ËÞØÙÞÒ ÁÒØÐÒ ËÝ ØÑÝ ÓÖÞ ½
Problem planowania ceiling not painted? ceiling painted ¾
Problem planowania get ladder mount ladder ceiling not painted paint ceiling ceiling painted get paint stir paint
ÛÐÓÛ ØÒÝ ÓÔ ÝÛÒÓ ÛØ ÊÔÖÞÒØÙ ØÒ ÓÔ ÒÝ Ø Ó ÓÒÙÒ ÐØÖÛ ÖÐÝÒÝ Ý ÞÛ Þ Ù ØÐÓÒ Þ ÛÝÖ ÙÒÝÒÝ ÐØÖÝ ÓÔ ÛÝ ØÔÙ ØÝÐÓ ÐØÖÝ ÔÓÞÝØÝÛÒ Û Jezyk STRIPS: stany ÔÓÞÓ ØÝ Þ ÒÔÖÛÞÛ Ó At(Spare, Trunk) At(Flat, Axle) ÆÔº At(x, y) At(Father(Fred), Sydney) ÆÓÔÙ ÞÞÐÒ
ÞÝÒÒÓ ÞÑÒ ØÒ ÓÔ ÝÛÒÓ ÛØ ÊÔÖÞÒØÙ Ñ ÛÖÙÒ Û ØÔÒ ØÖ ÑÙ Þ Ý ÔÒÓÒ Jezyk STRIPS: akcje ÔÖÞ Þ ØÓ ÓÛÒÑ ÓÖÞ ØÝ ØÖ ÞÓÞ ÔÓ ÛÝÓÒÒÙ Preconditions Action Effects
ÞÝÒÒÓ ÞÑÒ ØÒ ÓÔ ÝÛÒÓ ÛØ ÊÔÖÞÒØÙ Ñ ÛÖÙÒ Û ØÔÒ ØÖ ÑÙ Þ Ý ÔÒÓÒ Û ØÔÒ ÓÒÙÒ ÔÓÞÝØÝÛÒÝ ÐØÖÛ ÖÐÝÒÝ ÏÖÙÒ ÞÛÖ ÞÑÒÒ Ø Ð Þ ÛÝÖ ÙÒÝÒÝ ÑÓ ÓÒÙÒ ÒØÝÛÒÝ ÔÓÞÝØÝÛÒÝ ÐØÖÛ ÖÐÝÒÝ ÑÓ ØÝ ÞÑÒÒ Þ ÛÖº Û ØÔÒÝ Ø Ð Þ ÛÝÖº ÙÒÝÒÝ ÞÛÖ Jezyk STRIPS: akcje ÔÖÞ Þ ØÓ ÓÛÒÑ ÓÖÞ ØÝ ØÖ ÞÓÞ ÔÓ ÛÝÓÒÒÙ Preconditions Action Effects At(x,Trunk) Remove(x,Trunk) At(x,Trunk) At(x,Ground)
ÔÓÞØÓÛÝ ËØÒ ØÒ ÖÔÖÞÒØÙÝ ÛÖÙÒ ÔÓÞØÓÛ ÞÒÓ ÔÖÓÐÑÙ ÏÝÖÒÝ ØÛ ØÞÒº ÔÓÞÝØÝÛÒÝ ÐØÖÛ ÖÐÝÒÝ Ö Ù ØÐÓÒÝÑ ÛÖØÓÑ ØÞÒº Þ ÞÑÒÒÝ ÛÝÖ ÙÒÝÒݵ Þ Jezyk STRIPS: postawienie problemu Ð At(Spare,Trunk) Start At(Spare,Axle) Finish At(Flat,Axle) ÍÛ Ð Ò Ø ØÒÑ ÛÐ ØÒÛ ÑÓ ÔÒ ÛÖÙÒ ÓÐÓÛ
ÈÐÒ ÙÔÓÖÞÓÛÒÝ ÞÖ ÔÖÞ ÞØÝ ØÒ ÔÓÞØÓÛÝ ÞÓÛÓ Û ÔÐÒ ÙÓÒÖØÒÓÒ ØÞÒº ÞÑÒÒ ÛÝ ØÔÙ Ó ÔÖÑØÖÝ Ñ ÔÖÞÝÔ Ò ÓÒÖØÒ ÛÖØÓ ÔÐÒÙ ÔÓÐ Ò ØÝÑ Ð ØÒ ÔÓÔÖÞÞÝ Ø ÈÓÔÖÛÒÓ ÔÒ ÙÓÒÖØÒÓÒ ÛÖÙÒ Û ØÔÒ Ø Þ ØÓ ÓÛÒÙ ÒÓÛÝ ØÒ ÔÓÛ Ø ÔÓÔÖÞÞ ÓÒ ÔÓÞÝØÝÛÒÝ ÓÖÞ ÈÓ ÒØÝÛÒÝ ØÛ Þ ØÒÙ ÔÓÔÖÞÞÓ Ø Ù ÙÒ Plan jako rozwiazanie problemu Û ØÒ ÔÒÝ ÛÖÙÒ ÓÐÓÛ At(Spare,Trunk) Remove(Spare,Trunk) Start At(Spare,Trunk) At(Flat,Axle) At(Spare,Ground) At(Flat,Axle) PutOn(Spare,Axle) At(Spare,Axle) Finish At(Flat,Axle) Remove(Flat,Axle)
Plan jako rozwiazanie problemu Partial-Order Plan: Total-Order Plans: Ï ÔÖØÝ ÔÓ ÞÙÙ ÐÒÓÛÓ ÙÔÓÖÞÓÛÒÝ ÔÐÒÛ Start Start Start Start Start Start Start Left Sock Right Sock Right Sock Left Sock Right Sock Left Sock Left Sock Right Sock Left Sock Right Sock Right Sock Right Shoe Left Sock Left Shoe LeftSockOn Left Shoe RightSockOn Right Shoe Right Shoe Left Shoe Right Shoe Left Shoe Left Sock Right Sock LeftShoeOn, RightShoeOn Left Shoe Right Shoe Left Shoe Right Shoe Left Shoe Right Shoe Finish Finish Finish Finish Finish Finish Finish
ÑÓ ÐÛÝ ÔÐÒÛ Ø ÞÞÛÝÞ ÖÞÓ Ù ÈÖÞ ØÖÞ ØÓ Ù ÙÖÝ ØÝÞÒ ÑØÓÝ ÖÙ ÔÖÞ ØÖÞÒ ØÒÛ ÐØÓ ÄÒÖÝÞ ÔÐÒÝ Û ØÖÝ ÔÖÓÛÞ ÔÓÑ ÇÖÓÒ ÔÐÒÝ Û ØÖÝ ÛÝ ØÔÙ ÐÑÒÙ ÔÓÑ ÐÒÖÝÞ ÓÖÓÒ Û ÔÖØÝ ÙØÞÒ ÍÛ ÑÓ ÔÓÛÓÓÛ ÛÝÐÙÞÒ ÔÓÔÖÛÒÝ ÔÐÒÛ Ð ÞÞÐÒÓ ÑÓ ÛÝÐÙÞÝ Û ÞÝ Ø ÔÓÔÖÛÒ ÔÐÒÝ Û ÙÒÑÓ ÐÛ ÞÒÐÞÒ ÖÓÞÛÞÒ Redukcja przestrzeni planow Ó Ö ÒÝ ÔÓÐÛ ÛÝ ØÔÙ ÒÔÖÞÑÒÒ Ò Þ ÛÞÒ Ó ÒØÝ ÔÓÐÛ ½¼
ÈÖÞ ÞÙÛÒ ÛÔÖÞ ÓÖÛÖÒÒ ÈÓÔÈÐÒ ÖÔÈÐÒ Metody poszukiwania poprawnych planow ÈÖÞ ÞÙÛÒ Û ØÞ ËÔÖÓÛÞÒ Ó ÔÖÓÐÑÙ ÔÒÐÒÓ ËØÈÐÒ ½½
ÔÐÒÙ Þ ÐÒÓÛÓ ÙÔÓÖÞÓÛÒÝÑ Ñ ÞÞÝÒ Ó ØÒÙ ÔÓ¹ ÈÓ ÞÙÙ Ó Û ÔÖÞº ÐÓÖÝØÑ Ó Ð Ò ÑÓ Þ¹ ÞØÓÛÓ Ù Ò Û ÝÑ ØÒ ÐÙ Ý ØÒ ÛÝ ØÔ Ù ØÓ ÓÛ ÛÞÒ ForwardChaining ½¾
ForwardChaining: algorytm A1 Start A1 A1 A1 ½
ForwardChaining: algorytm A1 Start action matching A1 A1 A1 ½
ForwardChaining: algorytm enumerating possible substitutions to preconditions A1 A1 A1 Start action matching A1 ½
ForwardChaining: algorytm enumerating possible substitutions to preconditions A1 A1 A1 Start removing repeated states A1 action matching ½
ForwardChaining: algorytm enumerating possible substitutions to preconditions A1 A1 A1 Start removing repeated states A1 action matching goal checking ½
ÈÖÞÐÒ ÑÓ ÐÛÝ ÔÓ ØÛ Ó ÛÖÙÒÛ Û ØÔÒÝ ÑÓ Ò ÓÔ ÓÛÝÛ ØÝ Þ ÛÖÙÒÛ Û ØÔÒÝ ÆÔÖÛ Í ÙÛÒ ÔÓÛØÖÞÝ ØÒÛ ÛÝÐÞÓÒ Û ÔÓÔÖÞÒ ÖÓ ÐÓÖÝØÑÙ ÑÓ Ý ËØÒÝ ForwardChaining: efektywna implementacja Þ ØÒÙ ÔÓØÑ ÔÖÞÐ Ô Ù ÔÓ ØÛÒ ÔÑØÒ Û ØÖÙØÙÖÞ ÒÝ ÔÓÞÛÐ Ò ÞÝ ÛÝ ÞÙÛÒ ½
ÔÖÞÝÞÝÒÓÛ ÈÓÞÒ Û ÔÐÒ ÔÖÓÛÞ Ó ØÙ Ò ÈÓÞÒ ÔÓÖÞÙ ÏÞÝ ÑÞÝ Ñ Û ÔÐÒ Û ÞÙ Ò ÏÞÝ ÓØÛÖØÝ ÛÖÙÒ Û ØÔÒÝ Ò Þ Ò ÔÓ Ý ÏÖÙÒ ÔÖÞÝÞÝÒÓÛÓ ÔÖÓÛÞÓ Ó ØÙ ÒÒ ÔÓÞÒ Û ØÔÒÝ Ø Ó ÒØÝ ÛØÛ Ð Ø ØÑ ÛÞÒ Þ ÏÖÙÒ Ò ÔÖÞ ÞÞ Ò ÐÑÒÙ ØÓ ØÙ Polaczenia przyczynowe i wiezy porzadkujace Ó ÛÖÙÒÙ Û ØÔÒÓ ÒÒ ÛÝ ØÔÙ ÔÖÞ ÒÒ ÈÐÒ Ø ÓÑÔÐØÒÝ ÛØÛ Ý Ý ÛÖÙÒ Û ØÔÒÝ Ø Ó ÒØÝ ½
Polaczenia przyczynowe i wiezy porzadkujace Start At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.) Have(Milk) At(Home) Have(Ban.) Have(Drill) Finish ¾¼
Polaczenia przyczynowe i wiezy porzadkujace Start At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.) At(HWS) Sells(HWS,Drill) Buy(Drill) At(x) Go(SM) At(SM) Sells(SM,Milk) Buy(Milk) Have(Milk) At(Home) Have(Ban.) Have(Drill) Finish ¾½
Polaczenia przyczynowe i wiezy porzadkujace Start At(Home) Go(HWS) At(HWS) Sells(HWS,Drill) Buy(Drill) At(HWS) Go(SM) At(SM) Sells(SM,Milk) At(SM) Sells(SM,Ban.) Buy(Milk) Buy(Ban.) At(SM) Go(Home) Have(Milk) At(Home) Have(Ban.) Have(Drill) Finish ¾¾
ÐÓÖÙ Ø ÔÓØÒÐÒ ÔÖÞ ÞÞ ØÖ ÛÖÙÒ ÙÞÝ ÒÝ Þ ÔÓÛÞÒ ÔÖÞÝÞÝÒÓÛÓ ÐÑÒÙ Kloberowanie oraz promocja/democja ÒÔº Go(Home) ÐÓÖÙ At(Supermarket) DEMOTION Go(Supermarket) ÓÒ ÛÞÙ ÔÓÖÞÙÓ ÑÓ Go(Home) Go(Supermarket) Go(Home) At(Home) At(Supermarket) Buy(Milk) ÓÒ ÛÞÙ ÔÓÖÞÙÓ ÈÖÓÑÓ Buy(M ilk) Go(Home) PROMOTION At(Home) Finish ¾
ËØÓÔÒÓÛÓ ÓÑÔÐØÙ ÔÐÒ ÞÞÝÒ Ó ÔÙ ØÓ ÔÐÒÙ ÔÓÔÖÞÞ ÈÓÑÝ ÔÓÞ ÔÖÞÝÞÝÒÓÛÝ ÛÞÛ ÔÓÖÞÙÝ ÓÛÒ PopPlan: algorytm Ó Ý ÓØÛÖØÝ ÛÖÙÒ Ø ÒÓ ÐÒÝ ÐÙ ÓÒØ Ø ÒÖÓÞ ØÖÞÝÐÒÝ ÙÒØÓÒ ÈÇÈ ÒØÐ ÓÐ ÓÔÖØÓÖ µ ÖØÙÖÒ ÔÐÒ ÔÐÒ Å¹ÅÒÑйÈÐÒ ÒØÐ Óе ÐÓÓÔ Ó ËÓÐÙØÓÒ ÔÐÒµ ØÒ ÖØÙÖÒ ÔÐÒ S need, c ËÐØ¹ËÙÓÐ ÔÐÒµ ÓÓ ¹ÇÔÖØÓÖ ÔÐÒ ÓÔÖØÓÖ S need µ Ê ÓÐÚ¹ÌÖØ ÔÐÒµ Ò ÙÒØÓÒ ËÐØ¹ËÙÓÐ ÔÐÒµ ÖØÙÖÒ S need, c Ô ÔÐÒ ØÔ S need ÖÓÑ ËØÔ ÔÐÒµ ÔÖÓÒØÓÒ c ØØ ÒÓØ Ò Ú ÛØ S ÖØÙÖÒ need, c ¾
PopPlan: algorytm ÔÖÓÙÖ ÓÓ ¹ÇÔÖØÓÖ ÔÐÒ ÓÔÖØÓÖ S need µ ÓÓ ØÔ S add ÖÓÑ ÓÔÖØÓÖ ÓÖ ËØÔ ÔÐÒµ ØØ c Ò Ø ØÖ ÒÓ Ù ØÔ ØÒ Ð Ø Ù Ð ÐÒ S add c S need ØÓ ÄÒ ÔÐÒµ Ø ÓÖÖÒ ÓÒ ØÖÒØ S add S need ØÓ ÇÖÖÒ ÔÐÒµ S add ÒÛÐÝ ØÔ ÖÓÑ ÓÔÖØÓÖ ØÒ S add ØÓ ËØÔ ÔÐÒµ Start S add Finish ØÓ ÇÖÖÒ ÔÐÒµ ÔÖÓÙÖ Ê ÓÐÚ¹ÌÖØ ÔÐÒµ ÓÖ S threat ØØ ØÖØÒ ÐÒ S i c S j Ò ÄÒ ÔÐÒµ Ó ÓÓ ØÖ ÑÓØÓÒ S threat S i ØÓ ÇÖÖÒ ÔÐÒµ ÈÖÓÑÓØÓÒ S j S threat ØÓ ÇÖÖÒ ÔÐÒµ ÒÓØ ÓÒ ØÒØ ÔÐÒµ ØÒ Ð Ò ¾
PopPlan: przyklad "Sussman anomaly" problem A B C A B C Start State Goal State Clear(x) On(x,z) Clear(y) PutOn(x,y) ~On(x,z) ~Clear(y) Clear(z) On(x,y) Clear(x) On(x,z) PutOnTable(x) ~On(x,z) Clear(z) On(x,Table) + several inequality constraints ¾
PopPlan: przyklad START On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C) B C A On(A,B) On(B,C) FINISH A B C ¾
PopPlan: przyklad START On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C) B C A Cl(B) On(B,z) Cl(C) PutOn(B,C) On(A,B) FINISH On(B,C) A B C ¾
PopPlan: przyklad START On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C) B C A PutOn(A,B) clobbers Cl(B) => order after PutOn(B,C) Cl(A) On(A,z) Cl(B) PutOn(A,B) Cl(B) On(B,z) Cl(C) PutOn(B,C) On(A,B) On(B,C) FINISH A B C ¾
PopPlan: przyklad START On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C) B C A On(C,z) Cl(C) PutOnTable(C) Cl(A) On(A,z) Cl(B) PutOn(A,B) Cl(B) On(B,z) Cl(C) PutOn(B,C) PutOn(A,B) clobbers Cl(B) => order after PutOn(B,C) PutOn(B,C) clobbers Cl(C) => order after PutOnTable(C) On(A,B) On(B,C) FINISH A B C ¼
ÛÝÖ ÑÓ ÐÙ ÔÖÓÑÓ Ð ÐÓÖÙ S ÛÝÖ need Ý Ù ØÐÓÒÝ Ý ÛÖÙÒ Û ØÔÒÝ ÑÓ ØÝÛÒ ÔÖÞÝ Ô ÞÝ ÛÝÖ ÛÛ ÙÖÝ ØÝ ÖÓÞ ØÖÞÝÒ ÅÓ Ò Ò ÔÓ ØÛ ÓÔ Ù ÔÖÓÐÑÙ ÓÒØÛ PopPlan: wlasnosci ÆØÖÑÒÞÑ ÛÝÖ S add ÔÓÛÞÒ ÔÖÞÝÞÝÒÓÛÓ Þ S Ó need ÑÙ ÞÓ Ø Ó ÒØÝ Û ÓÓÛÝÑ ÔÐÒµ ÈÓÔÈÐÒ Ø ÔÒÝ Ý ØÑØÝÞÒÝ ÛÝÐÙÞ ÔÓÛØÖÞÒµ ËÞÞÐÒ ØÝÛÒÝ Ð ÔÖÓÐÑÛ Þ ÛÐÓÑ ÐÙõÒÓ ÔÓÛÞÒÝÑ ÔÓÐÑ ½
ÔÐÒÓÛÒ Þ ÔÓÞÓÑÛ Ö ÔÓÞÓÑ S 0 ØÒÓÛ ÔÓÞØÓÛÑÙ Þ ÓÔ Ù ÞÒ ÓÔÓÛ ÔÓÞÓÑ ÞÛÖ Ã Ý ÞÖ ÐØÖÛ ÖÔÖÞÒØÙ Ø Ó ÑÓ Ý ÔÒÓÒ Û ÒÝÑ ÖÓÙ ÞÖ ÖÔÖÞÒØÙ ØÖ ÑÓ Ý Ù ÝØ Û ÒÝÑ ÖÓÙ Þ ÓÔ Ù ÔÖÓÐÑÙ Ð Ó ÐØÖÙ ÓÔÙ ÞÞÐÒ Ø ÓÔÖÞ ÖÓÞÛÒ Ó ÑÓÑÒØÙ Ý Û ÓÐÒ ÔÓÞÓÑÝ ÒØÝÞÒ ÈÓÞÓÑÝ Ý Ò ØÔÒÝ ÔÓÞÓÑ ÝÝ ÒØÝÞÒÝ Þ ÔÓÔÖÞÒѵ ØÞÒº Graf planowania ÓÐÒ ÔÓÞÓÑÝ ÓÔÓÛ ÓÐÒÝÑ ÖÓÓÑ Þ Ù ÞÓÛÙ ØÒ ØÓ ÐØÖÙ ¾
Graf planowania: przyklad ÔÓÞØÓÛÝ Have(Cake) ËØÒ Have(Cake) Eaten(Cake) Ð Eat(Cake) Û ØÔÒ Have(Cake) ÛÖÙÒ Have(Cake) Eaten(Cake) ØÝ Bake(Cake) Û ØÔÒ Have(Cake) ÛÖÙÒ Have(Cake) ØÝ S 0 A 0 S 1 A 1 S 2 Bake(Cake) Have(Cake) Have(Cake) Have(Cake) Have(Cake) Have(Cake) Eat(Cake) Eat(Cake) Eaten(Cake) Eaten(Cake) Eaten(Cake) Eaten(Cake) Eaten(Cake)
ÐÓ ÔÖÞÞÒ ØÝ ÐÓ ÒØÖÖÒ ØÞÒº Ø Ò Þ Ò ÛÖÙÒÙ Û ØÔÒÓ ÖÙ Ø ÐÓ Ñ ÔÖÞÞÒ ÛÖÙÒ Û ØÔÒ ÑÙØÜ ÞÓÞ ÔÓÑÞÝ ÛÓÑ ÐØÖÑ Ð Ò Ø Ò ÊÐ ÐÙ Ð ÔÖ Ø Û ÐØÖÝ Ø Û ÖÐ ÑÙØÜ ÖÙÓ Relacja wzajemnej wylacznosci (mutex) ÊÐ ÑÙØÜ ÞÓÞ ÔÓÑÞÝ ÛÓÑ Ñ Ð ÛÝ ØÔÙ
Eat(Cake) ÞÓÛÙ Have(Cake) ÔÖÞÞÒ Ó Ø Eat(Cake) Ø ÞÔÖÞÞÒÑ ÛÖÙÒÙ Û ØÔÒÓ ÞÓÛÙ Relacja mutex: przyklad Eat(Cake) ÞÓÛÙ Have(Cake) ÔÖÞÞÒ Ó Ñ Ø Have(Cake) ÔÖÞÞÒÝ Have(Cake) Eat(Cake) Bake(Cake) ÔÖÞÞÒ Ó Ñ ÔÖÞÞÒÝ ÛÖÙÒ Have(Cake) Û ØÔÒÝ Have(Cake) Eaten(Cake) Û ÖÐ ÑÙØÜ Ó ÛÝÑ Ù Ý¹ ÄØÖÝ ÛÝÐÙÞÝ Eat(Cake) ÞÓÛÒ Have(Cake) S 0 A 0 S 1 A 1 S 2 Eat(Cake) Bake(Cake) Have(Cake) Have(Cake) Have(Cake) Have(Cake) Eat(Cake) Have(Cake) Eaten(Cake) Eaten(Cake) Eaten(Cake) Eaten(Cake) Eaten(Cake)
ÁÒØÐ¹ÈÐÒÒÒ¹ÖÔ ÒÖÙ ÐØÖÝ Ò ÔÓÞÓÑ S ÙÒ 0 ÖÙ ÞÝÐ ÐØÖÝ Þ ØÒÙ ÔÓÞØÓÛÓ ÔÐÒÓÛÒ ÝÑ ÖÓÙ ÔØÐ ÙÒ ÜÔÒ¹ÖÔ Ó Þ Ó Ï ÐØÖÝ Þ Ò ØÔÒÓ ÔÓÞÓÑÙ ÖÙ ÔÐÒÓÛÒ ÔÓÞÓÑÙ GraphPlan: algorytm ÙÒØÓÒ ÖÔÔÐÒ ÔÖÓÐѵ ÖØÙÖÒ ÓÐÙØÓÒ ÓÖ ÐÙÖ ÖÔ ÁÒØÐ¹ÈÐÒÒÒ¹ÖÔ ÔÖÓÐѵ ÓÐ ÓÐ ÔÖÓÐÑ ÐÓÓÔ Ó ÓÐ ÐÐ ÒÓÒ¹ÑÙØÜ Ò Ð Ø ÐÚÐ Ó ÖÔ ØÒ Ó ÓÐÙØÓÒ ÜØÖØ¹ËÓÐÙØÓÒ ÖÔ ÓÐ ÄÒØ ÖÔµµ ÓÐÙØÓÒ ÐÙÖ ØÒ ÖØÙÖÒ ÓÐÙØÓÒ Ð ÆÓ¹ËÓÐÙØÓÒ¹ÈÓ Ð ÖÔµ ØÒ ÖØÙÖÒ ÐÙÖ ÖÔ ÜÔÒ¹ÖÔ ÖÔ ÔÖÓÐѵ
ÜØÖØ¹ËÓÐÙØÓÒ ÔÖÙ ÞÒÐõ ÔÐÒ Ò ÔÓ ØÛ ÓØÝ¹ ÙÒ ÛÝÒÖÓÛÒÓ ÖÙ ÔÐÒÓÛÒº Ó Ó Ó ØØÒÓ ÔÓÞÓÑÙ ÖÙ Þ GraphPlan: szukanie rozwiazania ÔÖÞ ÞØ Ý ÞÖ Ò ÔÒÓÒÝ ÐÛ Û Ò ØÔÙÝ ÔÓ ÔÓÞØÓÛÝ ÞÖ ÐÛ ØÓ Û ÞÝ Ø Ð Þ ÞÒ Ó ØØÒÑ ÝÑ ÔÓÞÓÑ S Ò n Ð ÐÛ Ò ÔÓÞÓÑ S i ÐÓÖÝØÑ ÛÝÖ ÔÓÞÖ Þ ÔÓÞÓÑÙ A i 1 Ý ØÝ ØÝ ÔÓÖÝÛÝ ÞÖ ÐÛ Ò ÔÓÞÓÑ S Ø i Ò Û Ò ÛÝÐÙÞÝ ÛÞÑÒ ÙÒ ÞÛÖ ÔÓÖ Ð ØÓ ÞÓÖÙ Ò ÛÝÖ ÛÖÙÒ Û ØÔÒ ÛÝÖÒÝ Ò ÔÓÞÓÑ A i 1 Ø ÝÑ ÐÑ Ò ÔÓÞÓÑ S i 1 ÞÙÒ ÖÓÞÛÞÒ ÓÞÝ Ù Ñ Ð Ò ÔÓÞÓÑ S 0 Ð ÔÓÞÓÖÑ ØÛ Û ØÒ ÔÓÞØÓÛÝÑ
ÔÓÛÝ ÞÝÑ ÔÖÞÝÞ ÞÓ ØÝ ÞÞÒÞÓÒ ØÝÐÓ ÒØÖ ÖÐ ÑÙØÜ Ï Ð ÔÖÞÝÙ ØÓØÒ GraphPlan: przyklad Ð At(Spare, Axle) S 0 A 0 S 1 A 1 S 2 At(Spare,Trunk) At(Spare,Trunk) At(Spare,Trunk) Remove(Spare,Trunk) At(Spare,Trunk) Remove(Spare,Trunk) At(Spare,Trunk) At(Flat,Axle) Remove(Flat,Axle) LeaveOvernight At(Flat,Axle) At(Flat,Axle) Remove(Flat,Axle) At(Flat,Axle) At(Flat,Axle) At(Spare,Axle) At(Spare,Axle) LeaveOvernight At(Spare,Axle) At(Flat,Ground) At(Flat,Ground) PutOn(Spare,Axle) At(Spare,Axle) At(Flat,Ground) At(Spare,Ground) At(Flat,Ground) At(Spare,Ground) At(Flat,Ground) At(Spare,Ground) At(Spare,Ground) At(Spare,Ground)
ÔÓÞÓÑÓÛÝ ÐØÖÙ ÒÒ ÞÝ ÔÓÞÓÑ Û Ö ÔÐÒÓÛÒ Ò ØÖÝÑ ÃÓ ÞØ ÐØÖ ÛÝ ØÔÙ ÔÓ ÖÞ ÔÖÛ ÞÝ ÒÝ ÜØÖØ¹ËÓÐÙØÓÒ Ù ÝÛ Ò ØÔÙ ÙÖÝ ØÝ ÛÝÓÖÙ ÐÛ ÙÒ Ò ÝÑ ÔÓÞÓÑ Ð ÛÝÖÒ Û ÓÐÒÓ Ó ÒÛÝ ÞÓ Ó ÒÒ ÞÓ Ó ÞØÙ ÔÓÞÓÑÓÛÓ Ó Ó Ò ÒÓ ÐÙ ÛÝÖÒ Ø Þ ÒÑÒ Þ ÙÑ ÐÙ Ó ÞØÛ ÔÓÞÓÑÓÛÝ ÛÖÙÒÛ Û ØÔÒÝ Ñ ÑÙѵ GraphPlan: wybor celow i akcji
ÌÛÖÞÒ Ó ÞÒ ÔÐÒÓÛÒ ÑÓ Ò ØÝÛÒ ÛÝÞÒÞÝ ÓÞÓÒÝ Ð ÖÙ ÔÐÒÓÛÒ Ó ØÖÓ ÙÒ ÜØÖØ¹ËÓÐÙØÓÒ ÔÓÞÓÑ ÖÓÞÛÞÒ Ð ÓÒÓ ØÒ ÞÒÞ GraphPlan: wlasnosci ¼
SATPlan Planning Problem coding Boolean Formula ÔÖÞÞ ÔÖÓÛÞÒ Ó ÔÖÓÐÑÙ ÔÒÐÒÓ Û ÐÓ ÞÒÓÛ Heuristic Algorithm For SAT Plan decoding Model ½
ÌÖÒ ÐØ¹ÌÓ¹ËÌ ÓÒÛÖØÙ ÔÖÓÐÑ ÔÐÒÓÛÒ Ó ÓÖÑÙÝ ÙÒ ÔÓ Ø ÒÓÖÑÐÒ ÓÒÙÒÝÒ Û SATPlan: algorytm ÙÒØÓÒ ËØÔÐÒ ÔÖÓÐÑ Ì max µ ÖØÙÖÒ ÓÐÙØÓÒ ÓÖ ÐÙÖ ÒÔÙØ ÔÖÓÐÑ ÔÐÒÒÒ ÔÖÓÐÑ Ì max Ò ÙÔÔÖ ÐÑØ ÓÖ ÔÐÒ ÐÒØ ÓÖ Ì= 0 ØÓ Ì max Ó Ò ÑÔÔÒ ÌÖÒ ÐØ¹ÌÓ¹ËÌ ÔÖÓÐÑ Ìµ ÒÑÒØ Ë̹ËÓÐÚÖ Òµ ÒÑÒØ ÒÓØ ÒÙÐÐ ØÒ ÖØÙÖÒ ÜØÖØ¹ËÓÐÙØÓÒ ÒÑÒØ ÑÔÔÒµ ÖØÙÖÒ ÐÙÖ Ë̹ËÓÐÚÖ ÈÄÄ ÐÙ ÏÐËÌ ¾