Conjoint analysis jako metoda analizy preferencji konsumentów

Podobne dokumenty
Conjoint analysis jako metoda analizy preferencji konsumentów

Metodyczne problemy badań preferencji konsumenckich

Badania eksperymentalne

Prof. zw. dr hab. inż. dr h.c. Stanisław Urban Uniwersytet Ekonomiczny we Wrocławiu

SEGMENTACJA RYNKU A TYPY MARKETINGU

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Wykład 10 Skalowanie wielowymiarowe

RAPORT Z BADANIA ANKIETOWEGO NA TEMAT WPŁYWU CENY CZEKOLADY NA JEJ ZAKUP. Katarzyna Szady. Sylwia Tłuczkiewicz. Marta Sławińska.

Zmienne zależne i niezależne

Metody Ilościowe w Socjologii

Zarządzanie strategiczne. Dr inż. Aleksander Gwiazda. Wykład 6. Segmentacja strategiczna

ZASTOSOWANIE ANALIZY UNFOLDING I REGRESJI HEDONICZNEJ

Teoria Estymacji. Do Powyżej

Ćwiczenia nr 11. mgr Jolanta Tkaczyk

MARKETING USŁUG ZDROWOTNYCH

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

Recenzenci Stefan Mynarski, Waldemar Tarczyński. Redaktor Wydawnictwa Anna Grzybowska. Redaktor techniczny Barbara Łopusiewicz. Korektor Barbara Cibis

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

MINISTER INWESTYCJI I ROZWOJU 1)

Dr Kalina Grzesiuk. Produkt

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

SATYSFAKCJA KLIENTÓW SKLEPÓW SPOŻYWCZYCH FUNKCJONUJĄCYCH W SIECI HANDLOWEJ - BADANIA ANKIETOWE

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Analiza składowych głównych. Wprowadzenie

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

STATYSTYKA MATEMATYCZNA

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

METODY STATYSTYCZNE W BIOLOGII

WYKAZ PRAC PUBLIKOWANYCH

Segmentacja i wybór rynku docelowego. mgr Jolanta Tkaczyk

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0

Skalowanie wielowymiarowe idea

Analiza korespondencji

W1. Wprowadzenie. Statystyka opisowa

Mikroekonometria 9. Mikołaj Czajkowski Wiktor Budziński

Raport z badań na temat: Zachowanie klienta podczas zakupu kawy

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Raport z badania ankietowego

ANALIZA PREFERENCJI KONSUMENTÓW Z WYKORZYSTANIEM PROGRAMU STATISTICA ANALIZA CONJOINT I SKALOWANIE WIELOWYMIAROWE

Wprowadzenie do analizy korelacji i regresji

Statystyka w pracy badawczej nauczyciela

Wymagania edukacyjne na poszczególne oceny zgodne z podstawą programową kształcenia w zawodzie Technik Organizacji Reklamy

Rozdział 8. Regresja. Definiowanie modelu

Działania marketingowe

STRESZCZENIE. rozprawy doktorskiej pt. Zmienne jakościowe w procesie wyceny wartości rynkowej nieruchomości. Ujęcie statystyczne.

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Marcin Hundert Wykorzystanie metody conjoint do badania preferencji konsumentów telefonii ruchomej. Ekonomiczne Problemy Usług nr 42, 46-54

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski

STATYSTYKA MATEMATYCZNA

Podstawowe pojęcia statystyczne

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

POMIAR WIELOCZYNNIKOWY W ANALIZIE PREFERENCJI KONSUMENTÓW ŻYWNOŚCIOWYCH PRODUKTÓW REGIONALNYCH

Rozkłady zmiennych losowych

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonomiczny Uniwersytet Dziecięcy

Badania marketingowe 2013_2. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski

strona 1 / 12 Autor: Walesiak Marek Publikacje:

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku

MODELE LINIOWE. Dr Wioleta Drobik

Badania Statystyczne

METODY ILOŚCIOWE W ZARZĄDZANIU

Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33

W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.

KARTA PRZEDMIOTU. 1. Informacje ogólne

MARKETING BANKOWY NA SERWISACH SPOŁECZNOŚCIOWYCH MEDIA DLA CZŁOWIEKA CZY CZŁOWIEK DLA MEDIÓW

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

BRAND TRACKER. Przykładowe wyniki badania wizerunku marki sieci sklepów obuwniczych. Inquiry sp. z o.o.

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007

ANALIZA CONJOINT. W prezentacji wykorzystano m.in. materiały pochodzące z firmy Pentor Research International oraz Sawtooth Software, Inc.

Analiza zależności liniowych

WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW

Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych MENEDŻER. Wprowadzenie do problematyki decyzji menedżerskich. Mgr Piotr Urbaniak

Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka

ZALECANA LITERATURA:

Tabela 1. Macierz preferencji dotycząca pięciu przykładowych produktów (obiektów) i sześciu respondentów

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Estymacja punktowa i przedziałowa

SEGMENTACJA KONSUMENTÓW SMARTFONÓW NA PODSTAWIE PREFERENCJI WYRAŻONYCH SEGMENTATION OF SMARTPHONES CONSUMERS ON THE BASIS OF STATED PREFERENCES

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

STATYSTYKA MATEMATYCZNA

WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO

Mariola Kajfasz Magdalena Krzak Magda Kaczmarczyk Anna Jabłońska

Testy nieparametryczne

Sprowadzenie rzeczywistości do pewnych jej elementów określanych jako zmienne i stałe, razem z relacjami, jakie między tymi elementami zachodzą.

Opis przedmiotu. Karta przedmiotu - Probabilistyka I Katalog ECTS Politechniki Warszawskiej

Statystyka matematyczna i ekonometria

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap

strona 1 / 11 Autor: Walesiak Marek Subdyscyplina: Klasyfikacja i analiza danych Publikacje:

PRACE NAUKOWE AKADEMII EKONOMICZNEJ WE WROCŁAWIU Nr 780 PROGNOZOWANIE W ZARZĄDZANIU FIRMĄ 1997

BADANIA RYNKOWE I MARKETINGOWE

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA

WPŁYW TECHNOLOGII INFORMACYJNYCH NA POZIOM KSZTAŁCENIA STUDENTÓW KIERUNKU INFORMATYKA

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Transkrypt:

Zeszyty Naukowe nr 68 Akademii Ekonomicznej w Krakowie 5 Anna Szymaƒska Studium Doktoranckie Wydziału Zarzàdzania Dorota Dziedzic Studium Doktoranckie Wydziału Zarzàdzania Conjoint analysis jako metoda analizy preferencji konsumentów. Wprowadzenie Istotnym aspektem mającym decydujący wpływ na sukcesy rynkowe przedsiębiorstwa jest zrozumienie postępowania konsumenta oraz poznanie jego preferencji. Poznanie oczekiwań konsumenta w stosunku do oferowanego produktu, jak również preferowanych cech determinujących jego wybór ułatwi udoskonalenie produktu, poprawienie jego parametrów, nadanie mu najbardziej pożądanych cech. Postępowanie konsumenta definiowane jest jako zespół myśli, uczuć i działań związanych z nabywaniem i konsumowaniem dóbr i usług. W zachowaniach konsumentów istotne jest ukierunkowanie i zorganizowanie ciągów reakcji na bodźce wynikające z dążenia do zaspokojenia potrzeb. Zachowania konsumentów są dla przedsiębiorstwa źródłem inspiracji, pozwalają weryfikować podejmowane decyzje marketingowe we wszystkich fazach kształtowania oferty rynkowej. W związku z powyższym kluczowym zadaniem jest prowadzenie badań nad zachowaniami konsumentów. Celem ich jest usprawnienie procesów dostosowywania oferty przedsiębiorstwa do oczekiwań nabywców. Ważne jest nie tylko poznanie, ale również antycypowanie potrzeb, a nawet ich tworzenie. Wymaga to poznania cech konsumentów, realizowanych w spo- K. Mazurek-Łopacińska, Zachowania nabywców jako podstawa strategii marketingowej, Wydawnictwo AE we Wrocławiu, Wrocław 997, s..

54 Anna Szymańska, Dorota Dziedzic łeczeństwie stylów życia oraz prawidłowości ujawniających się w zachowaniach konsumentów na rynku. Skuteczną metodą pozwalającą poznać oczekiwania klientów, dokonać pomiaru ich preferencji oraz zbadać podobieństwa i różnice istniejące między alternatywnymi możliwościami wyboru spośród całej gamy oferowanych produktów jest conjoint analysis. Już sama nazwa wskazuje, że metoda ta polega na analizowaniu wpływu łącznego oddziaływania wielu cech produktu na dokonywane przez konsumentów decyzje zakupu wybranego produktu. Podstawowym zastosowaniem tej metody jest badanie dojrzałości rynkowej nowego produktu, pozycji rynkowej istniejących marek, konsekwencji przeobrażenia produktu, poziomu akceptacji nowych wariantów produktów, szacunkowego udziału w rynku nowych produktów w polu działania konkurencji oraz określenia ceny przynoszącej optymalny zysk 3. Głównym celem niniejszego artykułu jest przeprowadzenie analizy preferencji konsumentów przy zastosowaniu conjoint analysis. Efektem końcowym analizy będzie opracowanie profilu produktu oraz wyznaczenie charakterystyk opisujących potencjalnych nabywców należących do wyodrębnionego segmentu.. Charakterystyka metody conjoint analysis Conjoint analysis wykorzystywana jest do określenia preferencji respondenta ze względu na poszczególne atrybuty produktu oraz korzyści uzyskiwane przez kupującego w zależności od wartości poszczególnych atrybutów produktu. Metoda ta umożliwia równoległe zbadanie preferencji i segmentacji rynku oraz stworzenie idealnego produktu dla poszczególnych segmentów rynku. Koncentruje się przede wszystkim na ocenie produktu, nazwie i cenie. Pomijane są natomiast inne elementy marketingu-mix, jak promocja czy dystrybucja 4. Metoda ta umożliwia symulowanie wyborów nabywców po wprowadzeniu zmodyfikowanego lub nowego produktu, jak również rozwijanie modelu produktu. Koncentruje się na atrybutach produktu i ceny, gdyż umożliwia dokładne określenie, jaki poziom ceny lub parametru technicznego produktu jest satysfakcjonujący dla nabywcy 5. Conjoint Analysis Tutorial, www.designing.com,.3.4. 3 Produkttest via Conjoint-Measurement, www.psychonomicd.de/articleprint/63///, 7.4.4. 4 Techniki badawcze, www.indicator.pl/conjoint.html,.3.4. 5 R. Kłeczek, W. Kowal, J. Woźniczka, Strategiczne planowanie marketingowe, PWE, Warszawa 997, s. 8.

Conjoint analysis jako metoda 55 W ujęciu szczegółowym modele conjoint analysis uwzględniają poniższe zjawiska: reguły określające sposób powiązania zmiennych, tj. charakter zależności zachodzących między zmiennymi, struktury preferencji, tj. rodzaj zależności zachodzących między wartościami użyteczności cząstkowych a wartościami poziomów zmiennych. Wyróżnia się dwa typy modeli określających zależność użyteczności całkowitej od użyteczności cząstkowych: model addytywny (model efektów głównych) oraz model uwzględniający interakcje między zmiennymi (model efektów głównych i współdziałania). Decyzja dotycząca wyboru modelu przesądza o tym, w jaki sposób zmienne są wzajemnie powiązane z punktu widzenia respondenta oceniającego profil charakteryzowany tymi zmiennymi. Dla przykładu model addytywny implikuje mniejszą liczbę profili do oceny niż model uwzględniający interakcje między zmiennymi. Gwarantuje on również łatwiejsze uzyskanie estymatorów użyteczności cząstkowych. Analizując zależności zachodzące między użytecznościami cząstkowymi a poziomami zmiennych wyróżnia się model liniowy (wektorowy), model kwadratowy (idealny lub antyidealny), model odrębnych użyteczności cząstkowych oraz model mieszany. W modelu liniowym poszukuje się oszacowania tylko jednego parametru wyrażającego wagę danej zmiennej objaśniającej. Jest on następnie mnożony przez kolejne wartości poziomów tej zmiennej. Zakłada się tu istnienie liniowego związku między wartościami użyteczności cząstkowych zmiennych objaśniających a wartościami poziomów tych zmiennych. W modelu kwadratowym poza istnieniem liniowego związku między wartościami użyteczności cząstkowych zmiennych objaśniających a wartościami poziomów tych zmiennych dopuszcza się możliwość występowania zależności krzywoliniowej. W przypadku modelu odrębnych użyteczności cząstkowych z każdym poziomem zmiennej objaśniającej może być związana inna wartość parametru określającego kierunek oraz siłę związku zachodzącego między użytecznościami cząstkowymi i poziomami zmiennych. Model mieszany charakteryzuje się tym, że zależności zachodzące między wartościami użyteczności całkowitych poszczególnych profili prezentowanych respondentom do oceny a wartościami poziomów zmiennych objaśniających opisujących te obiekty są analizowane odrębnie dla każdej zmiennej objaśniającej 6. Materiał badawczy wykorzystywany w conjoint analysis stanowią przede wszystkim dane marketingowe uzyskiwane zwykle w wyniku badań ankietowych. 6 M. Walesiak, A. Bąk, Conjoint analysis w badaniach marketingowych, Wydawnictwo AE we Wrocławiu, Wrocław, s. 4 7.

56 Anna Szymańska, Dorota Dziedzic Metoda gromadzenia danych zastosowana w badaniach ma decydujący wpływ na wybór odpowiednich technik szacowania wartości użyteczności cząstkowych oraz poziom wiarygodności ocen dokonywanych przez respondentów. Metody stosowane do prezentacji danych to przede wszystkim: metoda pełnych profili wyboru (full-profile approach) obejmuje zbiór wszystkich możliwych profili będących kombinacją atrybutów i ich poziomów; metoda prezentacji dwóch atrybutów jednocześnie nazywana również metodą korzystającą z macierzy kompromisów (two-attributes-at-a-time approach lub trade-off matrix approach) polega na prezentowaniu respondentom do oceny par atrybutów w formie macierzy; liczba kolumn (wierszy) macierzy jest równa liczbie poziomów pierwszego (drugiego) z atrybutów; metoda porównywania profili parami (pairwise comparision method) łączy w sobie metodę pełnych profili wyborów z metodą korzystania z macierzy kompromisów; respondent porównuje profile parami, nie ocenia wszystkich profili jednocześnie, ale na każdym etapie określania swoich preferencji wskazuje na jeden z dwóch prezentowanych profili; metoda wyboru spośród zbiorów profili (experimental choice approach) tworzone są zbiory profili (każdy zbiór zawiera dwa lub więcej profili), respondenci natomiast proszeni są o wybór najbardziej preferowanego profilu w ramach każdego zbioru; metoda oceny poziomów i atrybutów (self-explicated data approach) składa się z dwóch etapów. W pierwszym etapie respondent ocenia poziomy atrybutów (np. w skali -punktowej), a następnie określa relatywną ważność poszczególnych atrybutów opisujących badane obiekty. Iloczyn oceny poziomu oraz oceny atrybutu daje użyteczność cząstkową, a suma tych profili dla wszystkich atrybutów to użyteczność całkowita 7. Zadaniem metod pomiaru łącznego oddziaływania zmiennych jest określenie łącznego wpływu dwóch lub więcej zmiennych niezależnych na zmienną zależną. Zmienna zależna mierzona jest na skali porządkowej, przedziałowej lub ilorazowej. Zależnie od stosowanej skali pomiaru wyróżnia się metryczne procedury estymacji dla zmiennej zależnej mierzonej na skali przedziałowej lub ilorazowej oraz niemetryczne procedury estymacji dla zmiennej zależnej mierzonej na skali porządkowej. Stosowane są również metody bazujące na prawdopodobieństwie wyboru. Metody te są wykorzystywane głównie w badaniach marketingowych, w celu pomiaru preferencji konsumentów w stosunku do produktów opisanych 7 M. Walesiak, Gromadzenie danych w procedurze conjoint analysis, Przegląd Statystyczny, vol. 48, s. 4 44.

Conjoint analysis jako metoda 57 wieloma zmiennymi. Rezultatem zastosowania tych metod jest macierz współczynników użyteczności 8. Przykładem metrycznej metody estymacji parametrów jest klasyczna metoda najmniejszych kwadratów (OLS Ordinary Least Squares). Zmienną zależną stanowi ocena przypisana przez respondenta poszczególnym profilom, natomiast sposób zdefiniowania zmiennych objaśniających uzależniony jest od założonego związku między użytecznościami cząstkowymi i poziomami zmiennych. Wpływ poziomu zmiennej na ocenę poszczególnych profili określany jest przez sztuczne zmienne objaśniające. Liczba sztucznych zmiennych musi być mniejsza o jeden od liczby poziomów danej zmiennej nominalnej. Liczba zmiennych wprowadzanych do modelu zależy od liczby profili ocenianych przez respondentów. Procedura monotonicznej analizy wariancji (MONANOVA Monotonic Analysis of Variance) to przykład niemetrycznej metody estymacji parametrów. Polega ona na odtwarzaniu położenia n obiektów w t-wymiarowej przestrzeni na podstawie znanego uporządkowania rangowego tych obiektów. Uporządkowanie to można uzyskać poprzez badania ankietowe. MONANOVA jest procedurą iteracyjną, która w kolejnych cyklach przybliża rozwiązanie optymalne. W wypadku gdy zmienna objaśniana ma charakter dychotomiczny (jest zmienną dwumianową, np. zero-jedynkową), stosuje się probabilistyczne metody estymacji parametrów modelu, takie jak analiza logitowa oraz analiza probitowa. Obie metody umożliwiają transformację prawdopodobieństwa z przedziału [;] na przedział (, + ). W wyniku zastosowania transformacji logitowej powstaje poprawny logitowy model regresji. Przekształcenie logitowe definiuje się za pomocą wzoru: p logit(p) = log p, gdzie: logit(p) wartość logitu dla danego p, p wartość prawdopodobieństwa lub częstość występowania określonego zdarzenia w próbie. W wyniku zastosowania transformacji probitowej powstaje poprawny probitowy model regresji. Przekształcenie probitowe definiuje się za pomocą wzoru: probit(p) = F (p), gdzie: p wartość prawdopodobieństwa lub częstość występowania określonego zdarzenia, 8 J. Dziechciarz, M. Walesiak, Gromadzenie i analiza danych marketingowych wspomagane komputerem, Prace Naukowe AE we Wrocławiu, Informatyka i Ekonomia 997, nr 743, s. 4 43.

58 Anna Szymańska, Dorota Dziedzic F dystrybuanta standaryzowanej zmiennej o rozkładzie normalnym (rozkładu normalnego o wartości oczekiwanej równej i odchyleniu standardowym równym ) 9. Procedura metody conjoint analysis składa się z kilku etapów. Pierwszy stanowi określenie dla danego produktu lub usługi podstawowych charakterystyk oraz odpowiadających im poziomów. Na tej podstawie tworzy się zbiór hipotetycznych produktów. Ich liczba jest iloczynem liczby poziomów wyróżnionych dla wszystkich charakterystyk produktów. Kolejnym etapem jest ustalenie zbioru respondentów badania. Każdy z respondentów proszony jest o ocenę hipotetycznych produktów na skali porządkowej, przedziałowej lub ilorazowej, biorąc pod uwagę skłonność do nabycia danego produktu. Następnie szacuje się wartości użyteczności wiązane przez respondenta z danym poziomem zmiennej. Uzyskuje się w ten sposób macierz użyteczności cząstkowych, w której liczba wierszy odpowiada liczbie respondentów, natomiast liczba kolumn liczbie wyróżnionych poziomów dla wszystkich zmiennych. Rezultatem zastosowania metody conjoint analysis jest uzyskanie użyteczności cząstkowych. Użyteczności cząstkowe wykorzystywane są w badaniach marketingowych w celu: zdefiniowania produktu o optymalnych charakterystykach, określenia relatywnej ważności każdej zmiennej przy wyborze produktu przez nabywcę, określenia użyteczności każdego poziomu danej zmiennej, oszacowania udziału w rynku wybranych produktów, segmentacji rynku i pozycjonowania produktu. Główne zalety stosowania conjoint analysis jako testu produktów są przede wszystkim następujące: w procesie porównawczym oceniane są całe produkty, a nie wyizolowane ich cechy, określone zostają najistotniejsze dla klienta właściwości produktu oraz kombinacje cech produktów mających największy wpływ na prawdopodobieństwo zakupu produktu, określona zostaje najbardziej preferowana zależność pomiędzy ceną a użytecznością danego produktu, 9 M. Walesiak, A. Bąk, op. cit., s. 45 6. Por.: Zależności przyczynowo-skutkowe w badaniach rynkowych i marketingowych, red. S. Mynarski, Wydawnictwo AE w Krakowie, Kraków, s. 59 7. M. Walesiak, Gromadzenie danych, s. 4 44. Por. M. Walesiak, Metody analizy danych marketingowych, PWN, Warszawa 996, s. 9 9. Zastosowanie metod wielowymiarowych w badaniach segmentacji i selektywności rynku, red. S. Mynarski, Wydawnictwo AE w Krakowie, Kraków 999, s. 85.

Conjoint analysis jako metoda 59 preferencje popytu mogą być indywidualnie analizowane, biorąc pod uwagę wpływ ofert konkurencji można określić, które tendencyjne wypowiedzi mają największe szanse w alternatywnych strategiach marketingowych, istnieje wysoka zgodność z rzeczywistością. Z drugiej strony należy jednak pamiętać, że conjoint analysis nie jest precyzyjnie zdefiniowaną metodą badań, ale złożoną z wielu elementów procedurą badawczą. Mogą być w niej stosowane alternatywne techniki estymacji parametrów oraz różnorodne ścieżki analizy danych. Wiąże się to z pewnymi trudnościami polegającymi na konieczności wyboru kierunku postępowania w sytuacji, w której nie istnieją jednoznaczne kryteria hierarchii istniejących wariantów postępowania. Właściwości formalne i obliczeniowe (numeryczne) poszczególnych metod i technik oraz ich konfiguracje wciąż stanowią przedmiot badań 3. 3. Metodologia badaƒ z zastosowaniem metody conjoint analysis W celu zaprezentowania metodologii badań prowadzonych przy pomocy conjoint analysis badaniu poddano grupę 5 studentów dwóch krakowskich uczelni wyższych, zróżnicowanych pod względem płci, wieku, miejsca zamieszkania i miejsca pochodzenia. Próbę dobrano losowo. Przedmiotem badań było poznanie preferencji wybranego segmentu rynku w odniesieniu do oferty dwóch kluczowych producentów napojów gazowanych typu cola w Polsce. Badanie miało na celu sprecyzowanie podstawowych cech produktu, które najpełniej zaspokajałyby potrzeby przedstawicieli wybranego segmentu. Jako narzędzie pomiarowe posłużył kwestionariusz ankiety z zastosowaniem skal nominalnych, porządkowych i stosunkowych oraz pytań otwartych. Przed rozpoczęciem badań określono problem badawczy, który miał ułatwić zebranie informacji koniecznych do zbadania preferencji wybranego segmentu rynku na rynku napojów gazowanych typu cola. Respondenci stanęli przed wyborem napoju typu cola produkowanego przez dwóch producentów (Coca-Cola, Pepsi Co.). W opracowaniu każdy wariant opisany był przez trzy zmienne determinujące wybór: z marka: Coca-Cola, Pepsi; z smak: klasyczny, light, owocowy; z 3 opakownie: puszka, butelka z tworzywa sztucznego,5 l, butelka z tworzywa sztucznego, l. Produkttest via 3 Zastosowanie metod, s. 85.

6 Anna Szymańska, Dorota Dziedzic Zbiór atrybutów i ich poziomów uwzględnionych w badaniu został wytypowany na podstawie wstępnego sondażu przeprowadzonego wśród studentów. Opierając się na wyróżnionych zmiennych oraz odpowiadających im poziomach utworzono zbiór 8 hipotetycznych wariantów produktu. Liczba ta jest iloczynem liczby poziomów wszystkich zmiennych opisujących warianty wyboru napoju gazowanego typu cola (3 zmienne o, 3, 3 poziomach). Następnie za pomocą klasycznej metody najmniejszych kwadratów dokonano estymacji użyteczności cząstkowych na podstawie uzyskanych ocen respondentów. 4. Wyniki przeprowadzonych badaƒ Na podstawie badań ustalono, że 85% badanych respondentów pije napoje gazowane typu cola. Osoby te charakteryzują się różnymi preferencjami w zakresie wybieranych marek, preferowanego smaku oraz rodzajów i pojemności opakowania. Konsumenci wybierając daną markę napoju kierują się różnymi motywami. W badaniach ankietowych stwierdzono, która z marek napojów gazowanych typu cola jest najczęściej wybierana przez respondentów. Wyniki badań zostały zaprezentowane na rys.. Jak wynika z badań, najczęściej wybieraną przez respondentów marką jest Coca-Cola, dla której wartość użyteczności cząstkowej wynosi,87. Wartość użyteczności cząstkowej dla Pepsi wynosi. 3,5 3 Wskaźnik użyteczności,5,5,5 Coca-Cola Pepsi Marka Rys.. Preferowane marki napojów typu cola

Conjoint analysis jako metoda 6 Badaniu poddano również preferencje konsumentów dotyczące najczęściej wybieranego smaku napojów gazowanych typu cola (rys. ). Z rysunku wynika, że przeważająca część badanych respondentów wybiera napoje o smaku klasycznym wartość użyteczności cząstkowej wynosi 8,54. Nieco mniej respondentów decyduje się na dietetyczne napoje light (zawierające aspartam zamiast cukru). Tu wartość użyteczności cząstkowej wynosi 5,66. Najmniej respondentów preferuje napoje gazowane typu cola o smaku owocowym (wartość użyteczności cząstkowej ). Wskaźnik użyteczności 8 6 4 owocowy klasyczny light Smak Rys.. Preferencje konsumentów dotyczące smaku napojów gazowanych typu cola 3 Wskaźnik użyteczności,5,5,5 puszka PET,5 l PET, l Opakowanie Rys. 3. Preferencje konsumentów dotyczące rodzaju opakowania napojów typu cola

6 Anna Szymańska, Dorota Dziedzic Konsumenci mogą kupować napoje gazowane typu cola w różnych opakowaniach. Zróżnicowanie to dotyczy zarówno materiału, z którego wykonane jest opakowanie, jak i pojemności opakowania. Ich preferencje zostały przedstawione na rys. 3. Największym powodzeniem cieszą się napoje w butelkach z tworzywa sztucznego o pojemności,5 l. Ten rodzaj opakowania wybiera większość badanych (wartość użyteczności cząstkowej,7). Znacznie mniejszym zainteresowaniem cieszą się napoje w butelkach z tworzywa o pojemności, l (wartość użyteczności cząstkowej,95) oraz napoje w puszkach (wartość użyteczności cząstkowej ). Przeprowadzono również analizę determinant wpływających na wybór konkretnej marki napoju typu cola. Opierając się na zebranych danych stwierdzono, że największe znaczenie przy wyborze konkretnej marki napoju typu cola ma smak (średnia arytmetyczna 4,73). Znacznie mniejsze znaczenie ma dla respondentów marka oraz rodzaj opakowania (uzyskana średnia arytmetyczna odpowiednio,43 oraz,). Średnia arytmetyczna 5 4,5 4 3,5 3,5,5,5 Smak Marka Opakowanie Rys. 4. Ważność poszczególnych zmiennych przy wyborze marki napoju typu cola W badaniach uczestniczyły 6 kobiety oraz 44 mężczyzn. Jak się okazało, 3% badanych kobiet oraz niecałe 3% badanych mężczyzn deklaruje, że nie pije napojów gazowanych typu cola. Analizując tylko kobiety pijące napoje gazowane typu cola, aż 6% wybiera Pepsi, a zaledwie 38% Coca-Colę. Zupełnie inaczej preferencje te wyglądają w wypadku mężczyzn. Ponad 5% badanych mężczyzn (pijących napoje gazowane typu cola ) wybiera Coca-Colę, a 46% Pepsi.

Conjoint analysis jako metoda 63 4 Wskaźnik użyteczności 3 Coca-Cola Marka Pepsi kobiety mężczyźni Rys. 5. Preferowane marki napojów typu cola Z rysunku 5 wynika, że mężczyźni mając do wyboru Coca-Colę oraz Pepsi zdecydowanie chętniej wybiorą Coca-Colę (użyteczność cząstkowa 3,34). Konieczność zakupu Pepsi (użyteczność cząstkowa ) zamiast Coca-Coli stanowiłaby dla nich duży dyskomfort, o czym świadczy spora rozpiętość między wartościami użyteczności każdego z napojów. Kobiety natomiast, mimo iż preferują Pepsi, nie przykładają do tego aż tak dużej wagi. Potwierdza to niewielka różnica między wartościami użyteczności analizowanych marek. 6 Wskaźnik użyteczności 5 4 3 owocowy klasyczny Smak kobiety mężczyźni light Rys. 6. Preferencje konsumentów dotyczące smaku napojów gazowanych typu cola

64 Anna Szymańska, Dorota Dziedzic W kwestii smaku (rys. 6) zarówno kobiety, jak i mężczyźni wykazują jednakowe preferencje. Zdecydowanie wybierają smak klasyczny (użyteczność cząstkowa 5,7) przed smakiem light (użyteczność cząstkowa dla kobiet,54 oraz dla mężczyzn,75) oraz smakiem owocowym (użyteczność cząstkowa ). Również jeśli chodzi o wybierane typy opakowań, preferencje kobiet i mężczyzn są zbliżone. W obu przypadkach najmniej preferowanym opakowaniem jest butelka z tworzywa sztucznego (PET) o pojemności, l (użyteczność cząstkowa dla kobiet,8, a dla mężczyzn,65), natomiast najczęściej wybieranym opakowaniem jest butelka z tworzywa sztucznego (PET) o pojemności,5 l (użyteczność cząstkowa dla kobiet,95, a dla mężczyzn,3).,5 Wskaźnik użyteczności,5,5,5 puszka PET,5 l PET, l Opakowanie kobiety mężczyźni Rys. 7. Preferencje konsumentów dotyczące rodzaju opakowania napojów typu cola Aż 6% respondentów zamieszkujących wieś nie pije napojów gazowanych typu cola. Natomiast ci, którzy deklarują spożywanie ww. napojów, z reguły wybierają Coca-Colę (,) o smaku klasycznym (4,98 klasyczny, 3,34 light, owocowy) w opakowaniu PET,5 l (,4). Mieszkańcy miasta zwykle piją Coca-Colę, chociaż różnica wartości użyteczności jest niewielka,4 dla Coca-Coli i dla Pepsi. Zdecydowanie preferują oni smak klasyczny (5,5 klasyczny,,35 light, - owocowy) oraz opakowanie PET,5 l (,48).

Conjoint analysis jako metoda 65 5. Zakoƒczenie Przeprowadzone badania umożliwiły sprecyzowanie preferowanego profilu produktu dla badanego segmentu rynku, którym był rynek studentów krakowskich uczelni. Preferowanym i najczęściej wybieranym napojem gazowanym typu cola jest Pepsi (w przypadku kobiet) oraz Coca-Cola (w przypadku mężczyzn) o smaku klasycznym, w opakowaniu z tworzywa sztucznego o pojemności,5 l. Wyznaczono również charakterystyki opisujące potencjalnych nabywców wyodrębnionego segmentu. Są to przede wszystkim mieszkańcy miasta, spożywający Pepsi (w przypadku kobiet) lub Coca-Colę (w przypadku mężczyzn) o smaku klasycznym, w opakowaniu z tworzywa sztucznego o pojemności,5 l. Literatura Conjoint analysis tutorial, www.designing.com,.3.4. Dziechciarz J., Walesiak M., Gromadzenie i analiza danych marketingowych wspomagane komputerem, Prace Naukowe AE we Wrocławiu, Informatyka i Ekonomia 997, nr 743. Kłeczek R., Kowal W., Woźniczka J., Strategiczne planowanie marketingowe, PWE, Warszawa 997. Mazurek-Łopacińska K., Zachowania nabywców jako podstawa strategii marketingowej, Wydawnictwo AE we Wrocławiu, Wrocław 997. Produkttest via Conjoint-Measurement, www.psychonomicd.de/article/articleprint/63/ /, 7.4.4. Techniki badawcze, www.indicator.pl/conjoint.html,.3.4. Walesiak M., Gromadzenie danych w procedurze conjoint analysis, Przegląd Statystyczny, vol. 48. Walesiak M., Bąk A., Conjoint analysis w badaniach marketingowych, Wydawnictwo AE we Wrocławiu, Wrocław. Walesiak M., Metody analizy danych marketingowych, PWN, Warszawa 996. Zależności przyczynowo-skutkowe w badaniach rynkowych i marketingowych, red. S. Mynarski, Wydawnictwo AE w Krakowie, Kraków. Zastosowanie metod wielowymiarowych w badaniach segmentacji i selektywności rynku, red. S. Mynarski, Wydawnictwo AE w Krakowie, Kraków 999. Conjoint Analysis as a Method of Analysing Consumer Preferences This article deals with conjoint analysis, a method used to analyse consumer preferences. The article is divided into two parts. In the first part, the authors present both the general characteristics of the method as well as a methodology for conducting research using conjoint analysis. In the second part of the article, the authors interpret the results of their own empirical research on consumer preferences in the selected Polish market segment for cola-type carbonated soft drinks. As a final result of their analysis, the authors develop a product profile and identify the traits of potential purchasers in this defined market segment.