OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

Podobne dokumenty
Wykład 17: Optyka falowa cz.1.

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

interferencja, dyspersja, dyfrakcja, okna transmisyjne Interferencja

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.

18 K A T E D R A F I ZYKI STOSOWAN E J

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę

Interferencja i dyfrakcja

Prawa optyki geometrycznej

Interferencja i dyfrakcja

Fizyka elektryczność i magnetyzm

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1

Wykład 16: Optyka falowa

Ćwiczenie: "Zagadnienia optyki"

Wykład 16: Optyka falowa

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA

Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela

przenikalność atmosfery ziemskiej typ promieniowania długość fali [m] ciało o skali zbliżonej do długości fal częstotliwość [Hz]

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

Optyka falowa. dr inż. Ireneusz Owczarek CMF PŁ 2012/13

Wykład 17: Optyka falowa cz.2.

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA

MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera.

Interferencja. Dyfrakcja.

Wprowadzenie do optyki (zjawisko załamania światła, dyfrakcji, interferencji, polaryzacji, laser) (ćw. 9, 10)

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE

BADANIE INTERFEROMETRU YOUNGA

Ćwiczenie O3-A3 BADANIE DYFRAKCJI NA SZCZELINIE I SIAT- CE DYFRAKCYJNEJ Wstęp teoretyczny

Pomiar drogi koherencji wybranych źródeł światła

Optyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Na ostatnim wykładzie

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu


WSTĘP DO OPTYKI FOURIEROWSKIEJ

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

9. Optyka Interferencja w cienkich warstwach. λ λ

OPTYKA. Leszek Błaszkieiwcz

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki

LABORATORIUM OPTYKI GEOMETRYCZNEJ

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Wyznaczanie wartości współczynnika załamania

LASERY I ICH ZASTOSOWANIE

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WŁASNOŚCI FAL (c.d.)

Wyznaczenie długości fali świetlnej metodą pierścieni Newtona

Zjawisko interferencji fal

Podstawy fizyki wykład 8

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny

Ć W I C Z E N I E N R O-6

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej

G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ

Zjawisko interferencji fal

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Mikroskop teoria Abbego

Interferometr Michelsona

O3. BADANIE WIDM ATOMOWYCH

Zjawisko interferencji fal

Wyznaczanie rozmiarów przeszkód i szczelin za pomocą światła laserowego

FIZYKA 2. Janusz Andrzejewski

Badanie widma fali akustycznej

pobrano z serwisu Fizyka Dla Każdego zadania z fizyki, wzory fizyczne, fizyka matura

Wykład FIZYKA II. 8. Optyka falowa

LASERY I ICH ZASTOSOWANIE

WOJSKOWA AKADEMIA TECHNICZNA

Wykład 27 Dyfrakcja Fresnela i Fraunhofera

TECHNIKI OBSERWACYJNE ORAZ METODY REDUKCJI DANYCH

Odgłosy z jaskini (11) Siatka odbiciowa

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI

PIERWSZA PRACOWNIA FIZYCZNA Ćwiczenie nr 64 BADANIE MIKROFAL opracowanie: Marcin Dębski, I. Gorczyńska

Fala na sprężynie. Projekt: na ZMN060G CMA Coach Projects\PTSN Coach 6\ Dźwięk\Fala na sprężynie.cma Przykład wyników: Fala na sprężynie.

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA

ĆWICZENIE NR 83 BADANIE DYFRAKCJI I INTERFERENCJI ŚWIATŁA SPÓJNEGO

POMIAR DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ I SPEKTROMETRU

Uniwersytet Warszawski Wydział Fizyki. Światłowody

Pracownia fizyczna dla optyków okularowych. Drgania i fale. Instrukcja dla studentów

Ćwiczenie 369. Wyznaczanie długości fali świetlnej za pomocą spektrometru z siatką dyfrakcyjną. Długość fali,, [nm]

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Własności światła laserowego

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL

Transkrypt:

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia się fali na krawędziach przeszkód oraz w ich pobliżu. Zjawisko zachodzi dla przeszkód, które mają dowolną wielkość, ale wyraźnie jest obserwowane dla przeszkód o rozmiarach porównywalnych z długością fali. Dyfrakcja używana jest do badania fal oraz obiektów o niewielkich rozmiarach, w tym i kryształów, ogranicza jednak zdolność rozdzielczą układów optycznych. Jeżeli wiązka fal przechodzi przez szczelinę lub omija obiekt, to zachodzi zjawisko ugięcia. Zgodnie z zasadą Huygensa fala rozchodzi się w ten sposób, że każdy punkt fali staje się nowym źródłem fali kulistej. Za przeszkodą fale nakładają się na siebie zgodnie z zasadą superpozycji. Przy spełnieniu pewnych warunków za przeszkodą pojawiają się obszary wzmocnienia i osłabienia rozchodzących się fal (interferencja).zjawisko dyfrakcji występuje dla wszystkich rodzajów fal np. fal elektromagnetycznych, fal dźwiękowych oraz fal materii. Siatka dyfrakcyjna przyrząd do przeprowadzania analizy widmowej światła. Tworzy ją układ równych, równoległych i jednakowo rozmieszczonych szczelin. Stała siatki dyfrakcyjnej to parametr charakteryzujący siatkę dyfrakcyjną. Wyraża on rozstaw szczelin siatki (odległość między środkami kolejnych szczelin).

Światło monochromatyczne (jedna długość fali, w naszym przypadku jest to wiązka lasera o długości fali 650 nm) ulega dyfrakcji, lecz nie rozszczepia się, co ułatwia prowadzenie pomiarów i znacznie upraszcza obliczenia. Ponadto wiązka laserowa cechuje się spójnością i stosunkowo małą rozbieżnością, stąd szerokie zastosowanie laserów przy wykonywaniu doświadczeń dyfrakcyjnych i interferencyjnych. Doświadczenie Younga eksperyment polegający na przepuszczeniu światła spójnego przez dwie blisko siebie położone szczeliny i obserwacji obrazu powstającego na ekranie. Wskutek interferencji na ekranie powstają jasne i ciemne prążki w obszarach, w których światło jest wygaszane lub wzmacniane. Warunki na maksimum i minimum: max: dsinα = nλ min: dsinα = ( 2n+1 2 )λ

Schemat doświadczenia dla wielu szczelin: Gdy monochromatyczna fala świetlna dociera do siatki dyfrakcyjnej, dochodzi do dyfrakcji światła (czyli ugięcia fali). Zgodnie z zasadą Huygensa każda szczelina emituje falę świetlną w kąt półpełny. Następnie fala świetlna dochodzi do soczewki skupiającej światło na fotodetektorze. Intensywność światła jest zależna od ilości zsumowanych fal świetlnych, zatem na środku wykresu widzimy największy pik, kolejne są coraz mniejsze. Tempo zmniejszania się kolejnych pików jest zależna od ilości szczelin na siatce dyfrakcyjnej, co spowodowane jest ilością interferujących fal ze sobą na zasadzie superpozycji.

Spodziewane wyniki laboratoryjne (po obróbce w programie Excel): Dla jednej szczeliny: Dla dwóch szczelin: Dla wielu szczelin:

Im więcej mamy szczelin na płytce, tym zagęszczenie pików interferencyjnych jest większe. Im szczeliny są węższe, tym widmo jest szersze, czyli większe odstępy między minimami/maksimami interferencyjnymi. Kształt szczelin wpływa na rodzaj otrzymanego widma interferencyjnego. W naszym przypadku szczeliny są prostokątne, co powoduje że otrzymujemy wykresy funkcji sinc 2. Kształt szczelin powoduje także jak wygląda obwiednia dyfrakcyjna. Gdyby szczeliny były w kształcie otworu kołowego, to wtedy powstaje centralne maksimum i koncentryczne z nim maksima i minima. Praktyczne wskazówki dotyczące wykonania ćwiczenia: 1) Należy ustawić prawidłowo układ pomiarowy, według instrukcji która znajduje się na pracowni laboratoryjnej. Jedynym elementem jaki należy pominąć to polaryzator, ponieważ wychodząca wiązka laserowa jest bardzo małej intensywności, co po dodaniu polaryzatora będzie powodować brak jakiegokolwiek sygnały świetlnego na kamerze CCD. 2) Celowanie światłem laserowym w żądaną szczelinę: Najlepszym rozwiązaniem jest ustawienie płytki ze szczelinami w jednej z pozycji końcowych i zauważenie wiązki lasera na metalowej ramce. Oprócz tego należy przesunąć monitor komputera w kierunku tubusu, ponieważ światło od monitora powoduje rozjaśnienie wokół metalowej ramki ze szczelinami, przez co dużo trudniej jest zaobserwować światło lasera na ramce, podczas celowania w poszczególną szczelinę. Przesunięcie monitora spowoduje zwiększenie natężenia tła odbieranego przez detektor (jednak można w łatwy sposób wyeliminować wpływ tego jednorodnego oświetlenia, o czym będzie mowa w kolejnym punkcie). Na metalowej ramce układu szczelin będziemy widzieć odbijającą się wiązkę laserową (patrząc od strony lasera). Jedna osoba małymi ruchami musi przesuwać płytkę w kierunku pierwszej szczeliny i wycelować w sam środek szczeliny. Druga osoba musi obserwować widmo dyfrakcyjne na monitorze, aby wspomóc ocenę odpowiedniego położenia wiązki laserowej. Gdy wiązka lasera będzie padać na środek odpowiedniej szczeliny należy zatrzymać odczyt kamery przyciskiem: 3) Wyeliminowanie wpływu jednorodnego oświetlenia spoza układu pomiarowego (monitor): Należy kliknąć przycisk, otwiera on okno narzędziowe. Przechodzimy do zakładki Diffraction Angle. W pozycji Background należy wprowadzić wartość od 1% do 4% w zależności od tego, jak mocno przesuniesz monitor. Odpowiednia dobrana wartość eliminacji tła będzie wtedy, gdy widmo dyfrakcyjne będzie zaczynać się od zera w płaszczyźnie y. Należy zwrócić szczególną uwagę, aby nie wyciąć tła zbyt mocno, wtedy widmo będzie zaczynać się poniżej zera płaszczyzny y. 4) Zachęcam do zapoznania się ze stroną: http://bit.ly/lab-op2 Na powyższej stronie jest bardzo dobrze zobrazowana różnica pomiędzy dyfrakcją na jednej szczelinie, a na dwóch szczelinach.

Przydatne wzory: Całkowite natężenie (dyfrakcja i interferencja): sin 2 ( πa I = I dyf I int = 4I λ θ) nπd 0 ( πa cos2 ( λ λ θ)2 θ) gdzie: I 0 maksymalne natężenie w środku obrazu (dla θ = 0) λ długość fali (przyjmujemy 650 nm) θ kąt ugięcia d odległość między szczelinami (tzw. stała siatki dyfrakcyjnej) a szerokość szczeliny n - rząd dyfrakcji (n = 0,1,2, ) gdzie: α = πa λ sinθ Natężenie obrazu dyfrakcyjnego: I(θ) = I 0 ( sinα α ) 2 Szerokość szczeliny: a = n λ sinθ Odległość między szczelinami: d = n λ a sinθ Odległość między szczelinami (odległość poszczególnych minimów) zależy od szerokości szczeliny (a), od długości fali światła laserowego (λ), od kąta pod którym widoczne są kolejne minima obrazu dyfrakcyjnego (θ) oraz od rzędu minimum (n) licząc od środka prążka centralnego Kąt ugięcia (θ): Należy wiedzieć, że każdy rząd dyfrakcyjny ma swój kąt ugięcia. Aby obliczyć kąt ugięcia dla zadanego rzędu dyfrakcyjnego należy odczytać położenie minimum lub maksimum (w zależności co nam jest wygodniej odczytać) dyfrakcyjnego wybranego przez nas rzędu dyfrakcyjnego. Kąt ugięcia jest różnicą między prawym prążkiem, a lewym prążkiem danego rzędu, dzielonym przez dwa: θ = θ n prawy θ n lewy 2 gdzie n wybrany rząd dyfrakcyjny