej.

Ole (Olaus) Christiansen Römer (1644-1710) 32 duński astronom 1644 - Urodził się 25 września w Aarhus. xxxx/xx - Studiował na uniwersytecie w Kopenhadze. 1672 - Został członkiem Akademii Paryskiej. 1681 - Został profesorem matematyki na uniwersytecie w Kopenhadze. xxxx - Christian V mianował Römera astronomem królewskim i dyrektorem obserwatorium. 1710 - Zmarł 23 września w Kopenhadze.

Ole (Olaus) Christiansen Römer (1644-1710) 33 Wyniki Na podstawie obserwacji księżyców Jowisza doszedł (1675) do wniosku, że prędkość światła ma skończoną wartość. O. C. Römer: Démonstration touchant le mouvement de la lumiere. Journal des savants (7 Dec. 1676) 233-236. [oraz] Philosophical Transactions of the Royal Society 12 (1677) 893-894.

Gotfried Wilhelm Leibniz (1646-1716) 34 niemiecki uczony i dyplomata 1646 - Urodził się 1 lipca w Lipsku. 1666 - Doktoryzował się z prawa na uniwersytecie w Altdorf. 1673 - Został członkiem Royal Society. 1700 - Został pierwszym prezesem Pruskiej Akademii Nauk. 1716 - Zmarł 14 listopada w Hanowerze.

Gotfried Wilhelm Leibniz (1646-1716) 35 Wyniki Opracował (1684) niezależnie od Isaaca Newtona rachunek różniczkowy i całkowy. Ciekawostki Obecnie stosowana notacja w rachunku różniczkowym i całkowym została zaproponowana przez Leibniza. Leibniz prawdopodobnie pochodził z rodziny Lubienieckich polskich emigrantów (arian). Cytaty Gdy nie znajdujemy, czego szukamy, nie powinniśmy rezygnować z szukania tego, co znaleźć możemy. Kto szuka prawdy, nie powinien liczyć głosów. G. Leibniz: ova methodus pro maximis et minimis. 1684. owy sposób znajdowania maksimów i minimów. G. Leibniz: De geometria recondita et analysi indivisibilium atque infinitorum. 1686.

Giovanni Girolamo Saccheri (1667-1733) 36 włoski matematyk 1667 - Urodził się 5 września w San Remo. 1694 - Przyjął święcenia kapłańskie. 1694/97 - Wykładał filozofię w Turynie. 1697/1733 - Wykładał filozofię i teologię w Padwie. 1699 - Otrzymał katedrę matematyki w Padwie. 1733 - Zmarł 25 października w Mediolanie.

Giovanni Girolamo Saccheri (1667-1733) 37 Wyniki Usiłując udowodnić nie wprost postulat o równoległych, otrzymał według niego bardzo dziwne wyniki. Był pierwszym matematykiem, który mógł sformułować (1733) geometrię nieeuklidesową. Komentarz Według mnie najprostsze nieudziwnione sformułowanie postulatu o równoległych brzmi: Na płaszczyźnie istnieją nieprzecinające się proste. Giovanni Girolamo Saccheri: Euclides ab Omni aevo Vindicatus. 1733.

James Bradley (1693-1762) 38 angielski astronom 1693 - Urodził się w marcu w Sherbourne. xxxx/xx - Studiował w Ballid College w Oxfordzie. 1721 - Został profesorem astronomii w Oxfordzie. 1762 - Zmarł w 13 lipca w Chalford.

James Bradley (1693-1762) 39 Wyniki Odkrył (1728) zjawisko aberracji światła gwiazd. Obliczył (1728) wartość prędkości światła z pomiaru kąta aberracji jako 10210 razy większą niż wartość orbitalnej prędkości Ziemi. α v = 0 v Zaobserwował (1728) i opisał (1748) oscylacyjny ruch osi wirującej Ziemi, towarzyszący jej precesji, nazywając go nutacją. J. Bradley: An Account of a ew Discovered Motion of the Fixed Stars. Philosophical Transations of the Royal Society 35, 399-406 (1727-1728) 637-661. J. Bradley: An Apparent Motion Observed in Some of the Fixed Stars. Philosophical Transations of the Royal Society 45, 485-490 (1748) 1-43.

Aberracja światła gwiazd 40 Aberracja polega na tym, że obserwowane przez teleskop położenie gwiazdy jest inne od jej położenia rzeczywistego. Podczas przelotu światła od obiektywu do okularu teleskop zmienia swoje położenie wskutek ruchu Ziemi dookoła Słońca z prędkością v = 30 km/s. Aby zobaczyć gwiazdę, należy teleskop odchylić od kierunku prostej łączącej gwiazdę z okiem obserwatora o kąt (α), zwany kątem aberracji. α v = 0 v tgα= v c Z. Osiak: Encyklopedia Fizyki. Self Publishing (2012). ISBN: 978-83-272-3658-6

Alfabetyczny indeks nazwisk 41

Alfabetyczny indeks nazwisk 42 Bradley, James (1693-1762) 38 Bruno, Giordano (1548-1600) 17 Descartes [Kartezjusz], René du Perron (1596-1650) 26 Fermat, Pierre de (1601-1665) 28 Galilei [Galileusz], Galileo Galilei (1564-1642) 19 Galileusz (1564-1642) 19 Kartezjusz (1596-1650) 26 Kepler, Johannes (1571-1630) 23 Kopernik, Mikołaj (1473-1543) 15 Leibniz, Gotfried Wilhelm (1646-1716) 34 Newton, Sir Isaac (1643-1727) 30 Römer, Ole (Olaus) Christiansen (1644-1710) 32 Saccheri, Giovanni Girolamo (1667-1733) 36

Chronologiczny indeks nazwisk 43

Chronologiczny indeks nazwisk 44 Kopernik, Mikołaj (1473-1543) 15 Bruno, Giordano (1548-1600) 17 Galilei [Galileusz], Galileo Galilei (1564-1642) 19 Galileusz (1564-1642) 19 Kepler, Johannes (1571-1630) 23 Descartes [Kartezjusz], René du Perron (1596-1650) 26 Kartezjusz (1596-1650) 26 Fermat, Pierre de (1601-1665) 28 Newton, Sir Isaac (1643-1727) 30 Römer, Ole (Olaus) Christiansen (1644-1710) 32 Leibniz, Gotfried Wilhelm (1646-1716) 34 Saccheri, Giovanni Girolamo (1667-1733) 36 Bradley, James (1693-1762) 38

Historia Teorii Wzglêdnoœci Zbigniew Osiak Od Kopernika do Newtona 01