Elektrotechnika elektronika miernictwo Franciszek Gołek Wykład 3. Obwody prądu sinusoidalnego

Podobne dokumenty
Elektrotechnika i elektronika (konspekt) Franciszek Gołek Wykład 3. Obwody prądu sinusoidalnego

Elektrotechnika elektronika miernictwo Franciszek Gołek Wykład 3. Obwody prądu sinusoidalnego

Obwody prądu zmiennego

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Elektronika (konspekt)

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

Systemy liniowe i stacjonarne

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Charakterystyki częstotliwościowe elementów pasywnych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8

LABORATORIUM OBWODÓW I SYGNAŁÓW

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

2.Rezonans w obwodach elektrycznych

Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

13 K A T E D R A F I ZYKI S T O S O W AN E J

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć

Dr inż. Agnieszka Wardzińska 105 Polanka Konsultacje: Poniedziałek : Czwartek:

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

Laboratorium Podstaw Elektrotechniki i Elektroniki

Elektronika (konspekt)

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Przyrządy pomiarowe w elektronice multimetr

LICZBY ZESPOLONE W ELEKTROTECHNICE, ELEKTRYCZNY WEKTOR ZESPOLONY, METODA SYMBOLICZNA,

WSTĘP DO ELEKTRONIKI

Siła elektromotoryczna

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

07 K AT E D R A FIZYKI STOSOWA N E J

Formalizm liczb zespolonych

Prąd d zmienny. prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie.

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Pracownia Technik Informatycznych w Inżynierii Elektrycznej

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego

OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Wykład 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym. PEiE

Wyprowadzenie wzorów na impedancję w dwójniku RLC. ( ) Przez dwójnik przepływa przemienny prąd elektryczny sinusoidalnie zmienny opisany równaniem:

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona

Prąd przemienny - wprowadzenie

Laboratorium Podstaw Elektrotechniki i Elektroniki

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie 3 Obwody rezonansowe

Elektrotechnika Skrypt Podstawy elektrotechniki

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 10. Dwójniki RLC, rezonans elektryczny

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Pomiar indukcyjności.

2. REZONANS W OBWODACH ELEKTRYCZNYCH

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C

Impedancje i moce odbiorników prądu zmiennego

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

ładunek pobrany ze źródła jest równy sumie ładunków na poszczególnych kondensatorach

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

Elementy elektroniczne i przyrządy pomiarowe

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną

Wzmacniacz jako generator. Warunki generacji

Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona

INDUKCJA ELEKTROMAGNETYCZNA

(EL1A_U09) 4. Przy otwartym przełączniku, woltomierz idealny wskazał 0. Po zamknięciu wyłącznika woltomierz i amperomierz idealny wskażą:

Obliczanie i pomiary parametrów obwodów prądu jednofazowego 311[08].O1.04

1 T. Sygnały. Sygnał okresowy f(t) Wartość średnia sygnału okresowego f(t) Sygnały f(t) Stałe. Zmienne f(t) const. Pulsujące Inne.

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy

MAGNETYZM. PRĄD PRZEMIENNY

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Warunek zaliczenia wykładu: wykonanie sześciu ćwiczeń w Pracowni Elektronicznej

II prawo Kirchhoffa Obwód RC Obwód RC Obwód RC

Autor: Franciszek Starzyk. POJĘCIA I MODELE potrzebne do zrozumienia i prawidłowego wykonania

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA)

FIZYKA 2. Janusz Andrzejewski

Zaznacz właściwą odpowiedź

Elektrotechnika elektronika miernictwo Franciszek Gołek Wykład 4. Energia elektryczna

Ćwiczenia tablicowe nr 1

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Efekt naskórkowy (skin effect)

Teoria obwodów. 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża:

Miernictwo I INF Wykład 13 dr Adam Polak

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego

1 Płaska fala elektromagnetyczna

Podstawy elektroniki

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

Obwody sprzężone magnetycznie.

Co było na ostatnim wykładzie?

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)

8. ELEMENTY RZECZYWISTE W OBWODACH PRĄDU ZMIENNEGO Cewka indukcyjna rzeczywista - gałąź szeregowa RL

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Transkrypt:

Elektrotechnika elektronika miernictwo Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 3. Obwody prądu sinusoidalnego

Obecnie powszechnie dostępna energia elektryczna jest produkowana w postaci sinusoidalnego napięcia wymuszającego sinusoidalne natężenie prądu elektrycznego. Częstotliwość tego zmiennego (mówimy też przemiennego) napięcia wynosi 50 Hz w Europie, a 60 Hz w Ameryce północnej. Dzięki transformatorom łatwo można zmieniać wielkość amplitud napięć i prądów zmiennych. Energia elektryczna (= U sk I sk t) w postaci dużych zmiennych napięć przy małych natężeniach prądów jest łatwa do ekonomicznego transportu przy użyciu sieci linii transmisyjnych systemu energetycznego. Wszędzie gdzie pożądane jest napięcie stałe stosowane są układy konwersji nazywane prostownikami.

Produkcja w elektrowniach polega na zamianie innych rodzajów energii na energię elektryczną zgodnie z prawem Faradaya E = -db/dt czyli SEM = - dφ/dt, jest to jedno z równań Maxwella. Dostępną energię (wiatrową, wodną, jądrową czy cieplną) wykorzystuje się do wirowania odpowiednimi zwojnicami w silnym polu magnetycznym.

Idea źródła napięcia sinusoidalnego: Uzwojenie w postaci ramki obejmującej powierzchnię A wiruje ze stałą prędkością kątową ω w stałym polu magnetycznym o indukcji B.

Końce ramki połączone są z pierścieniami, które ocierają się (ślizgają) o dociskane sprężynowo szczotki. Możemy określić zależność czasową strumienia Φ przenikającego ramkę jako: Φ = B A cos(ωt). Generowana siła elektromotoryczna: SEM = e = -dφ/dt = ωbasin(ωt) Gdy ramka ma N zwoi to: SEM = NωBAsin(ωt) = E max sin(ωt)

W elektrotechnice podstawowym przebiegiem napięć i prądów (wymuszeń i skutków) jest przebieg sinusoidalny. Takie przebiegi są generowane przez wirujące maszyny elektryczne zwane generatorami prądu zmiennego. Z podstaw trygonometrii wiadomo, że przebieg sinusoidalny można otrzymać przez rzutowanie promienia (w kole trygonometrycznym), wirującego ze stałą prędkością kątową ω, na jedną z nieruchomych osi. Wynik rzutowania na y jest identyczny z tym na x, ale przesunięty w czasie.

Dla obwodów z prądami zmiennymi prawa Kirchhoffa i Ohma obowiązują w pełni dopiero w zapisie zespolonym! Obok wartości chwilowej istotna też jest faza przebiegu, zatem podając 2 wielkości mamy więcej informacji! Częstotliwość też jest ważna! Chociaż w elektrotechnice mamy tylko jedną, u nas 50 Hz.

Liczby zespolone (liczby dwuczęściowe) Urojona część liczby zespolonej Dysponując tylko liczbami rzeczywistymi mamy problem z rozwiązaniem takich równań jak np.: X 2 + 1 = 0. Jeżeli jednak za X podstawimy coś co nie jest liczbą rzeczywistą: -1, to podnosząc do kwadratu tę dziwną wielkość otrzymujemy liczbę rzeczywistą -1. Zatem to coś spełnia równanie: X 2 + 1 = 0. Podobnie możemy podstawić za X wartość - -1. Jeżeli uznamy wielkość -1 za coś realnego i oznaczymy na przykład przez j to z łatwością rozwiążemy wiele innych równań, przykładowo równanie X 2 + 9 = 0 spełniają rozwiązania: X = -3j oraz +3j. W elektronice stosujemy symbol: j = -1 = (-1) 0.5, chociaż w matematyce używany jest symbol i = (-1) 0.5. Powód: bo i w elektronice to prąd elektryczny.

Liczby i funkcje zespolone w elektrotechnice i elektronice. Liczby zespolone mają postać dwuskładnikową (zespoloną): Z = x + jy. Gdzie j = -1 jest pierwiastkiem kwadratowym z liczby -1. Taka notacja przypomina zapis położenia punktu na płaszczyźnie przy pomocy dwóch równoprawnych współrzędnych: Z = (x, y). W dziedzinie liczb zespolonych jest jednak pewna asymetria np. kwadrat liczby czysto rzeczywistej (x + j0) jest wielkością czysto rzeczywistą dodatnią (x 2 + j0) a kwadrat liczby czysto urojonej (0 + jy) jest wielkością czysto rzeczywistą ujemną (-y 2 + j0) bo j 2 = -1. Dlatego liczby zespolone traktujemy jako zapis położenia punktu na płaszczyźnie zespolonej. Wielkości zespolone (liczby i funkcje) są wyjątkowo udaną abstrakcją stosowaną w opisie oscylacyjnych przebiegów napięć i prądów w elektrotechnice oraz elektronice. Dobrym tego przykładem są tzw. wykresy wskazowe, które zastosujemy przy analizie układów RLC zasilanych napięciami sinusoidalnymi. Zapis przebiegów sinusoidalnych w postaci funkcji zespolonych jest niezastąpiony przy analizie zależności amplitudowych i fazowych.

Przypomnijmy równość Eulera: e jx = cos(x) + jsin(x) oraz równoważność formuł: Ae j(ωt + φ) = Acos(ωt + φ) + jasin(ωt + φ) z określeniem położenia punktu wirującego na płaszczyźnie zespolonej z prędkością kątową ω - zwaną też pulsacją.

Mnożenie wielkości zespolonych jest łatwe gdy zastosujemy postać wykładniczą! Przykładowo zapis prawa Ohma jako iloczynu zespolonego prądu I i tzw. zawady Z (Z to zespolona - uogólniona oporność): U = I Z = Ie j(ωt + α) Ze jβ = ZIe j(ωt + α+ β) j(ωt + θ) = Ue Mamy tu doskonałą ilustruję relacji amplitudowej i fazowej: amplitudowa: U = IZ i fazowa: θ = α + β Faza wyniku mnożenia to suma faz czynników! Zapis zespolony ilustruje też zależności faz od czasu: faza U = argument U = ωt + α + β = ωt + θ.

Zilustrujmy iloczyn z poprzedniej strony: U = I Z = Ie j(ωt + α) Ze jβ = ZIe j(ωt + α+ β) j(ωt + θ) = Ue Przy pomocy obrazów: W iloczynie mamy sumę argumentów i iloczyn modułów.

Zatem dowolną wielkość np. napięcie u = U max cos(ωt + ϕ) o amplitudzie A = U max możemy rozumieć jako część rzeczywistą napięcia zapisanego o postaci U = U max e j(ωt + ϕ). Ze względu na zmienną t czas, dobrą ilustracją może być film pokazujący jak z upływem czasu wektor U wiruje, bo rośnie jego argument czyli kąt między nim a osią odciętych: ωt + ϕ. Przy analizie i obliczeniach zwykle posługujemy się sytuację zatrzymaną w kadrze czyli wybieramy jakąś dogodną chwilę np. t = 0. http://faraday.ee.emu.edu.tr/eeng224/lecture_notes.htm http://staff.southwest.tn.edu/kfoster/links_4.htm

Zajmiemy się teraz pojemnością i indukcyjnością, które znane są między innymi z tego, że napięcia i prądy w nich występujące nie są zgodne w fazie. Początek ładowania kondensatora to duży prąd i małe napięcie, a koniec to zero prądu i maksymalne napięcie! Tu prąd jest potrzebny do zmian napięcia. W cewce aby rozpędzić prąd zaczynamy od dużego napięcia i powoli rosnącego prądu. Gdy prąd osiągnie maksimum i przestaje się zmieniać mamy zerowe napięcie. Tu napięcie jest potrzebne do zmian natężenia prądu.

Kondensatory w obwodach elektronicznych, podobnie jak oporniki są elementami biernymi, nie mogą wzmacniać (zwiększać moc) sygnału elektrycznego. Kondensator jest dwójnikiem (ma dwa zaciski jak opornik) i składa się z dwóch okładzin metalowych o dużej powierzchni odizolowanych dielektrykiem o dużej przenikalności elektrycznej. Stosowane konstrukcje i materiały są rozmaite i nadal ulepszane. Kondensatory, podobnie jak rezystory należą do grupy podstawowych elementów elektroniki. Ładunek i napięcie na idealnym kondensatorze spełniają następujący związek (prawo Volty): Q = CU. Różniczkując obie strony po czasie otrzymujemy dq/dt = CdU/dt. dq/dt jest oczywiście prądem elektrycznym I.

Z równości I = CdU/dt widać, że stały prąd (ładowania) oznacza stałe tempo zmian napięcia na kondensatorze. Prąd jest wprost proporcjonalny nie do napięcia, jak dla opornika, lecz do szybkości zmian napięcia! Brak proporcjonalności między wartościami chwilowymi napięcia i prądu wyklucza zastosowanie prawa Ohma w dziedzinie liczb rzeczywistych. Zobaczymy też, że: Dla amplitud lub wartości skutecznych jednak prawo Ohma obowiązuje, a prawa Kirchhoffa NIE!!! Okazuje się, że dla wartości chwilowych pochodną można zastąpić mnożeniem w sytuacji, gdy mamy do czynienia z przebiegami sinusoidalnymi i ich zapisem zespolonym.

Zobaczmy to dokładniej. Z definicji pojemności mamy: Przy zmianach ładunku: I = CdU/dt Q = CU dq/dt = CdU/dt Mając napięcie sinusoidalne U = U max cos(ωt+φ) uzyskamy: I = CdU/dt = CU max d(cos(ωt+φ))/dt = ωcu max (-sin(ωt+φ)) = ωcu max (cos(ωt+φ +90 o )) Czyli prąd w kondensatorze uzyskaliśmy mnożąc przez ωc napięcie, któremu zmieniliśmy fazę o 90 o. To oznacza, że mając prąd wystarczy podzielić go przez ωc i przesunąć jego fazę o -90 o i otrzymamy napięcie. Widać, że nie ma tu współczynnika proporcjonalności!między prądem a napięciem

Jeżeli jednak funkcję U = U max cos(ωt+φ) potraktujemy jako część rzeczywistą wielkości zespolonej U max e j(ωt+φ) to: U = Re(U e j(ωt+φ) ) max I = Cd(U e j(ωt+φ) )dt = jωcu e j(ωt+φ) max max I = jωcu = B U C gdzie B = jωc C albo U = I/jωC = X I C gdzie X = 1/jωC C Zatem w zapisie zespolonym: Jest współczynnik! Jest prawo Ohma dla pojemności!

Ilustracja. Jeżeli przez kondensator płynie jakiś prąd zmienny to na tym kondensatorze mamy też zmienne napięcie. Prawo Ohma dla kondensatora, którego impedancją jest X C = 1/(jωC) = -j/(ωc) = 1/(ωC) e -jπ/2, w którym mamy prąd I = I max e j(ωt+φ) skutkuje iloczynem: U = I X C = I max e j(ωt+φ) 1/(ωC) e -jπ/2 = I max /(ωc) e j(ωt+φ-π/2) ; widzimy tu iloczyn modułów I max 1/(ωC) jako moduł napięcia a w wykładniku do aktualnego kąta prądu dodany kąt ujemny: π/2 Zatem napięcie U ma tu w każdej chwili fazę przesuniętą o π/2 względem fazy prądu. Wniosek: Pomnożenie prądu przez impedancję Xc daje napięcie opóźnione o ćwierć kąta pełnego (koresponduje to z prostym stwierdzeniem, że ładując kondensator na początku ładowania mamy duży prąd i zerowe napięcie, a po naładowaniu zerowy prąd i maksymalne napięcie).

Cewki indukcyjne. Modelem indukcyjności jest cewka, czyli też element z dwoma zaciskami dwójnik. Ze względu na rodzaj rdzenia wyróżniamy cewki: ferrytowe, metalowe, powietrzne. Indukcyjność ma taką własność, że prędkość zmian jej prądu jest proporcjonalna do panującego na niej napięcia. Tu stałe napięcie wymusza stały wzrost prądu. Z takiej relacji między prądem a napięciem wynika, że dla wartości chwilowych prądu i napięcie na cewce też nie działa prawo Ohma.

Mamy związek: U = LdI/dt, załóżmy że udało się nam wymusić prąd sinusoidalny w cewce: I = I max cos(ωt+φ) U = LdI/dt = LI max d(cos(ωt+φ))/dt = ωli max (-sin(ωt+φ)) = ωli max (cos(ωt+φ+90 o )) Czyli napięcie na cewce uzyskaliśmy mnożąc przez ωl prąd, któremu jeszcze zmieniliśmy fazę o 90 o. To oznacza, że mając prąd wystarczy pomnożyć go przez ωl i przesunąć jego fazę o 90 o i otrzymamy napięcie. Widać, że nie ma tu współczynnika proporcjonalności między prądem a napięciem!

Jeżeli jednak funkcję I = I max cos(ωt+φ) potraktujemy jako część rzeczywistą wielkości zespolonej I max e j(ωt+φ) to: I = Re(I e j(ωt+φ) ) max U = Ld(I e j(ωt+φ) )dt = jωli e j(ωt+φ) max max U = jωli = X I gdzie X = jωl albo L L I = (1/jωL)U = B U gdzie B =1/jωL L L Zatem w zapisie zespolonym: Jest współczynnik! Jest prawo Ohma dla indukcyjności!

Ilustracja. Jeżeli przez cewkę płynie jakiś prąd zmienny to na jej zaciskach mamy też zmienne napięcie. Prawo Ohma dla indukcyjności, której impedancją jest: X L = jωl = ωle jπ/2 i w której mamy prąd I = I max e j(ωt+φ) wyraża się iloczynem: U = I X L = I max e j(ωt+φ) ωle jπ/2 = I max ωle j(ωt+φ+π/2) ; widzimy tu iloczyn modułów I max i ωl jako moduł napięcia a w wykładniku do aktualnego kąta prądu dodany kąt dodatni: π/2. Zatem napięcie U ma tu w każdej chwili fazę przesuniętą o π/2 względem fazy prądu. Wniosek: Pomnożenie prądu przez impedancję X L daje napięcie wyprzedzające o ćwierć kąta pełnego prąd. Koresponduje to z prostym stwierdzeniem, że na początku rozpędzania ładunku mamy jeszcze zerowy prąd a maksymalne napięcie. Gdy prąd osiągnie maksymalną wartość to napięcie odpowiedzialne za jego zerowe zmiany jest zerowe!

Chociaż i tu nie występuje proporcjonalność między chwilowymi wartościami napięcia i prądu to zachodzi jednak proporcjonalność między wartościami skutecznymi jak również między amplitudami tj. modułami czyli wartościami maksymalnymi, ale pojawiającymi się niejednocześnie - występuje przesunięcie fazowe. Jak widać dla indukcyjności i pojemności współczynniki X L i X C są czysto urojone zatem wektory prądu z wektorami napięcia na tych elementach tworzą kąty proste. To oznacza, że iloczyn skalarny U I - moc tracona w idealnym kondensatorze lub indukcyjności jest zerem?! Ten efekt odróżnia kondensatory i cewki od rezystorów. W rzeczywistości mamy do czynienia z pewnymi stratami mocy w dielektryku kondensatora oraz rdzeniu i przewodach cewki. W obwodach LC dominujące są jednak straty mocy na rezystancji uzwojenia cewki. Zachowanie się cewek i kondensatorów zależy od częstotliwości sygnału elektrycznego bo impedancje X L i X C zależą od ω. Dławik to solenoid o dużej indukcyjności pełniący rolę dużej impedancji dla prądów zmiennych.

Szeregowy obwód RLC. Stosując napięciowe prawo Kirchhoffa do oczka na rysunku obok, możemy napisać równanie: u(t) = u R (t) + u L (t) + u C (t) Przykładając sinusoidalne napięcie: u(t) = U m e j(ωt+φ) musimy otrzymać prąd: i(t) = I m e j(ωt+ψ) - periodyczna przyczyna to i periodyczny skutek. Wstawmy zatem do równania obwodu wyrażenie: i(t) = I m e j(ωt+ψ). Otrzymamy: U m e j(ωt+φ) = RI m e j(ωt+ψ) + (1/C) I m e j(ωt+ψ) dt + Ld(I m e j(ωt+ψ) )/dt. U m e j(ωt+φ) = RI m e j(ωt+ψ) + (1/jωC)I m e j(ωt+ψ) + jωli m e j(ωt+ψ) U m e j(ωt+φ) = I m e j(ωt+ψ) (R+ 1/jωC + jωl) U m e j(ωt+φ) = I m e j(ωt+ψ) (R+ j(ωl 1/ωC)) -> U = I Z czyli: U Zespolone napięcie = I Zespolony prąd (R+ j(ωl 1/ωC)) Impedancja zespolona. Zespolona impedancja szeregowo połączonych R, L i C ma zatem postać: Z = R+ j(ωl 1/ωC) = R + j(x L X C ) = R +X, możemy zapisać: Z = R + X L + X, Z = Z + Z + Z C 1 2 3. Ponadto U = I Z po rozpisaniu:

Dzielniki napięcia RLC zawierające elementy typu C lub L - dzielą napięcie zależnie od częstotliwości. Zatem zmieniają kształt sygnału, sygnał wyjściowy jest inny od wejściowego, chociaż są to elementy liniowe! Podobnie działają dzielniki prądu zawierające elementy typu C lub L dzielą prąd zależnie od częstotliwości. Dla układów R L C obowiązuje uogólnione prawo Ohma: U = I Z, I = Y U, gdzie Y = 1/Z, Z - impedancja, Y admitancja, i wszystkie wielkości są wyrażane w postaci zespolonej. Obliczanie wypadkowej impedancji Z w dla układu złożonego z elementów Z 1, Z 2,...Z n, odbywa się podobnie jak obliczanie wypadkowej rezystancji układu złożonego z elementów R 1, R 2,... R n. Różnicę daje tylko samo zastosowanie liczb zespolonych.

Impedancję wyrażamy jako: Z = R + X jednostka Ω Ohm. zawada = oporność czynna + oporność bierna, Impedancja = impedancja czynna + impedancja bierna, gdzie: X = X L + X C, R jest rezystancją, czyli impedancją czynną. Impedancje bierne: X L = jωl reaktancja indukcyjna, X C = 1/jωC reaktancja pojemnościowa Admitancja to odwrotność impedancji: Y = 1/Z = G+jB, Jednostką admitancji jest Simens 1S = 1/Ω. G = 1/R - konduktancja, B = 1/X - susceptancja, Y C = B C = jωc, Y L = B L = 1/jωL.

Przykład 3.1. Wiedząc, że w układzie obok jest prąd zmienny o natężeniu I = 5cosωt A, ω = 2π50 rad/s = 314 rad/s, R = 0,5 Ω, L = 1 mh, C = 4 mf, obliczyć wszystkie napięcia. Rozw. U R = IR = (5cosωt A)(0,5 Ω) = 2,5cosωt V, lub U R = [5(cosωt +jsinωt) A](0,5 Ω) = 2,5(cosωt +jsinωt) V, Albo: U R = (5e jωt A)(0,5 Ω) = 2,5e jωt, A najłatwiej: V R = IR = 5 0 A 0,5 0 Ω = 2,5 0 V. U L = IX L = I (jωl) = [5(cosωt + jsinωt) A](j0,314 Ω) = 1,57(- sinωt + jcosωt) V = 1,57[cos(ωt + π/2) + jsin(ωt + π/2)] V, Albo: U L = IX L = 5e jωt 0,314e jπ/2 AΩ = 1,57e j(ωt+π/2), U L = IX L = 5 0 A 0,314 π/2 Ω =1,57 π/2 V. U C = IX C = I(1/jωC) = [5(cosωt + jsinωt) A](-j/1,26 Ω) =3,98(sinωt - jcosωt)=3,98[cos[ωt-π/2) jsin(ωt-π/2)] V. Albo: U C = IX C = I(1/jωC) = I(-j/ωC) = (5e jωt A)(-j/1,26 Ω) = 5e jωt 0,796e -jπ/2 = 3,98e j(ωt-π/2), A najprościej: U C = IX C = 5 0 A 0,796 -π/2 Ω =3,98 -π/2 V..

V R = 2,5 0 V V L = 1,57 π/2 V. V C = 3,98 -π/2 V. U = U R + U L + U C, dla t = 0: U = 2,5 V + 1,57[jsin(0 + π/2)] V + 3,98[jsin (0 - π/2)] V =[2,5 + j1,57 - j3,98] V = 2,5 V j 2,41 V. Arctan(-2,41/2,5) = 0,767rad. (2,5 2 + 2,41 2 ) 0,5 j(ωt - 0,767) =3,47 -> U = 3,47e V = 3,47-0,767 V. U = 3,47e j(ωt - 0,767) V = 3,47-0,767 V. graficzna ilustracja tego wyniku : ->

Wykresy wskazowe Wskaz, fazor (ang. phasor) jest liczbą zespoloną Ae jφ i wektorem na płaszczyźnie zespolonej reprezentującym sinusoidalny przebieg rzeczywisty: Acos(ωt +Φ). Np. u(t) = U max cos(ωt +Φ) = Re[U max e j(ωt +Φ) ] = Re[U max e jφ e jωt ]. Wskazem napięcia jest tu U max e jφ (taki wskaz bywa zapisywany jako: U max Φ) czyli jest to zespolona postać napięcia U w pewnej dogodnej chwili t (zwykle t = 0). Zatem wykres wskazowy do poprzedniego przykładu można przedstawić jak obok:

Podkreślmy, że fazorem (wskazem) F = F m e jφ nazywamy wielkość zespoloną, która reprezentuje funkcję sinusoidalnie zmieniającą się w czasie. Zbiorem wartości F = F m e j(ωt+φ) jest okrąg o promieniu F m ze środkiem w początku układu płaszczyzny zespolonej (Re, Im). Wykresem wskazowym nazywamy graficzną prezentację napięć i prądów sinusoidalnych w danym układzie prądu zmiennego o zadanej częstotliwości. Wykres ilustruje wielkości amplitud prądów i napięć oraz ich relacje fazowe w układzie w stanie stacjonarnym (tj. po czasie od włączenia źródeł znacznie dłuższym od okresu oscylacji T). Pojedynczy wykres dotyczy jednej (chociaż dowolnie wybranej) częstotliwości. Wykresy wskazowe są też graficzną ilustracją równań jakie dają nam prawa Kirchhoffa (prądowe i napięciowe) oczywiście zapisane w postaci zespolonej. Dlatego początkujący często wykreślają wskazy na płaszczyźnie zespolonej z zaznaczonymi osiami Im i Re. W rzeczywistości na takiej płaszczyźnie wszystkie wektory powinny wirować zgodnie z pulsacją ω, natomiast wykres jest uchwyceniem ułożenia wektorów w określonej, dogodnej chwili (np. gdy jakiś prąd lub napięcie przechodzi przez swoje maksimum). Z wykresu znajdujemy relacje między długościami wektorów (tj. amplitudami) napięć i prądów oraz ich względne przesunięcia fazowe. Wykresy wskazowe są szeroko stosowane w elektrotechnice (tu zamiast amplitud można spotkać wartości skuteczne przy analizie przekazu mocy). Przy analizie filtrów mogą stanowić dogodną ilustrację relacji między sygnałem wejściowym i wyjściowym danego filtra dla wybranej częstotliwości.

Ważne! W przykładach, w których zastosujemy zapis wielkości w postaci zespolonej należy zauważyć, że: 1) Do zapisu równań będących prawami Kirchhoffa wstawiamy wszystkie napięcia, prądy i impedancje w postaci zespolonej. Prawa Kirchhoffa nie obowiązują dla wartości skutecznych i dla modułów czyli amplitud. Oczywiście po napisaniu równania możemy wziąć moduły obu stron (całych stron!). 2) Gdy prawo Ohma jest treścią równania (jedna wielkość = iloczyn lub iloraz dwu innych) to możemy go zapisać nie tylko dla wielkości zespolonych ale również dla modułów i dla wartości skutecznych.

Przykład 3.2. Obliczyć zawadę układu oraz natężenie prądu po przyłożeniu Napięcia U = 240cos(314t). Rozw. Z = X L + R + X C = R + jωl j/ωc = 1Ω + j(ω10-6 - 1/ω10-6 )Ω = 1Ω + j(3,1410-4 - 1/(3,14 10-4 ))Ω =1Ω j3183ω = 3183 89,98 Ω. I = U/Z = 240 0 / 3183 89,98 A = 75,4mV 89,98 A. Przykład 3.3. Obliczyć zależność zawady od ω. Rozw. Z = X L + X C R/(R + X C ) = jωl j(r/ωc)/(r j/ωc) = jω j(10 12 /ω)/(10 6 j10 6 /ω) = jω j10 6 /(ω j) = 10 6 /(ω 2 + 1) + jω(1 10 6 /(ω 2 + 1)).

Przykład 3.4. Znajdź zastępczy układ Thevenina dla podanego obok układu. Rozw. Z punktu widzenia zacisków: Z 1 II Z 2, Jeżeli Z 1 i Z 2 są równoległe to Z T obliczymy ze wzoru na zastępczą impedancję połączenia równoległego:

Przykład 3.5. Narysować wykres wskazowy dla układu RLC (jak na rys. obok) zasilanego napięciem sinusoidalnym o pulsacji ω = 1000 rad/s i amplitudzie 2 V. Rozwiązanie: Ponieważ mamy do czynienia z układem stacjonarnym (długo po włączeniu zasilania) możemy zasilanie zapisać jako: U we = 2e j(1000t + ϕ) V = U C = U RL, wybierzmy ϕ = 0 i t = 0 => Prąd z zasilacza I ulega rozgałęzieniu na I C i I RL I C = U C /X C = 2/(1/jωC) = 2/(1/j10 3 10-4 ) = j0,2 A. I RL = U RL /(R + jωl) = U RL (R - jωl)/(r 2 + ω 2 L 2 ) = (0,038 j0,19) A. I = I C + I RL = (0,038 + j0,01) A. U R = I RL R = (0,076 j 0.38) V. U L = I RL X C = (0,038 j0,19) jωl = (0,038 j0,19) j10 = (1,9 + j0,38) V. Uzyskany wykres obrazuje relacje między poszczególnymi napięciami i prądami.

6. Narysuj wykres wskazowy i obliczyć wartości przepięcia w rezonansie układu dla R = 1 Ω, i R = 0,1 Ω przy zasilaniu napięciem o amplitudzie 1 V. 7. Znajdź częstotliwość rezonansową dla układu. E-E-M. Lista-03 1. Mając dwie liczby zespolone A = 3 + j3, B = 1 + j 3, oblicz AB oraz A/B. 2. Narysować wykres wskazowy dla szeregowo połączonych rezystora 10Ω i kondensatora 1mF, przez które płynie prąd I = 2sin(2π50t) A. Oblicz całkowite napięcie przyłożone do układu RC oraz różnice faz między prądem i wszystkimi napięciami. 3. Do indukcyjności L = 1 mh o rezystancji uzwojenia 1Ω należy dołączyć szeregowo kondensator tak aby uzyskać rezonans dla częstotliwości 1MHz. Narysować wykres wskazowy dla zasilania napięciem U = 1Vsin(2π10 6 t). 4. Obliczyć zawadę układu dla częstotliwości kątowej (pulsacji) 1rad/s i 1Mrad/s. Obliczyć różnicę faz między przyłożonym napięciem a prądem w tym układzie. 5. Oblicz zawadę układu dla pulsacji 1rad/s i 1Mrad/s. Oblicz różnicę faz między napięciem i prądem w tym układzie.

Dodatek dla opornych. Co znaczą następujące zapisy? 1) I = Icos(ωt +β) = I amplituda cos(ω pulsacja t czas + β kąt początkowy dla t = 0s ) jest to zapis kosinusoidalnego (sinusoidalnego) przebiegu natężenia prądu. 2) I = Icos(ωt +β) + jisin(ωt +β) = Ie j(ωt +β) oznacza ten sam prąd co w punkcie poprzednim ale zapisanym w postaci zespolonej pozwalającej łatwo czynić poprawne obliczenia! Jeżeli zamiast informacji, że I = 5cos(ωt + π/2) otrzymamy informacje że w pewnej chwili t = 0 s prąd miął natężenie I = 0 A to nie wiemy czy w następnych chwilach prąd będzie nie zerowy. Gdy jednak informacją będzie, że danej chwili I = 0 + j5 [A] = j5 A to wiemy, że chociaż teraz I = 0 A to po chwili już I 0 A, a w pewnej chwili będzie 5 A!!!

Równoległy obwód RLC. Rysunek (a) ilustruje równoległy obwód rezonansowy RLC z idealna indukcyjnością i pojemnością. Natomiast rysunek (b) przedstawia realistyczny układ równoległy LC. (można oczywiście dodać równolegle do całości rezystor R 2 by otrzymać układ RLC i zwiększyć pobierany prąd o wartość I R2 = U/R 2 ale po co?). Dla układu (a) częstotliwość rezonansowa wynosi: f r = ω r /2π = 1/[2π(LC) 1/2 ] bo tu rezonans ma miejsce gdy prądy I L i I C się wzajemnie wysycają a ma to miejsce gdy przewodność: Y = G + jb = 1/Z = G R + j(ωc - 1/ωL) = G R. Niestety w przypadku układu (b) wyrażenie na częstotliwość rezonansową jest inne!

Równoległy obwód RLC. Aby wyznaczyć częstotliwość rezonansową tego układu pomożemy sobie wykresem wskazowym, na którym umieścimy prądy i niektóre napięcia w tym obwodzie. Wymuszenie: u = U 0 e j(ωt + 0), I C = u/(-j/ωc) = juωc, I RL = u/(r + jωl) = u(r - jωl)/(r 2 + ω 2 L 2 ) Wybierając moment gdy u jest czysto rzeczywiste czyli wektor u leży na osi Re narysujemy: u = u = U 0, I RL = u(r - jωl)/(r 2 + ω 2 L 2 ) I C = juωc, Re(I RL ) = ur/(r 2 + ω 2 L 2 ) Im(I RL ) = -uωl/(r 2 + ω 2 L 2 ). Z wykresu wskazowego widać, że dla uzyskania zgodności fazy wypadkowego prądu (czyli sumy I C i I RL ) z fazą napięcia wymuszającego Im(I C ) = Im(I RL )

Równoległy obwód RLC. I RL = u(r - jωl)/(r 2 + ω 2 L 2 ) I C = juωc, Re(I RL ) = ur/(r 2 + ω 2 L 2 ) Im(I RL ) = -uωl/(r 2 + ω 2 L 2 ). Im(I C ) = Im(I RL ) uωc = uωl/(r 2 + ω 2 L 2 ); C = L/(R 2 + ω 2 L 2 ); R 2 + ω 2 L 2 = L/C ω 2 L 2 = L/C R 2 ω 2 = 1/LC R 2 /L 2 ω r = (1/LC R 2 /L 2 ) 1/2