DOBÓR PARAMETRÓW WZBUDNIKA PIEZOELEKTRYCZNEGO ZE WZGLĘDU NA ŻĄDANE WŁASNOŚCI DYNAMICZNE PROJEKTOWANEGO UKŁADU MECHATRONICZNEGO

Podobne dokumenty
WERYFIKACJA DOKŁADNOŚCI METODY PRZYBLIŻONEJ GALERKINA W MODELOWANIU I BADANIU DRGAJĄCYCH UKŁADÓW MECHATRONICZNYCH

MODELOWANIE WPŁYWU TŁUMIENIA WEWNĘTRZNEGO NA CHARAKTERYSTYKI DYNAMICZNE CERAMICZNYCH PRZETWORNIKÓW PZT

2. MODELOWNY UKŁAD MECHATRONICZNY ORAZ PRZYJĘTE ZAŁOśENIA

MODELOWANIE DYSKRETNYCH UKŁADÓW MECHATRONICZNYCH ZE WZGLĘDU NA FUNKCJĘ TŁUMIENIA

DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA

MODELOWANIE BELKI Z CIECZĄ MAGNETOREOLOGICZNĄ METODĄ ELEMENTÓW SKOŃCZONYCH

AKTYWNA REDUKCJA DRGAŃ WIRUJĄCEJ ŁOPATY ZA POMOCĄ ELEMENTÓW PIEZOELEKTRYCZNYCH

Wpływ degradacji połączenia generatora piezoelektrycznego z belką na pozyskiwaną energię elektryczną

ANALIZA STANU PRZEJŚCIOWEGO DRGAŃ BELKI Z ELEMENTAMI PIEZOELEKTRYCZNYMI METODĄ ELEMENTÓW SKOŃCZONYCH

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

DYNAMIC STIFFNESS COMPENSATION IN VIBRATION CONTROL SYSTEMS WITH MR DAMPERS

PRACA DYPLOMOWA Magisterska

NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU

Wpływ tłumienia wewnętrznego elementów kompozytowych na charakterystyki amplitudowo-częstotliwościowe modelu zawieszenia samochodu

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

EXPERIMENTAL RESULTS OF FORCED VIBRATIONS OF THE BEAM WITH MAGNETORHEOLOGICAL FLUID

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Projektowanie elementów z tworzyw sztucznych

Spis treści. Wstęp Część I STATYKA

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA

PRZETWORNIKI POMIAROWE

MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH ZEWNĘTRZNYCH WYKONANYCH Z UŻYCIEM LEKKICH KONSTRUKCJI SZKIELETOWYCH

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

PODATNOŚĆ DYNAMICZNA OBUSTRONNIE PODPARTEJ BELKI Z TŁUMIENIEM W RUCHU UNOSZENIA

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

ZASTOSOWANIE METOD OPTYMALIZACJI W DOBORZE CECH GEOMETRYCZNYCH KARBU ODCIĄŻAJĄCEGO

INSTRUKCJA DO ĆWICZENIA NR 5

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

MODELOWANIE MES KONSTRUKCJI INTELIGENTNYCH FINIETE ELEMENT MODELLING OF SMART STRUCTURES

Rys. II.9.1 Schemat stanowiska laboratoryjnego

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia

WSTĘPNE MODELOWANIE ODDZIAŁYWANIA FALI CIŚNIENIA NA PÓŁSFERYCZNY ELEMENT KOMPOZYTOWY O ZMIENNEJ GRUBOŚCI

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

MATEMATYCZNY MODEL PĘTLI HISTEREZY MAGNETYCZNEJ

3 Podstawy teorii drgań układów o skupionych masach

MODELOWANIE WARSTWY POWIERZCHNIOWEJ O ZMIENNEJ TWARDOŚCI

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D-3

prowadnice Prowadnice Wymagania i zasady obliczeń

WYKORZYSTANIE MECHANIZMU PRZETWARZANIA ENERGII W MATERIAŁACH PIEZOELEKTRYCZNYCH DO STEROWANIA DRGANIAMI

PRZEWODNIK PO PRZEDMIOCIE

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Drgania układu o wielu stopniach swobody

Politechnika Białostocka

WYDZIAŁ ZARZĄDZANIA PODSTAWY TECHNIKI I TECHNOLOGII

WPŁYW TŁUMIENIA KONSTRUKCYJNEGO MOCOWAŃ NA DRGANIA UKŁADU ZMIANY WYSIĘGU ŻURAWIA

ANALIZA BELKI DREWNIANEJ W POŻARZE

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

ELEKTROMAGNETYCZNE PRZETWORNIKI ENERGII DRGAŃ AMORTYZATORA MAGNETOREOLOGICZNEGO

Pomiary tensometryczne. Pomiary tensometryczne. Pomiary tensometryczne. Rodzaje tensometrów. Przygotowali: Paweł Ochocki Andrzej Augustyn

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

KONSTRUKCJE DREWNIANE I MUROWE

DRGANIA SIŁOWNIKA HYDRAULICZNEGO Z UWZGLĘDNIENIEM TŁUMIENIA WEWNĘTRZNEGO

ANALIZA PARAMETRÓW DRGAŃ WIELOKOMOROWYCH BELEK WSPORNIKOWYCH Z CIECZĄ MAGNETOREOLOGICZNĄ

Dobór materiałów konstrukcyjnych cz. 4

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki)

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Rok akademicki: 2013/2014 Kod: RAR AM-s Punkty ECTS: 3. Kierunek: Automatyka i Robotyka Specjalność: Automatyka i metrologia

WYBÓR PUNKTÓW POMIAROWYCH

Laboratorium Mechaniki Technicznej

WYKORZYSTANIE METOD OPTYMALIZACJI DO ESTYMACJI ZASTĘPCZYCH WŁASNOŚCI MATERIAŁOWYCH UZWOJENIA MASZYNY ELEKTRYCZNEJ

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

DYNAMIKA KONSTRUKCJI BUDOWLANYCH

Ćwiczenie nr X ANALIZA DRGAŃ SAMOWZBUDNYCH TYPU TARCIOWEGO

Wyznaczanie charakterystyk cz stotliwoêciowych drgajàcych uk adów mechatronicznych *)

ALGORYTM OBLICZENIOWY DRGAŃ SWOBODNYCH Ł OPATKI WIRNIKOWEJ

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)

PRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ

Badania symulacyjne piezoelektrycznego dwubelkowego układu pozyskiwania energii elektrycznej

STATYCZNA PRÓBA ROZCIĄGANIA

ZASTOSOWANIE TECHNOLOGII WIRTUALNEJ RZECZYWISTOŚCI W PROJEKTOWANIU MASZYN

DRGANIA ELEMENTÓW KONSTRUKCJI

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)

INSTRUKCJA do ćwiczenia Wyważanie wirnika maszyny w łożyskach własnych

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

P. Litewka Efektywny element skończony o dużej krzywiźnie

5. Indeksy materiałowe

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji

Wyznaczanie modułu Younga metodą strzałki ugięcia

Model oscylatorów tłumionych

Liczba godzin Liczba tygodni w tygodniu w semestrze

Politechnika Łódzka Wydział Mechaniczny Instytut obrabiarek i technologii budowy maszyn. Praca Magisterska

Spis treści. Wstęp 13. Część I. UKŁADY REDUKCJI DRGAŃ Wykaz oznaczeń 18. Literatura Wprowadzenie do części I 22

ANALIZA MES WYTRZYMAŁOŚCI ELEMENTÓW POMPY ŁOPATKOWEJ PODWÓJNEGO DZIAŁANIA

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

POLITECHNIKA ŚLĄSKA. Praca dyplomowa magisterska. Analiza materiałów piezoelektrycznych za pomocą metody elementów brzegowych i skończonych

MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: Kierunek studiów: Budownictwo Studia I stopnia stacjonarne

Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych wytłaczanych z polietylenu

Eliminacja drgań w układach o słabym tłumieniu przy zastosowaniu filtru wejściowego (Input Shaping Filter)

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia

Wyznaczanie modułu sztywności metodą Gaussa

Transkrypt:

MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 44, s. 37-47, Gliwice 2012 DOBÓR PARAMETRÓW WZBUDNIKA PIEZOELEKTRYCZNEGO ZE WZGLĘDU NA ŻĄDANE WŁASNOŚCI DYNAMICZNE PROJEKTOWANEGO UKŁADU MECHATRONICZNEGO ANDRZEJ BUCHACZ, MAREK PŁACZEK Instytut Automatyzacji Procesów Technologicznych i Zintegrowanych Systemów Wytwarzania, Wydział Mechaniczny Technologiczny, Politechnika Śląska e-mail: andrzej.buchacz@polsl.pl, marek.placzek@polsl.pl Streszczenie. W pracy przedstawiono proces wyznaczenia charakterystyki dynamicznej drgającego układu mechatronicznego oraz analizę wpływu na nią parametrów stosowanego wzbudnika. Szukaną charakterystyką opisano zależność amplitudy drgań swobodnego końca belki wspornikowej od parametrów napięcia elektrycznego, doprowadzonego do zacisków wzbudnika piezoelektrycznego. Określono możliwości sterowania własnościami dynamicznymi układu poprzez dobór jego parametrów. Rozpatrywanym układem jest belka wspornikowa z naklejonym na jej powierzchni wzbudnikiem piezoelektrycznym zasilanym z zewnętrznego źródła napięcia prądu elektrycznego. Układ modelowany jest jako jednowymiarowy, drgający giętnie układ mechatroniczny, którego analizę przeprowadzono, stosując przybliżoną metodę Galerkina. 1. WSTĘP Przetworniki piezoelektryczne coraz powszechniej stosowane są w różnego rodzaju układach technicznych. Znane są liczne aplikacje materiałów piezoelektrycznych między innymi w układach zarówno pasywnej, jak i aktywnej redukcji drgań, minimalizacji energii akustycznej emitowanej przez układy drgające, czy też w technikach nieniszczących metod badania stanu obiektu i diagnostycznych technikach ultradźwiękowych [7,10,12-15]. Tak duża liczba możliwych implementacji przetworników piezoelektrycznych jest wynikiem możliwości zastosowania zarówno prostego zjawiska piezoelektrycznego, a więc generowania ładunku elektrycznego przez przetwornik w wyniku jego odkształcenia, jak i zjawiska odwrotnego, czyli odkształcenia przetwornika w wyniku doprowadzenia napięcia prądu elektrycznego do jego zacisków. Piezoelektryki mogą więc być z powodzeniem stosowane zarówno w roli sensorów, jak i siłowników [11]. Zaletami przetworników piezoelektrycznych, jest ponadto szerokopasmowość przenoszonych sygnałów oraz duża sprawność zamiany energii mechanicznej na elektryczną, jak i w kierunku przeciwnym. Istotne znaczenie ma również możliwość zaprojektowania i wykonania elementów piezoelektrycznych o dowolnym kształcie, odpowiednim do danej aplikacji, jak również prostota tego typu układów, szczególnie w przypadku pasywnej redukcji drgań [8]. Wraz ze wzrostem popularności oraz liczby zastosowań materiałów o właściwościach piezoelektrycznych prowadzone są liczne prace, których celem jest rozwój i poprawa własności samych przetworników. Ważnym etapem w tej dziedzinie było opracowanie przez

38 A. BUCHACZ, M. PŁACZEK NASA w 1996 roku folii piezoelektrycznych MFC- Macro Fiber Composite [12,16]. Są to piezoelektryczne materiały kompozytowe, których głównymi zaletami względem klasycznych materiałów ceramicznych są: większa skuteczność zamiany energii elektrycznej na mechaniczną, czy też mechanicznej na elektryczną, odporność na działanie szkodliwych czynników atmosferycznych oraz mniejsza masa przetworników (wytwarzane są one w postaci elastycznej folii o grubości około 0,3 mm) [16]. W aplikacjach przetworników piezoelektrycznych istnieje jednak konieczność połączenia ich z podukładem mechanicznym, z którym dany przetwornik współdziała. Poprzez dobór parametrów geometrycznych i tworzywowych, a także odpowiednie zamocowanie przetwornika piezoelektrycznego, uwzględniając również właściwości warstwy łączącej, możliwe jest wprowadzenie wymaganych zmian w charakterystykach układu. Konieczne jest jednak takie modelowanie układu, aby możliwe było określenie skuteczności stosowanego rozwiązania i takie jego zaprojektowanie, aby w pełni osiągnąć zamierzony cel. Opracowanie modelu matematycznego drgających układów mechatronicznych w taki sposób, aby umożliwić dokładny opis zjawisk w nich zachodzących przy jednoczesnym maksymalnym uproszczeniu złożoności i czasochłonności przeprowadzanych obliczeń w znacznym stopniu ułatwi wdrażanie środków technicznych z zastosowaniem przetworników piezoelektrycznych. Jeśli posiada się niezbędną wiedzę w tym zakresie, możliwy jest taki dobór parametrów projektowanego układu, aby uzyskać żądany przebieg jego charakterystyki dynamicznej. W niniejszej pracy podjęto próbę opisu drgającego giętnie układu mechatronicznego, w którym ceramiczny przetwornik PZT stosowany jest w roli wzbudnika drgań. Opracowano model matematyczny układu i określono wpływ parametrów jego elementów na charakterystykę dynamiczną. Analizę układu przeprowadzono, stosując przybliżoną metodę Galerkina, której założenia i weryfikację dokładności przedstawiono we wcześniejszych opracowaniach [1-6]. Wyznaczono charakterystykę układu, którą opisano zależność amplitudy drgań swobodnego końca belki wspornikowej od amplitudy i częstości harmonicznego napięcia elektrycznego, którym zasilano przetwornik piezoelektryczny. Analizowano wpływ na wyznaczoną charakterystykę układu zarówno parametrów geometrycznych, jak i tworzywowych stosowanego przetwornika. Określono możliwości sterowania własnościami dynamicznymi projektowanego układu poprzez dobór rodzaju stosowanego przetwornika piezoelektrycznego oraz jego parametrów geometrycznych. 2. ANALIZOWANY UKŁAD ORAZ PRZYJĘTE ZAŁOŻENIA Rozpatrywany jest drgający giętnie jednowymiarowy układ ciągły w postaci belki wspornikowej o przekroju prostokątnym. Do górnej powierzchni belki, w odległości x 1 od miejsca utwierdzenia, przymocowany jest ceramiczny przetwornik piezoelektryczny PZT o długości l p, grubości h p i szerokości równej szerokości belki. Własności warstwy kleju łączącej elementy układu są jednakowe na całej jej długości. Postać rozpatrywanego układu wraz ze sposobem oznaczenia jego parametrów geometrycznych przedstawiono na rys. 1. Do zacisków przetwornika doprowadzono napięcie prądu elektrycznego, które opisano zależnością: U t U cost. (1) 0 W wyniku doprowadzenia zewnętrznego napięcia prądu elektrycznego następuje odkształcenie przetwornika piezoelektrycznego, a tym samym odkształcenie części mechanicznej układu, do której jest on zamocowany. Przetwornik piezoelektryczny jest więc

DOBÓR PARAMETRÓW WZBUDNIKA PIEZOELEKTRYCZNEGO 39 stosowany jako wzbudnik drgań układu o częstości równej częstości doprowadzonego napięcia prądu elektrycznego. Na działanie analizowanego układu mają wpływ zarówno parametry doprowadzonego napięcia, jak i geometryczne oraz tworzywowe parametry zarówno przetwornika piezoelektrycznego i części mechanicznej układu, jak i warstwy kleju łączącej te elementy. Celem realizowanej pracy jest więc wyznaczenie charakterystyki V, którą można określić zależność amplitudy drgań części mechanicznej układu od parametrów doprowadzonego napięcia elektrycznego, (równanie 2) oraz określenie wpływu na nią parametrów układu: gdzie x t y, oznacza ugięcie belki. y x t U t,, (2) V Rys.1. Rozpatrywany układ ze wzbudnikiem piezoelektrycznym Zgodnie z metodą przybliżoną Galerkina, której szczegółowe założenia oraz weryfikację dokładności przedstawiono w pracach [3,5,6], funkcję ugięcia belki przyjęto w postaci zależności: x, t A sin k x cos t y n, (3) gdzie: 2n 1 k n, n 1,2,3... (4) 2l A oznacza amplitudę drgań belki. Jak wykazano w pracy [6], niedokładność metody przybliżonej zależna jest od warunków brzegowych nałożonych na badany układ oraz przyjętej funkcji ugięcia belki (zależność 3). Korekcję przesunięcia pierwszych trzech wartości częstości drgań własnych układu zrealizowano, wprowadzając współczynniki korygujące, zgodnie z zależnością: n n ', (5) gdzie jako n oraz n ' oznaczono odpowiednio wartości częstości drgań własnych podukładu mechanicznego, wyznaczone metodą dokładną oraz przybliżoną [5]. Model matematyczny rozpatrywanego układu utworzono, wyznaczając, zgodnie z zasadą d Alemberta, równanie ruchu belki wspornikowej, biorąc pod uwagę układ sił poprzecznych i momentów zginających, działających w układzie. Uwzględniając pojemność elektryczną C P oraz rezystancję wewnętrzną R P przetwornika piezoelektrycznego, zasilanego z zewnętrznego źródła napięcia prądu elektrycznego, część elektryczną układu opisano równaniem znanym

40 A. BUCHACZ, M. PŁACZEK z analizy obwodów elektrycznych typu RC [1,2]. W celu ujednolicenia własności tworzywowych oraz uwzględnienia wpływu na charakterystykę parametrów warstwy kleju łączącej przetwornik piezoelektryczny z powierzchnią belki układ zamodelowano jako belkę zespoloną. Szerokość warstwy kleju oraz przetwornika piezoelektrycznego pomnożono przez wagi m 1 oraz m 2, opisane zależnościami [2]: E b 2G 1 m1, (6) E 11 c m2, (7) E b E gdzie symbolami c 11 oraz G oznaczono moduł sprężystości wzdłużnej wzbudnika piezoelektrycznego przy stałym natężeniu pola elektrycznego oraz moduł sprężystości poprzecznej warstwy kleju. Ujednolicono w ten sposób własności tworzywowe elementów układu i sprowadzono je do własności belki stalowej, wprowadzając przekrój zastępczy rozpatrywanego układu, przedstawiony na rys. 2. Rys.2. Przekrój zastępczy belki zespolonej Wyznaczono położenie ważonej, centralnej osi przekroju zastępczego oraz jego moment bezwładności, a także naprężenia oraz odkształcenia względne poszczególnych elementów utworzonej belki zespolonej. Uwzględniono proces mimośrodowego rozciągania warstwy kleju w wyniku oddziaływań zachodzących pomiędzy elementami układu, analogicznie, jak w przypadku analizy układu mechatronicznego z piezoelektrycznym, szerokopasmowym tłumikiem drgań, prezentowanej we wcześniejszych opracowaniach [2,4]. Układ sił powodujących mimośrodowe rozciąganie warstwy kleju przedstawiono na rys. 3. Symbolami F p oraz F b oznaczono odpowiednio siły generowane przez siłownik piezoelektryczny oraz wynikające ze sztywności belki wspornikowej.

DOBÓR PARAMETRÓW WZBUDNIKA PIEZOELEKTRYCZNEGO 41 Rys.3. Układ sił w przypadku mimośrodowego rozciągania warstwy kleju W opracowanym modelu matematycznym uwzględniono tłumienie wewnętrzne tworzywa belki oraz warstwy kleju. Własności reologiczne tych elementów wprowadzono, stosując model Kelvina-Voigta. Moduł Younga belki wspornikowej E b oraz moduł Kirchhoffa warstwy kleju G zastąpiono więc odpowiednio zależnościami: E b G E b 1 b, (8) t G1 k, (9) t gdzie symbolami b oraz k oznaczono odpowiednio współczynniki tłumienia wewnętrznego belki oraz kleju, posiadające wymiar czasu [9,10]. 3. OTRZYMANE WYNIKI Przyjęto wartości parametrów geometrycznych oraz tworzywowych elementów modelowanego układu, które zestawiono w tabeli 1. Symbolami d 31, e 33 T oraz s 11 E oznaczono stałą piezoelektryczną wzbudnika, jego przenikalność dielektryczną wyznaczoną przy stałym lub zerowym naprężeniu oraz podatność przetwornika wyznaczoną przy zerowym lub stałym polu elektrycznym, będącą odwrotnością modułu sprężystości poprzecznej. Gęstość tworzywa belki wspornikowej oraz przetwornika oznaczono natomiast symbolami ρ b oraz ρ p. Stosując opracowany model matematyczny układu oraz skorygowaną metodę przybliżoną Galerkina, wyznaczono przebieg modułu charakterystyki dynamicznej badanego układu, oznaczony symbolem Y V, który przedstawiono na rys. 4. W celu bardziej czytelnej prezentacji otrzymanych wyników przebieg wyznaczonej charakterystyki dynamicznej układu przedstawiono w skali półlogarytmicznej.

42 A. BUCHACZ, M. PŁACZEK Tabela 1. Parametry geometryczne oraz tworzywowe podukładu mechanicznego, warstwy kleju oraz wzbudnika piezoelektrycznego Parametry geometryczne Parametry tworzywowe l 0, 24 m E b 210000 MPa kg b 0, 04m b 7850 3 m 5 h b 0, 002 m 8 10 s b 6 0, G 1000 10 Pa 1 0, s k 10 3 12 m 0, d31 240 10 h k 0001 m x 01 m x 2 09 m V F h p 0, 001m e T 33 2900 0 m E 1 s11 1710 E c p 11 12 kg 7450 m 3 2 m N Rys.4. Moduł charakterystyki dynamicznej swobodnego końca podukładu mechanicznego w zakresie trzech pierwszych częstości drgań rezonansowych (n=1,2,3) Przeprowadzono następnie analizę wpływu zmian parametrów układu na otrzymaną charakterystykę, której wyniki przedstawiono na rys. 5 do 12, w przypadku pierwszej częstości drgań własnych układu. W celu uogólnienia rezultatów w odniesieniu do układów o identycznej postaci, lecz dowolnych parametrach geometrycznych, wyniki analizy przedstawiono w postaci bezwymiarowej, odnosząc częstość napięcia prądu elektrycznego zasilającego wzbudnik ω do pierwszej częstości drgań własnych podukładu mechanicznego ω 1 (belki wspornikowej pozbawionej przetwornika piezoelektrycznego):

DOBÓR PARAMETRÓW WZBUDNIKA PIEZOELEKTRYCZNEGO 43 w 1. (10) Moduł bezwymiarowej, względnej charakterystyki dynamicznej układu, oraz bezwymiarowy zakres zmienności analizowanego parametru wprowadzono zgodnie z zależnościami: gdzie jako Y Vw 1 Y, (11) V 10 10 d 31 w 1 W p W 1. (12) W W p oraz W w oznaczono wartość podstawianą oraz wyjściową danego parametru. Rys.5. Wpływ długości wzbudnika piezoelektrycznego na moduł bezwymiarowej, względnej charakterystyki dynamicznej układu Rys.6. Wpływ grubości wzbudnika piezoelektrycznego na moduł bezwymiarowej, względnej charakterystyki dynamicznej układu

44 A. BUCHACZ, M. PŁACZEK Rys.7. Wpływ stałej piezoelektrycznej wzbudnika piezoelektrycznego na moduł bezwymiarowej, względnej charakterystyki dynamicznej układu Rys.8. Wpływ przenikalności dielektrycznej wzbudnika piezoelektrycznego na moduł bezwymiarowej, względnej charakterystyki dynamicznej układu Rys.9. Wpływ modułu sprężystości wzdłużnej wzbudnika piezoelektrycznego na moduł bezwymiarowej, względnej charakterystyki dynamicznej układu

DOBÓR PARAMETRÓW WZBUDNIKA PIEZOELEKTRYCZNEGO 45 Rys.10. Wpływ rezystancji wewnętrznej wzbudnika piezoelektrycznego na moduł bezwymiarowej, względnej charakterystyki dynamicznej układu Rys.11. Wpływ grubości warstwy kleju na moduł bezwymiarowej, względnej charakterystyki dynamicznej układu Rys.12. Wpływ modułu sprężystości poprzecznej warstwy kleju na moduł bezwymiarowej, względnej charakterystyki dynamicznej układu

46 A. BUCHACZ, M. PŁACZEK 4. PODSUMOWANIE Opracowana metoda analizy drgających układów mechatronicznych może być stosowana do analizy zarówno drgań giętnych, skrętnych, jak i wzdłużnych jednowymiarowych układów o dowolnym sposobie zamocowania, w których przetworniki piezoelektryczne stosowane są do wzbudzania lub tłumienia drgań [1-6]. Stosując precyzyjny model matematyczny badanych układów oraz metodę ich analizy z zastosowaniem skorygowanej, przybliżonej metody Galerkina, możliwe jest wyznaczenie szukanej charakterystyki dynamicznej, a także uwzględnienie wpływu parametrów geometrycznych oraz tworzywowych wszystkich elementów, w tym warstwy kleju łączącej przetwornik piezoelektryczny z podukładem mechanicznym. Analizując wpływ zmiany ich wartości na wyznaczoną charakterystykę, zaobserwować można znaczny wpływ parametrów geometrycznych oraz stałej piezoelektrycznej i modułu Younga wzbudnika (rys. 2-4 oraz 6). Niewielki natomiast wpływ obserwuje się w przypadku przenikalności dielektrycznej oraz rezystancji wewnętrznej przetwornika (rys. 5 oraz 7). Na przebieg charakterystyki układu znacząco wpływa również grubość warstwy kleju łączącej przetwornik z powierzchnią belki (rys. 8), którą zwiększając, przy odpowiednio dużej sztywności, powoduje się jednocześnie zwiększenie ramienia działania siły generowanej przez wzbudnik. Poprzez dobór parametrów układu możliwe jest więc jego projektowanie ze względu na żądane własności dynamiczne. W dalszych pracach dokona się również porównania i oceny różnych tworzyw o własnościach piezoelektrycznych, w tym klasycznych przetworników piezoelektrycznych PZT oraz piezoelektrycznych materiałów kompozytowych typu MFC, pod względem ich przydatności w tego typu zastosowaniach. Przedstawiona praca jest także wstępem do realizacji zadania syntezy drgających giętnie układów mechatronicznych, a więc opracowania metody wspomagania projektowania tych układów ze względu na żądane własności dynamiczne. Pracę zrealizowano w ramach projektu No. N502 452139 finansowanego przez Ministerstwo Nauki i Szkolnictwa Wyższego w latach 2010 2013. LITERATURA 1. Buchacz A., Płaczek M.: The discrete-continuous model of the one-dimension vibrating mechatronic system. In: PAMM - Proc. Appl. Math. Mech. 9, 2009, Iss. 1, p. 395-396. 2. Buchacz A., Płaczek M.: The vibrating mechatronic system modeled as the combined beam. In: Dynamics, Proc. of International Scientific and Technical Conference Reliability and Durability of Mechanical and Biomechanical Systems and Elements of their Constructions, Sevastopol, 2009, p. 210-211. 3. Buchacz A., Płaczek M.: Damping of mechanical vibrations using piezoelements, including influence of connection layer s properties on the dynamic characteristic. Solid State Phenomena 2009, Vols. 147-149, Trans. Tech. Publications, p. 869-875 (online at: http://www.scientific.net). 4. Buchacz A., Płaczek M.: Development of mathematical model of a mechatronic system. Solid State Phenomena 2010, Vol. 164, Trans. Tech. Publications, p. 319-322 (online at: http://www.scientific.net). 5. Buchacz A., Płaczek M.: The approximate Galerkin s method in the vibrating mechatronic system s investigation. In: Proc. of the 14 th Intern. Conf. Modern Technologies, Quality and Innovation ModTech. Slanic Moldova 2010, p. 147-150.

DOBÓR PARAMETRÓW WZBUDNIKA PIEZOELEKTRYCZNEGO 47 6. Buchacz A., Płaczek M.: Comparison of exact and approximate methods in analysis of one-dimensional mechanical systems. In: Proc. of the Intern. Scientific and Engineering Conference Machine-Building and Technosphere on the Border of the XXI Century. Donetsk - Sevastopol 2011, t. 4, p. 42-46. 7. Moheimani S.O.R., Fleming A.J.: Piezoelectric transducers for vibration control and damping. London: Springer, 2006. 8. Osiński Z. (red.): Tłumienie drgań. Warszawa: Wyd. Nauk. PWN, 1997. 9. Pietrzakowski M.: Wpływ właściwości połączenia elementów piezoelektrycznych na skuteczność aktywnego tłumienia drgań. W: Metody aktywne redukcji drgań i hałasu. Krynica-Kraków 2001, s. 233-240. 10. Pietrzakowski M.: Active damping of beams by piezoelectric system: effects of bonding layer properties. Intern. Journal of Solids and Structures 2001, 38, p. 7885-7897. 11. Preumont A.: Mechatronics: dynamics of electromechanical and piezoelectric systems. Springer, 2006. 12. Seeley Ch., Delgado E., Bellamay D., Kunzmann J.: Miniature piezo composite bimorph actuator for elevated temperature operation. In: Proc. of IMECE 2007, ASME 2007 International Mechanical Engineering Congress & Exposition, 2007, Seattle, Washington, p. 405 415. 13. Tylikowski A., Przybyłowicz P.M.: Nieklasyczne materiały piezoelektryczne w stabilizacji i tłumieniu drgań. Warszawa: Inst. Podstaw Budowy Maszyn, 2004. 14. Wu S.: Piezoelectric shunt vibration damping of F-15 panel under high acoustic excitation. In: SPIE Proc. Vol. 3989, Paper No. 3989-27, 7th International Symposium on Smart Structures and Materials, Newport Beach, CA, 2000. 15. Yoshikawa S., Bogue A., Degon B.: Commercial application of passive and active piezoelectric vibration control, applications of ferroelectrics.in: Proc. of the Eleventh IEEE International Symposium on Applications of Ferroelectrics, Montreux 1998, p. 293-294. 16. http://www.smart-material.com/index.html (access 20 th March 2011). SELECTION OF PARAMETERS OF PIEZOELECTRIC ACTUATOR IN ORDER TO DESIGN A MECHATRONIC SYSTEM WITH DESIRED DYNAMIC PROPERITIES Summary. The paper presents a process of mechatronic system s dynamic characteristic determining and analysis of influence of a piezoelectric actuator s parameters on the obtained results. The considered system is a flexural vibrating cantilever beam with piezoelectric actuator glued to the beam s surface and supplied by an external voltage source. The considered system was described by developed mathematical model and approximate Galerkin method was used to analyze it. The characteristic that describes relation between amplitude of the system s vibration and electric voltage applied to the piezoelectric actuator was calculated. An eccentric tension of a glue layer between the actuator and beam s surface was considered and mechatronic system was modelled as a combined beam.