LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji
DECYZJE Obszar krytyczny od pozostałej części rozkładu statystyki oddzielony jest przez tzw. wartości krytyczne testu czyli wartości odczytane z rozkładu statystyki przy danym α, tak aby spełniona była relacja zależna od sposobu sformułowania H 1.
OBSZAR KRYTYCZNY LEWOSTRONNY OBSZAR KRYTYCZNY Test jednośladowy (one- tail test) PRAWOSTRONNY OBSZAR KRYTYCZNY Test jednośladowy (one- tail test)
TEST DLA WSKAŹNIKA STRUKTURY (PROCENTU) Populacja generalna ma rozkład dwupunktowy z parametrem p. Z populacji tej wylosowano próbę n-elementową (n>100) próbę. W oparciu o wynik tej próby zweryfikować hipotezę: H o : p=p o wobec hipotezy alternatywnej: H 1 : p p o, gdzie p o jest hipotetyczna wartość parametru p Statystyka testowa: Gdzie m- liczba wyróżnionych elementów w próbie. Statystyka z ma rozkład N(0,1)
TESTY DLA DWÓCH ŚREDNICH POPULACJI Przypadek 1. Dwie populacje generalne o rozkładach normalnych N(µ 1, σ 1 ) i N(µ 2, σ 2 ). Odchylenia standardowe σ 1 i σ 2 są znane. W oparciu o wyniki dwu niezależnych prób, o liczebnościach n 1 i n 2 wylosowanych z tych populacji sprawdzić hipotezę: H o : µ 1 = µ 2, wobec hipotezy alternatywnej: H 1 : µ 1 µ 2 Rozwiązanie: Statystyka testowa: ma rozkład N(0,1) Przypadek 2. Dwie populacje generalne o rozkładach normalnych N(µ 1, σ 1 ) i N(µ 2, σ 2 ) Odchylenia standardowe σ 1 i σ 2 są nieznane, ale jednakowe: σ 1 = σ 2. W oparciu o wyniki dwu niezależnych prób, o liczebnościach n 1 i n 2 wylosowanych z tych populacji sprawdzić hipotezą: H o : µ 1 = µ 2, wobec hipotezy alternatywnej: H 1 : µ 1 µ 2 Rozwiązanie: Statystyka testowa: ma rozkład t-studenta o k= n 1 + n 2-2 stopniach swobody.
TESTY DLA DWÓCH ŚREDNICH POPULACJI Uwaga: Często zdarza się, że wyniki obu prób możemy traktować jako wyniki pomiarów na tych samych elementach. Typową sytuacją jest przypadek: wynik x i przed jakąś operacją i wynik y i po niej dla tego samego i. Można wtedy analizować wyniki obu prób jako wyniki jednej próby różnicowej z i = y i - x i. Wówczas testujemy hipotezę: H o : µ z =0, gdzie µ z średnia w populacji różnic. Statystyka testowa: ma rozkład t-studenta o k=n-1. Przypadek 3. Dwie populacje generalne o rozkładach normalnych lub innych. Odchylenia standardowe σ 1 i σ 2 są nieznane. W oparciu o wyniki dwu niezależnych dużych prób, o liczebnościach n 1 i n 2 wylosowanych z tych populacji sprawdzić hipotezę: H o : µ 1 = µ 2, wobec hipotezy alternatywnej: H 1 : µ 1 µ 2 Rozwiązanie: Postępujemy tak samo, jak w Przypadku 1, z tym że przy obliczaniu wartości statystyki testowej w miejsce σ 1 i σ 2 wstawiamy : s 1 i s 2
TEST DLA DWÓCH WSKAŹNIKÓW STRUKTURY Dwie populacje generalne o rozkładach dwupunktowych z parametrami p 1 i p 2. W oparciu o wyniki dwu niezależnych prób, o liczebnościach n 1 i n 2 (n 1 >100 i n 2 >100) wylosowanych z tych populacji sprawdzić hipotezę, że parametry p 1 i p 2 są jednakowe, tzn: H o : p 1 =p 2 wobec hipotezy alternatywnej: H 1 : p 1 p 2. Statystyka testowa: gdzie: m 1 i m 2 oznaczają ilość wyróżnionych elementów w obu próbach, a: z- ma rozkład N(0,1)
TEST DLA WARIANCJI POPULACJI Populacja generalna ma rozkład normalny N(µ, σ) o nieznanych parametrach µ i σ. Z populacji tej wylosowano próbę n-elementową próbę, na jej podstawie sprawdzić hipotezę: H o : wobec hipotezy alternatywnej:h 1 :, gdzie jest hipotetyczną wartością wariancji Rozwiązanie: Statystyka testowa: Statystyka ta ma rozkład χ 2 z k=n-1 stopniami swobody
TEST DLA DWÓCH WARIANCJI POPULACJI Dane są dwie populacje generalne o rozkładach normalnych N(µ 1, σ 1 ) i N(µ 2, σ 2 ). Ich parametry są nieznane. W oparciu o wyniki dwu niezależnych prób, o liczebnościach n 1 i n 2 wylosowanych z tych populacji sprawdzić hipotezę: H o : wobec hipotezy alternatywnej: H 1 : Statystyka testowa: ma rozkład F-Snedecora z k 1 =n 1-1 oraz k 2 =n 2-1 stopniami swobody. Gdy F F odrzucamy H o
TEST DLA DWÓCH WARIANCJI POPULACJI Przykład 10: Dokonano po 5 niezależnych pomiarów ciśnienia w komorze spalania silnika rakietowego dla dwóch rodzajów paliwa; A i B. Dla A otrzymano wyniki w kg/cm 2 : 40,32; 39,85; 41,17; 40,62; 40,04. Dla B: 51,07; 49,60; 50,45; 50,59; 50,29. Na poziomie istotności 0,05 sprawdzić hipotezę o jednakowym odchyleniu standardowym ciśnienia uzyskiwanego obu rodzajami paliwa. Rozwiązanie: H o : H 1 : F= 1,06 ; F α = 4,39 Ponieważ F < F α więc nie ma podstaw do odrzucenia hipotezy zerowej
ĆWICZENIA 1. Spośród studentów AGH wylosowano niezależnie do próby 200 studentów i zapytano ich czy palą i ile dziennie palą papierosów. 152 studentów z nich stwierdziło, ze pali systematycznie, a wariancja z tej próby wypalanych papierosów wynosi s 2 =50 (papierosów) 2. Na poziomie istotności α=0,05 zweryfikować hipotezy: a) palących studentów na AGH jest 60 %, b) odchylenie standardowe liczby wypalanych dziennie papierosów wynosi 5. 5G.p.87, z. 2.62, p. 78 z. 2.46 2. Wykonano pomiary porowatości 8-miu wylosowanych kształtek ceramicznych przed i po modyfikacji polegającej na dodatkowym procesie spiekania, uzyskano następujące wyniki porowatości w [%]: przed modyfikacją: 21, 17, 20, 26, 23, 22, 21, 18 po modyfikacji: 16, 13, 14, 21, 19, 18, 26, 17 Na poziomie istotności α=0,05 zweryfikować hipotezę, że modyfikacja zmniejsza porowatość tych wyrobów. Zastosować test dla par na różnicach wyników. (G.p.70 z. 2.23)
ĆWICZENIA c.d 3. Przy kontroli pracy dwu central telefonicznych stwierdzono, że na 200 połączeń w centrali A 16 było omyłkowych. Natomiast na 100 połączeń w centrali B złych połączeń było 10. Na poziomie istotności α=0,05 zweryfikować hipotezę, że procent złych połączeń jest jednakowy w obu centralach telefonicznych. z = 1,21<1,96=z α nie ma podstaw do odrzucenia H o 4. Wykonano pomiary porowatości 8-miu wylosowanych kształtek ceramicznych przed i po modyfikacji polegającej na dodatkowym procesie spiekania, uzyskano następujące wyniki porowatości w [%]: przed modyfikacją: 21, 17, 20, 26, 23, 22, 21, 18 po modyfikacji: 16, 13, 14, 21, 19, 18, 26, 17 Na poziomie istotności α=0,05 zweryfikować hipotezę, że modyfikacja zmniejsza porowatość tych wyrobów. Zastosować test dla par na różnicach wyników. (G.p.70 z. 2.23) 5. W celu porównania regularności wyników sportowych dwu oszczepników, wylosowano 20 wyników rzutu oszczepem zawodnika A i 16 wyników zawodnika B. Dla zawodnika A s A = 2,65 m, a dla B s B =4,80 m. Na poziomie istotności α=0,10 sprawdzić hipotezę o większej regularności wyników zawodnika A. F=3,32> 1,86=F α ; ; H o odrzucić.