EGZAMIN pisemny z TERMODYNAMIKI TERMODYNAMIKA TECHNICZNA I CHEMICZNA. Lista pytań opisowych (semestr zimowy 2015/16)

Podobne dokumenty
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1

chemia wykład 3 Przemiany fazowe

Warunki izochoryczno-izotermiczne

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)

powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki

CHEMIA FIZYCZNA ZTiM

Przemiany termodynamiczne

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Wykład 6. Klasyfikacja przemian fazowych

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)

Analiza termiczna Krzywe stygnięcia

Laboratorium z chemii fizycznej. Zakres zagadnień na kolokwia

Opis efektów kształcenia dla modułu zajęć

DRUGA ZASADA TERMODYNAMIKI

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Spis treści. PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 8. Równowaga fazowa Roztwory rzeczywiste

DRUGA ZASADA TERMODYNAMIKI

TERMODYNAMIKA FENOMENOLOGICZNA

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11

Podstawy termodynamiki

Kalorymetria. 1. I zasada termodynamiki, Prawo Hessa, Prawo Kirchhoffa (graficzna interpretacja), ciepło właściwe, termodynamiczne funkcje stanu.

Prężność pary nad roztworem

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

TERMODYNAMIKA PROCESOWA

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Wykład 8B. Układy o ograniczonej mieszalności

WYKŁAD 7. Diagramy fazowe Dwuskładnikowe układy doskonałe

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne

prof. dr hab. Małgorzata Jóźwiak

Roztwory rzeczywiste (1)

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2016/17)

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

Rok akademicki: 2017/2018 Kod: WIN s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Termodynamika równowag fazowych w układach dwuskładnikowych

Rok akademicki: 2016/2017 Kod: WIN s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Wykład 1-4. Anna Ptaszek. 6 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 1-4.

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin

Spis tres ci 1. Wiadomos ci wste pne

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Prowadzący. telefon PK: Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5)

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE

Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

Odwracalność przemiany chemicznej

Wykład 3. Fizykochemia biopolimerów- wykład 3. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa

RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Chemia fizyczna. Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Obiegi gazowe w maszynach cieplnych

Para pozostająca w równowadze z roztworem jest bogatsza w ten składnik, którego dodanie do roztworu zwiększa sumaryczną prężność pary nad nim.

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

Wykład 10 Równowaga chemiczna

Podstawowe pojęcia 1

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE

TERMODYNAMIKA I TERMOCHEMIA

Zadania treningowe na kolokwium

Badanie równowag ciecz para w układach dwuskładnikowych

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA

Fizyka statystyczna. This Book Is Generated By Wb2PDF. using

Termodynamika. Energia wewnętrzna ciał

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Równowaga fazowa. Przykładowo: 1. H 2 O (c) w mieszaninie H 2 O (c) + H 2 O (s) 2. mieszanina opiłek żelaza i sproszkowanej siarki

Diagramy fazowe graficzna reprezentacja warunków równowagi

Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii

Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra

K raków 26 ma rca 2011 r.

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Roztwory rzeczywiste (1)

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Uniwersytet Śląski w Katowicach str. 1 Wydział

BADANIE RÓWNOWAG FAZOWYCH W UKŁADACH TRZECH CIECZY

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1

Podstawy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki

Podstawowe definicje

II Zasada Termodynamiki c.d.

Podstawy teoretyczne technologii chemicznej / Józef Szarawara, Jerzy Piotrowski. Warszawa, Spis treści. Przedmowa 13

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Budowa stopów. (układy równowagi fazowej)

Fizyka, technologia oraz modelowanie wzrostu kryształów

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron

Transkrypt:

Termodynamika techniczna i chemiczna termodynamika - egzamin 2015/2016 1 EGZAMIN pisemny z TERMODYNAMIKI TERMODYNAMIKA TECHNICZNA I CHEMICZNA Lista pytań opisowych (semestr zimowy 2015/16) Pytania na egzaminie będą występowały w dwóch formach, jako pytania opisowe oraz zadaniowe tj. wymagające pewnych przekształceń matematycznych, wyprowadzeń itp. (ale tylko na liczbach ogólnych). Przedstawiony poniżej zbiór pytań opisowych jest pełny, tzn. na egzaminie będą tylko problemy wypisane poniżej. Wiele pytań sprowadza się do zilustrowania pewnych zależności na konkretnym przykładzie. Na egzaminie przykład ten (np. reakcja chemiczna) będzie narzucony i oczywiście inny niż w prezentowanym zestawieniu. W związku z tym fragmenty pytań oznaczone gwiazdką [*] na pewno będą inne. Przykładowe pytania zadaniowe przedstawione są oddzielnie i są dostępne w Internecie (na stronie poświęconej chemii fizycznej dla biotechnologii). Wśród pytań znajduje się kilka prostych wyprowadzeń i obliczeń (na liczbach ogólnych). Traktowane są one jako zwykłe pytania opisowe. Pytania napisane drukiem pogrubionym, są to tak zwane NIEZAPOMINAJKI, które będą oceniane średnio dwa razy wyżej niż zwykłe pytania. 1. Podać definicje: funkcji stanu, różniczki zupełnej, parametrów intensywnych i ekstensywnych (przykłady parametrów). 2. Definicje procesów: adiabatycznego, diatermicznego, kwazystatycznego (przykłady). 3. Definicja i sposób pomiaru temperatury termometrem gazowym (temperatura empiryczna); temperatura termodynamiczna i jej związek z temperaturą empiryczną. 4. I Zasada Termodynamiki; definicja entalpii; I Zasada wyrażona poprzez entalpię. 5. Definicja pojemności cieplnych; zasada ekwipartycji energii; oszacować molowe pojemności cieplne (c p i c v ) dla par rtęci (Hg(g)) [*]. 6. Prawo Hessa. 7. Definicja standardowej entalpii reakcji. 8. Zdefiniować stan standardowy dla substancji (gazowej, ciekłej, stałej, składnika w roztworze). 9. Jakie dane są potrzebne aby oszacować efekt cieplny określonej reakcji w dowolnej temperaturze. 10. Podać definicję standardowej entalpii tworzenia (spalania) acetonu [*] (CH 3 COCH 3(c) ) w temperaturze T; napisać wyrażenie na standardową entalpię reakcji: CH 3 OH (g) + CO (g) CH 3 COOH (g) [*] z wykorzystaniem standardowych entalpii tworzenia (spalania). 11. Prawo Kirchhoffa dla: a) braku przemian fazowych; b) występowania przemian fazowych. 12. Podać definicje średniej termochemicznej energii wiązania; napisać wyrażenie na standardową entalpię reakcji CH 3 OH (g) + CO (g) CH 3 COOH (c) [*] w temperaturze T z wykorzystaniem średnich termochemicznych energii wiązań. 13. Źródła błędów w metodzie średnich termochemicznych energii wiązań. 14. Napisać wyrażenie na bilans energetyczny nieruchomego reaktora okresowego i stacjonarnego reaktora przepływowego. 15. Zdefiniować pracę techniczną i wyjaśnić jej praktyczne znaczenie. 16. Statystyczna definicja entropii i Zasada Wzrostu Entropii. 17. Sformułowanie fenomenologiczne II Zasady Termodynamiki. 18. Definicja entalpii swobodnej i pozostałych potencjałów termodynamicznych. Jak zmieniają się one, a entalpia swobodna w szczególności, dla procesów spontanicznych zachodzących w przyrodzie. 19. III Zasada Termodynamiki; entropia resztkowa. 20. Zdefiniować współczynniki rozszerzalności, ściśliwości i prężności. 21. Definicja potencjału chemicznego; związek pomiędzy potencjałem chemicznym czystego składnika a entalpią swobodną. 22. Sformułować ogólne warunki równowagi w układzie wieloskładnikowym i wielofazowym oraz napisać je dla podanego układu w stanie równowagi: np.: cykloheksan (s) roztwór ciekły (heksan + cykloheksan) heksan (g) + cykloheksan (g) [*]. Pionowe kreski oznaczają granice międzyfazowe. 1

Termodynamika techniczna i chemiczna termodynamika - egzamin 2015/2016 2 23. Warunek stabilności termicznej i mechanicznej. 24. Wyprowadzić regułę faz Gibbsa. Obliczyć liczbę stopni swobody dla podanego układu w stanie równowagi, np: cykloheksan (s) roztwór ciekły (heksan + cykloheksan) heksan (g) + cykloheksan (g) [*] oraz określić maksymalną liczbę faz, które mogłyby ze sobą współistnieć przy zachowaniu tych samych składników. Pionowe kreski oznaczają granice międzyfazowe. 25. Właściwości energii swobodnej i entalpii swobodnej jako pracy w procesie odwracalnym. 26. Opisać proces Joule'a-Thomsona i zdefiniować współczynnik Joule'a-Thomsona. 27. Narysować typowy przebieg krzywej inwersji i podać definicję temperatury inwersji. 28. Napisać (ewentualnie wyprowadzić) równanie adiabaty odwracalnej dla gazu doskonałego o pojemności cieplnej niezależnej od temperatury. Co to jest przemiana politropowa? 29. Co to jest praca bezwzględna i na jakie rodzaje pracy jest zużywana. 30. Wyjaśnić pojęcia obieg prawobieżny i lewobieżny maszyny cieplnej. Z jakich etapów składa się każdy obieg? 31. Naszkicować ogólny schemat: a) silnika cieplnego, b) chłodziarki, c) pompy ciepła. Dla każdego przypadku: określić kierunek przepływu energii (pracy i energii przekazywanej na sposób ciepła), podać ogólną definicję sprawności, zaznaczyć typową relację temperatury zbiornika górnego i dolnego do temperatury otoczenia. 32. Naszkicować we współrzędnych p-v wykres i krótko opisać jego etapy, dla jednego z poniższych obiegów porównawczych: a) Carnota, b) Otto, c) Diesla. 33. Naszkicować typowy przebieg współczynnika kompresji (ściśliwości) gazu od ciśnienia. 34. Podać równanie stanu van der Waalsa dla jednego mola gazu; naszkicować kilka izoterm (na wykresie p = p(v)) w taki sposób, aby zilustrować obszar równowagi ciecz-para oraz istnienie punktu krytycznego. Podać warunek matematyczny spełniony przez współrzędne punktu krytycznego oraz sposób przeprowadzenia izotermy w obszarze dwufazowym. 35. Podać nazwy co najmniej dwóch sześciennych równań stanu będących modyfikacjami równania van der Waalsa. Opisać krótko (w punktach, bez podawania wzorów), charakter wprowadzonych modyfikacji. 36. Zasada stanów odpowiadających sobie; podać przykłady gazów spełniających dobrze i słabo tę Zasadę; wytłumaczyć odstępstwa od Zasady. Rozszerzona zasada stanów odpowiadających sobie definicja współczynnika acentrycznego. 37. Napisać równanie wirialne obcięte do drugiego współczynnika i określić (jakościowo) zależność od temperatury i ciśnienia drugiego współczynnika wirialnego. 38. Wyprowadzić równanie Clapeyrona wiążące ciśnienie z temperaturą równowagową dla przemiany fazowej substancji czystej. a) Podać założenia i wyprowadzić uproszczone równanie Clapeyrona w formie scałkowanej, opisujące związek pomiędzy p i T dla: a) równowagi ciecz-para (proces parowania); b) równowagi ciało stałe-ciecz (proces topnienia). 39. Źródła błędów przy zastosowaniu równania Clausiusa-Clapeyrona do opisu krzywej parowania. 40. W jaki sposób można wyznaczyć krzywą sublimacji na podstawie znajomości krzywej parowania i parametrów opisujących proces topnienia (entalpia, normalna temperatura topnienia). 41. Naszkicować najprostsze (tzn. 3 fazy - stała, ciekła i gazowa) diagramy fazowe substancji czystej we współrzędnych (p,t) i (p,v); zaznaczyć obszary występowania poszczególnych faz, punkt potrójny i krytyczny. 42. W jaki sposób (za pomocą jakiego równania) wyraża się potencjał chemiczny składników w mieszaninie: a) gazów doskonałych; b) gazów rzeczywistych; c) ciekłych nieelektrolitów; d) ciekłych nieelektrolitów, dla składnika występującego w rozcieńczeniu. 43. Zdefiniować pojęcie roztworu doskonałego, aktywności i współczynników aktywności; podać przykłady rzeczywistych ciekłych roztworów dwuskładnikowych, których właściwości są bardzo bliskie i bardzo odległe od właściwości roztworu doskonałego. 44. Co to jest lotność i współczynnik lotności; obliczyć obie wielkości dla gazu czystego i składnika w mieszaninie dla gazu doskonałego. 45. Warunek równowagi w układzie wieloskładnikowym i wielofazowym wyrażony poprzez lotności (lub współczynniki lotności). 46. Definicje i wzajemny związek pomiędzy współczynnikami aktywności w symetrycznym i 2

Termodynamika techniczna i chemiczna termodynamika - egzamin 2015/2016 3 niesymetrycznym układzie odniesienia. 47. Wymienić i zdefiniować ograniczenia limitujące możliwy przebieg reakcji chemicznej. 48. Zdefiniować zmienną reakcji. Dla przykładowej reakcji chemicznej [*], w której początkowa liczba moli reagentów wynosi kolejno (1,2,3,1) [*], obliczyć przedział określoności tej zmiennej ( min, max ). 49. Napisać szczegółowy warunek, uwzględniający właściwości odnoszące się do konkretnych reagentów a, który musi być spełniony dla przykładowej reakcji [*], aby: a) osiągnąć stan równowagi; b) reakcja biegła w prawo; c) reakcja cofnęła się. Narysować możliwy wykres zależności entalpii swobodnej układu i entalpii swobodnej reakcji od współrzędnej reakcji. Można założyć doskonałość fazy gazowej. a Tzn. przedstawić aktywności w ilorazie reakcji w formie właściwej dla określonego reagenta. 50. Jakie dane charakteryzujące czyste substancje są niezbędne aby można było obliczyć skład mieszaniny reagentów w stanie równowagi chemicznej? Przedstaw algorytm postępowania (w punktach, precyzując problemy matematyczne, które muszą być rozwiązane, ale nie rozwiązując ich szczegółowo) począwszy od znalezienia w tablicach pewnych (jakich?) wielkości dla podanej reakcji przebiegającej w fazie gazowej, np.: CO (g) + Cl 2(g) = COCl 2(g) [*] Uwaga! To pytanie zawsze sprawia dużo kłopotu. Zwracam uwagę, że składa się z dwóch części (a) podstawowe dane; (b) algorytm. Dane mogą być nazwane albo przedstawione za pomocą symboli. To drugie pod warunkiem, że są to symbole powszechnie używane (uwaga na prawidłowe indeksy!). Algorytm jest przepisem postępowania, a nie gotowym rozwiązaniem. Musi być podany w takiej formie, że laik będzie w stanie go zrealizować, stąd preferowane są punkty po kolei robimy to i to. Proszę nazywać operacje matematyczne, które muszą być wykonane np. rozwiązać równanie względem, uzależnić x od y itp. Występujące w algorytmie równania powinny być sprowadzone do formy odnoszącej się do podanej reakcji. 51. Określić jakościowo jak zmiana: a) temperatury; b) ciśnienia; c) gazu obojętnego; wpływa na położenie stanu równowagi chemicznej podanej reakcji: C 2 H 4(g) + H 2(g) = C 2 H 6(g) [*] mając podane wartości standardowych entalpii tworzenia reagentów. 52. Zdefiniować ciśnienie rozkładowe dla przykładowej reakcji [*] MgCO 3(s) = MgO (s) + CO 2(g) Podać skład układu, w którym zachodzi powyższa reakcja, w zależności od wartości ciśnienia cząstkowego CO 2 [*]. 53. Przedstawić algorytm (w punktach, precyzując problemy matematyczne, które muszą być rozwiązane, ale nie rozwiązując ich szczegółowo) określenia położenia stanu równowagi (i stężeń równowagowych) dla układu, w którym zachodzą równocześnie poniższe (dwie) reakcje [*]. N 2(g) + 2O 2(g) = 2NO 2(g) N 2(g) + O 2(g) = 2NO (g) 54. Na podstawie określonej funkcji ekstensywnej i ustalonej liczby składników w układzie, zdefiniować wielkość molową cząstkową oraz przedstawić I i II Twierdzenie Eulera. 55. Napisać relację Gibbsa-Duhema i równanie Gibbsa-Duhema-Margulesa dla układu o określonej liczbie składników. Sformułować główny praktyczny wniosek wynikający z tego drugiego równania. Naszkicować jakościowo zależność potencjałów chemicznych i współczynników aktywności od ułamka molowego dla roztworu dwuskładnikowego. 56. Dla podanej funkcji ekstensywnej i określonej liczby składników w mieszaninie, zdefiniować odpowiednią funkcję mieszania i funkcję nadmiarową oraz przedstawić molową funkcję ekstensywną z wykorzystaniem dwóch ostatnich funkcji. 57. Jakie funkcje termodynamiczne można obliczyć na podstawie zależności nadmiarowej entalpii swobodnej od temperatury, ciśnienia i składu? 58. Scharakteryzować roztwór atermalny i regularny. Do opisu jakich rzeczywistych układów mogą być stosowane te pojęcia? Jakie dane są potrzebne, aby można było zastosować model roztworu regularnego w wersji Schatcharda-Hildebranda? Jakie są ograniczenia w stosowalności tego modelu? 59. Napisać i naszkicować równanie izotermy p = p(x 1,T = const) i p = p(y 1,T = const) oraz izobary T = T(x 1,p = const) i T = T(y 1,p = const) równowagi ciecz-para w układzie dwuskładnikowym. Rozpatrzyć 3

Termodynamika techniczna i chemiczna termodynamika - egzamin 2015/2016 4 następujące przypadki: a) faza gazowa jest doskonała oraz pomija się wpływ ciśnienia na potencjał chemiczny czystych cieczy; b) układ spełnia prawo Raoulta (podać założenia). Zależności te można podać w formie uwikłanej. 60. Rozważamy dwuskładnikową ciekłą mieszaninę o określonym składzie pod umiarkowanymi ciśnieniami. W jaki sposób można oszacować jej następujące właściwości w oparciu o właściwości WYŁĄCZNIE czystych składników: a) prężność pary nasyconej i skład fazy gazowej (dla określonej temperatury); b) temperaturę wrzenia i skład fazy gazowej (dla określonego ciśnienia); c) rozpuszczalność czystych kryształów A w ciekłym B. Jakie dane są do tego potrzebne i przy spełnieniu jakich założeń jest to możliwe. 61. Narysować dowolną izotermę p = p(x 1,T = const) równowagi ciecz-para w niedoskonałym układzie dwuskładnikowym oraz odpowiadające jej ciśnienia cząstkowe p 1 i p 2. Podać postacie analityczne zależności ciśnień cząstkowych od składu fazy ciekłej na krańcach przedziału określoności. 62. Narysować dowolną, pełną (tj. w funkcji x 1 i y 1 ) izotermę i odpowiadającą jej izobarę równowagi cieczpara dla dwuskładnikowego układu azeotropowego: a) bez luki mieszalności; b) wykazującego lukę mieszalności w fazie ciekłej. Podać termodynamiczny warunek istnienia azeotropu. 63. Na podstawie dowolnej izobary równowagi ciecz-para, opisać (w punktach) proces ogrzewania ciekłej mieszaniny dwuskładnikowej o określonym składzie, aż do całkowitego jej odparowania. 64. Podać związki termodynamiczne, które muszą być spełnione dla równowagi ciecz-ciecz w układzie dwuskładnikowym. Czy równowaga taka może mieć miejsce dla: a) roztworu doskonałego; b) roztworu o dodatnich odchyleniach od doskonałości; c) roztworu o ujemnych odchyleniach od doskonałości. 65. Naszkicować możliwe krzywe równowagi ciecz-ciecz [krzywe rozpuszczalności - T=T(x 1 )] dla układów dwuskładnikowych. Na wszystkich wykresach zaznaczyć krytyczne punkty mieszalności, a na jednym (dowolnym) - składy współistniejących faz dla dowolnej temperatury. 66. Obliczyć prężność pary nasyconej oraz skład fazy gazowej będącej w równowadze nad mieszaniną dwóch cieczy praktycznie nie mieszających się w temperaturze T. Prężności pary nad czystymi substancjami A i B wynoszą w tej temperaturze p 1 o i p 2 o. 67. Zdefiniować współczynnik podziału składnika pomiędzy dwie fazy ciekłe. Napisać wzór na jego przybliżoną wartość w roztworach rozcieńczonych. 68. Narysować diagram rozpuszczalności (równowagi ciecz-ciało stałe) T = T(x 1, p = const) dla dwuskładnikowego układu tworzącego roztwór doskonały w fazie ciekłej oraz wykazującego całkowity brak mieszalności w fazie stałej. Oznaczyć fazy występujące w poszczególnych polach, podać równania krzywych oraz sposób znalezienia współrzędnych punktu eutektycznego. 69. Narysować określoną liczbę [*] diagramów rozpuszczalności T = T(x 1,p = const), w których będzie występować: a) związek międzycząsteczkowy topiący się kongruentnie; b) związek międzycząsteczkowy topiący się inkongruentnie; c) punkt eutektyczny; d) punkt perytektyczny; e) roztwór stały. Opisać fazy współistniejące w poszczególnych polach diagramu, zaznaczyć punkty charakterystyczne (tj. punkt eutektyczny i perytektyczny) oraz naszkicować dwie krzywe chłodzenia dla dwóch dowolnych składów dowolnych diagramów. 70. Opisać szczegółowo (w punktach) proces chłodzenia ciekłej próbki dwuskładnikowej dla układu eutektycznego. W szczególności zaznaczyć fakt pojawiania się lub znikania jakiejś fazy oraz określić stężenia współistniejących faz. Opis musi być zilustrowany diagramem rozpuszczalności oraz odpowiednią krzywą chłodzenia. 71. Jak temperatura wpływa na rozpuszczalność czystego ciała stałego w roztworze ciekłym. Podać wpływ jakościowy oraz matematyczny charakter przybliżonej zależności. 72. Wyjaśnić następujące pojęcia: a) eutektyk; b) perytektyk; c) związek topiący się kongruentnie; d) związek topiący się inkongruentnie. 73. Na podstawie trzech diagramów fazowych równowagi ciecz - ciało stałe [T = f(x, p = const] w układach dwuskładnikowych (A+B, A+C i B+C), o sprecyzowanych cechach, wykreślić możliwy diagram fazowy w układzie trójskładnikowym (A+B+C) [F(x 1,x 2, p = const, T = const)] dla podanej temperatury. 74. Narysować dowolny diagram fazowy w układzie trójskładnikowym (p,t = const) składającym się z wody oraz dwóch soli o wspólnym jonie (A,B) tworzących następujące związki międzycząsteczkowe w fazie stałej: A 2H 2 O i B H 2 O [*], które występują w równowadze z fazą ciekłą. Opisać pola oraz zaznaczyć 4

Termodynamika techniczna i chemiczna termodynamika - egzamin 2015/2016 5 miejsce geometryczne punktów obrazujących zmianę składu podczas odparowywania wody z dowolnego wyjściowego roztworu nienasyconego. 75. Opisać równowagę osmotyczną, zdefiniować ciśnienie osmotyczne podać równanie na ciśnienie osmotyczne w roztworach bardzo rozcieńczonych. 76. Przedstawić hipotezę lokalnej równowagi i lokalne sformułowanie II Zasady Termodynamiki. 77. Zdefiniować źródło entropii i podać warunki, które musi ono spełniać dla: a) dowolnego procesu; b) stanu stacjonarnego. Podać ogólną zależność źródła entropii od sił termodynamicznych. 78. Przedstawić zależność strumieni przepływu od sił termodynamicznych, postulowaną przez liniową termodynamikę procesów nieodwracalnych. Podać warunki spełniane przez współczynniki fenomenologiczne. 5