Projekt Nr Temat Cel Sprzęt Prace terenowe Prace laboratoryjne Opracowanie wyników Wazonkowce: zagęszczenie, biomasa, przepływ energii i węgla Określenie składu i zagęszczenia wazonkowców glebowych na podstawie materiału zebranego w terenie, a następnie na podstawie danych literaturowych oszacowanie biomasy, przepływu energii i węgla przez badane zespoły. Taśma miernicza, próbnik do gleby, woreczki foliowe, etykiety, ołówek 1. wyznaczyć transekt o długości 20m; 2. na transekcie co 1m przy pomocy próbnika pobrać próbkę gleby o powierzchni 16,6cm 2 i głębokości 10 cm (na tym samym transekcie powinny być pobrane próby glebowe do badania stawonogów glebowych). 3. każdą pobraną próbkę opisać i zapakować do woreczka foliowego (nie zawiązywać!) 1. Ekstrakcja zwierząt z gleby: Próby włożyć na sita mokrych lejków i pozostawić na 5 godzin. 2. Oszacowanie zagęszczenia: Wyekstrahowane próby przenieść do pracowni mikroskopowej i przeglądnąć pod lupą binokularną, wybrać i policzyć (w każdej próbce gleby), tj. na powierzchnię 16,6 cm 2. 3. Oszacowania biomasy 3.1. Jeżeli wielkość próby jest wystarczająca, można oszacować średnią masę ciała wazonkowców. W tym celu wybrane wazonkowce z każdej próby umieścić w suszarce (50 C, 48 h), po wysuszeniu zważyć na wadze precyzyjnej, znając liczbę osobników w próbie obliczyć średnia masę jednego osobnika. 3.2. Alternatywnie, należy oszacować średnią długość ciała stawonogów z każdej grupy, używając okularu pomiarowego w mikroskopie stereoskopowym (lupie binokularnej). 1. Oszacowanie biomas osobników. Jeżeli pomiar średniej masy ciała nie był możliwy, należy oszacować masę na podstawie wymiarów liniowych, w oparciu o literaturowe dane o allometrycznej zależności między długością a masą ciała (Tab. 1): Tabela 1. Parametry równania W = al b, gdzie W sucha masa ciała [mg], L długość ciała [mm] Grupa a b Źródło Collembola 0,1533 2,300 Ganihar 1997 Arachnida 0,0403 2,468 Ganihar 1997 Enchytraeidae 0,2692 1,1 Greiner et al, 2010 Mokrą (przyżyciową) masę ciała należy obliczyć zakładając 75% zawartość wody w ciele. 2. Oszacowanie zagęszczenia i biomasy populacji Na podstawie oznaczonej liczebności stawonogów w próbach, należy obliczyć zagęszczenie, stan biomasy (suchej), zawartość energii i węgla w poszczególnych grupach na jednostkę powierzchni (m 2 ). 3. Oszacowanie budżetu energii i węgla Wyjaśnienie - podstawowe pojęcia i teoria Ilość pokarmu skonsumowana przez zwierzę w jednostce czasu (konsumpcja, C) może być tylko częściowo strawiona i przyswojona (asymilacja, A) niestrawione
resztki i wydaliny opuszczają organizm jako odchody (kał i mocz, FU): C = A + FU (1) Część zasymilowanego pokarmu może być wbudowana w nowa biomasę rosnącego konsumenta, albo w inne produkty związane z reprodukcją (np. jaja) ta część nosi nazwe produkcji (P), znaczna część skonsumowanej biomasy podlega metabolizmowi (spaleniu), dostarczając energii użytecznej, ciepła i CO 2, przy zużyciu odpowiedniej ilości tlenu (ta część budżetu nosi nazwę respiracji, R). Zatem: C = R + P + FU (2) Metabolizm (respiracja) zawiera koszty energetyczne aktywności, w tym pracy mechanicznej, przemian chemicznych, a także koszty żerowania, trawienia itd., dlatego intensywnośc metabolizmu jest proporcjonalna do całego budżetu energetycznego. Znajomość indywidualnych budżetów energetycznych wraz z informacją o zagęszczeniu populacji umożliwia oszacowanie przepływu energii i węgla przez ekosystem. Tempo metabolizmu zależy przede wszystkim od masy ciała organizmu i od temperatury. Zależnośc metabolizmu od masy ciała przy stałej temperaturze najlepiej opisuje funkcja potęgowa (allometryczna): b M = aw (3) gdzie M tempo metabolizmu, W masa ciała, a,b parametry specyficzne dla danego taksonu. U organizmów zmiennocieplnych tempo metabolizmu silnie (wykładniczo) zależy od kt temperatury ( M = ce, gdzie T temperature, c, k parametry). Tradycyjnie, w ekologii tę zależność przedstawia się jako współczynnik Q 10, który określa ile razy wzrasta tempo procesu przy podniesieniu temperatury o 10 C. Ten współczynnik można doświadczalnie oszacować, mierząc tempo procesu (metabolizmu) w dwóch temperaturach, stosując wzór: 10 ( t2 t1 ) R 1 Q10 = (4) R2 gdzie: t 1, t 2 niższa i wyższa temperature, odpowiednio, R 1, R 2 tempa procesu zmierzone w temperaturach t 1 i t 2, odpowiednio. [Oczywiście, Q 10 = e 10k, albo k = ln(q 10 )/10]. Znając Q 10, (M T ) można oszacowac tempo metabolizmy w dowolnej temperaturze T: T T0 10 T0 10 MT = M Q (5) gdzie M T0 to metabolizm mierzony w danej temperaturze T O. Składając równania 3 i 5 otrzymujemy wzór do obliczenia metabolizmu bezkręgowca na podstawie znanej masy ciała i temperatury otoczenia: T T0 b 10 WT, 10 M = aw Q (6) Tabela 2 zawiera współczynniki tego równania dla wybranych taksonów glebowych i ściółkowych bezkręgowców. Te wartości są dostosowane do tempa metabolizmu wyrażanego jako tempo konsumpcji tlenu (mm 3 O 2 osbnik- 1 h -1 ), masa ciała w gramach [g], przy standardowej temperaturze T 0 = 10 C. Aby móc wyrazić tempo metabolizmu w jednostkach energii, wynik obliczenia ze wzoru (6) należy pomnożyć przez ekwiwalent energetyczny konsumpcji tlenu, który zależnie od metabolizowanego substratu waha się pomiędzy 19,4 i 20,9 J cm 3 O 2 (Elliot i Davison 1975); dla mieszanego pokarmu można przyjąć przybliżoną wartość 20,0 J cm 3 O 2 albo 0,02 J mm 3 O 2 ). Dobowy metabolizm otrzymamy mnożąc uzyskany wynik przez 24.
Dla uwzględnienia innych składowych budżetu biomasy i energii (P, C) potrzebna jest znajomość wielu szczegółów historii życiowych, specyficznych dla poszczególnych gatunków (tempo reprodukcji, ilość produkowanej biomasy, strawność konsumowanego pokarmu); zebranie takiej informacji jest trudne (o ile w ogóle możliwe). Zamiast tego można dokonać zgrubnego oszacowania w oparciu o ogólne ustalenia z literatury. Produkcję (P) i respirację (P) zmierzono u wielu populacji bezkręgowców i na tej podstawie wyprowadzono empiryczne równanie allometryczne wiążące te dwie zmienne: P = 0.80 R 0.83. (7) Pozwala ono oszacować w przybliżeniu roczną produkcję (P) populacji w oparciu o znaną respirację (R) w tym samym czasie (Duncan i Klerkowski 1975). Współczynnik asymilacji (A/C) u detrytusojadów (Collembola, Acari-Oribatei) wynosi 22-35%, a u drapieżników (np. Acari-Mesostigmata Gamasina) sięga 50-66% (Duncan and Klekowski, 1975). Dla uproszczenia można przyjąć stałe wartości współczynnika asymilacji 30% dla detrytusojadów i 60% dla drapieżników. Tabela 2. Parametry równań do obliczania indywidualnych metabolizmów (M, mm 3 O 2 osobnik -1 h -1 ) na podstawie mokrej masy ciała osobników (W, g) przy temperaturze 10 o C (na podstawie Hoste-Danyłow et al. 2013). Grupa a b Q 10 Collembola 64,77 0,85 2,6 Mesostigmata Gamasina 102,33 0,869 3,0 Mesostigmata Uropodina 5,035 0,671 3 Enchytraeidae 18,67 0,67 1,6 Uogólnienie wyników 1. Obliczyć biomasę stawonogów glebowych na poziomie ekosystemu (g suchej masy m -2 ; g C m -2 ), oraz na 1 ha. 2. Wg wzoru (6) obliczyć indywidualny metabolizm dla przedstawicieli wszystkich grup, podstawiając odpowiednie średnie masy ciała (mokre) i średnie temperatury miesięczne gleby (Tab. 3), dla 6 miesięcy (kwiecień wrzesień), zakładając dla uproszczenia, że w pozostałych miesiącach fauna glebowa nie jest aktywna metabolicznie. Tabela 3. Oszacowane średnie temperatury gleby na głęb. 5 cm w Puszczy Niepołomickiej, dla 6 miesięcy roku (dane wg. Rocznika Statystycznego Rolnictwa 2014, wg Kleina; sposób szacowania temperatury gleby p. instrukcja dot. pomiaru respiracji gleby). miesiąc IV V VI VII VIII IX 2013 5,6 9,7 13,9 16,0 17,9 2,2 3. Na podstawie indywidualnych budżetów energetycznych obliczyć budżety energii i węgla na poziomie ekosystemu. W celu przeliczenia jednostek metabolizmu z konsumpcji tlenu na przepływ węgla, przyjmij ekwiwalent 1 cm 3 O 2 = 0,4286 mg C. Wyjaśnienie: aby przeliczyć konsumpcją tlenu (w jednostkach objętości) na produkcję CO 2 (w jednostkach objętości) przyjmujemy współczynnik oddechowy RQ = CO 2 /O 2 = 0,8. Zatem objętość CO 2 = obj. O 2 0,8. Mol CO 2 = 12+32=44g 22.4 l; zatem 1 cm 3 CO 2 = 0,5357 mg C, czyli: 1 cm 3 O 2 = 0.4286 mg C. Uwzględniając liczebność każdej grupy stawonogów, dla każdego miesiąca oblicz sumaryczny metabolizm (w jednostkach energii [kj m -2 miesiąc -1 ] i masy węgla [g C
m -2 miesiąc -1 ]), oraz odpowiednie sumy dla całego roku dla każdej grupy. Następnie wg wzoru (6) na podstawie sumarycznej rocznej respiracji oblicz roczną produkcję P, asymilację (A = R+P) i konsumpcję C (przyjmując odpowiedni dla każdej grupy współczynnik asymilacji), z założeniem, że współczynniki wydajności produkcji i asymilacji są jednakowe dla energii i dla węgla. Literatura Duncan A., Klekowski R.Z., 1975. Parameters of an energy budget. In: W. Grodziński, R.Z. Klekowski. A. Duncan: Methods for Ecological Bioenergetics. Blackwell, Oxford. 97-147. Elliot J.M., Davison W., 1975: Energy equivalents of oxygen consumption in animal energetics. Oecologia 19: 195-201. Hoste-Danyłow A., Ilieva-Makulec K., Olejniczak I., Hajdamowicz I., Stańska M., Marczak D., Wytwer J., Faleńczyk-Koziróg K., Ulrich W., 2013: The shape of the intraspecific metabolic-rate-body-size relationship affects interspecific biomass and abundance distributions of soil animals within a forest ecosystem. Axx. Zool. Fennici 50: 289-302.
Formularz wyników Uwaga: stosuj zapis naukowy (wykładniczy), zwróć uwagę na poprawny zapis liczb (liczba cyfr znaczących) Zmienna Jednostka Wartość Jednostka Wartość Enchytraeidae Stan biomasy g s.m. ha -1 g C ha -1 Respracja kj ha -1 rok -1 g C ha -1 rok -1 Produkcja kj ha -1 rok -1 g C ha -1 rok -1 Asymilacja kj ha -1 rok -1 g C ha -1 rok -1 Konsumpcja kj ha -1 rok -1 g C ha -1 rok -1