Optymalizacja właściwości dynamicznych anemometru z wirującym elementem pomiarowym

Podobne dokumenty
O modelu matematycznym anemometru skrzydełkowego

Numeryczna symulacja rozpływu płynu w węźle

Regulacja adaptacyjna w anemometrze stałotemperaturowym

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

Właściwości dynamiczne cyfrowego anemometru skrzydełkowego

Badanie możliwości wykorzystania siły poosiowej anemometru skrzydełkowego do kompensacji zawyżania wyniku pomiaru prędkości zmiennych

SPIS TREŚCI Obliczenia zwężek znormalizowanych Pomiary w warunkach wykraczających poza warunki stosowania znormalizowanych

Analiza wpływu właściwości dynamicznych przyrządów pomiarowych na dokładność pomiarów wybranych parametrów środowiska

METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH

WYBÓR PUNKTÓW POMIAROWYCH

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Badania przepływu powietrza in situ w wyrobisku górniczym, wyznaczenie kryterium przydatności przyrządów i metod

Sposób wielopunktowego sprawdzania anemometrów skrzydełkowych w rzeczywistych warunkach ich pacy

PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL

Analiza statycznych warunków pracy czujnika termoanemometrycznego w układzie stałotemperaturowym w zależności od średnicy włókna pomiarowego

Termoanemometr z możliwością wyznaczania wektora prędkości w płaszczyźnie

SYMULACJA OBLICZENIOWA OPŁYWU I OBCIĄŻEŃ BEZPRZEGUBOWEGO WIRNIKA OGONOWEGO WRAZ Z OCENĄ ICH ODDZIAŁYWANIA NA PRACĘ WIRNIKA

Modyfikacja metody wyznaczania pasma przenoszenia anemometru z nagrzanym elementem pomiarowym

Ćwiczenie: "Silnik prądu stałego"

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

Skuteczność korekcji temperaturowej w termoanemometrycznych systemach pomiarowych

Sposoby modelowania układów dynamicznych. Pytania

Aplikacje Systemów. Nawigacja inercyjna. Gdańsk, 2016

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

Zaawansowane narzędzia metrologiczne w pomiarach wybranych parametrów środowiska. Optymalizowany dynamicznie termoanemometryczny system pomiarowy

Silniki prądu stałego z komutacją bezstykową (elektroniczną)

Górniczy Profilometr Laserowy GPL-1

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

Modelowanie Fizyczne w Animacji Komputerowej

Sterowanie Napędów Maszyn i Robotów

Badania wpływu zaburzeń profilu prędkości powietrza na pomiary wykonywane anemometrami stacjonarnymi różnych typów

(13) B1 (12) OPIS PATENTOWY (19) PL (11) PL B1 F03D 3/02

Sterowanie Napędów Maszyn i Robotów

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia

Pomiary strumienia objętości przepływu w aspekcie dynamiki anemometrycznych czujników pomiarowych

Ćw. 18: Pomiary wielkości nieelektrycznych II

Zintegrowana sonda do wielopunktowych, współczasowych pomiarów pól temperatury i prędkości przepływu gazu

DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ

POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu Kierunek Mechanika i Budowa Maszyn Specjalność Samochody i Ciągniki

Badania przepływów dynamicznych w tunelu aerodynamicznym przy użyciu cyfrowej anemometrii obrazowej

Eksperymentalnie wyznacz bilans energii oraz wydajność turbiny wiatrowej, przy obciążeniu stałą rezystancją..

Mechatronika i inteligentne systemy produkcyjne. Paweł Pełczyński ppelczynski@swspiz.pl

(R) przy obciążaniu (etap I) Wyznaczanie przemieszczenia kątowego V 2

Metodyka analizy wzorcowych przepływów wykorzystywanych w badaniach własności anemometrycznych przyrządów pomiarowych

Laboratoryjny system do badania charakterystyk kątowych czujników anemometrycznych

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych

MECHANIKA PŁYNÓW LABORATORIUM

PRACA INDUKCYJNEGO LICZNIKA ENERGII ELEKTRYCZNEJ W OBECNOŚCI POLA SILNEGO MAGNESU TRWAŁEGO

ANALIZA ROZKŁADU CIŚNIEŃ I PRĘDKOŚCI W PRZEWODZIE O ZMIENNYM PRZEKROJU

dr inż. Jan Porzuczek POMIARY MOCY I ENERGII CIEPLNEJ

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika

Ćw. 18: Pomiary wielkości nieelektrycznych II

TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO

Ć w i c z e n i e K 4

LABORATORIUM MECHANIKI PŁYNÓW

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie)

DIGITALIZACJA GEOMETRII WKŁADEK OSTRZOWYCH NA POTRZEBY SYMULACJI MES PROCESU OBRÓBKI SKRAWANIEM

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 04/13

Porównanie wyników symulacji wpływu kształtu i amplitudy zakłóceń na jakość sterowania piecem oporowym w układzie z regulatorem PID lub rozmytym

MODERNIZACJA NAPĘDU ELEKTRYCZNEGO WIRÓWKI DO TWAROGU TYPU DSC/1. Zbigniew Krzemiński, MMB Drives sp. z o.o.

Problemy optymalizacji układów napędowych w automatyce i robotyce

Fizyka 1 (mechanika) AF14. Wykład 9

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 12/13

Symulacja pracy silnika prądu stałego

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

WYKRYWANIE USZKODZEŃ W LITYCH ELEMENTACH ŁĄCZĄCYCH WAŁY

Dobór silnika serwonapędu. (silnik krokowy)

ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW

PL B1. Politechnika Warszawska,Warszawa,PL BUP 25/03. Mateusz Turkowski,Warszawa,PL Tadeusz Strzałkowski,Warszawa,PL

3.5 Wyznaczanie stosunku e/m(e22)

Zasada działania maszyny przepływowej.

Proces przemiany energii może zachodzić w dwóch kierunkach: maszyna elektryczna może pracować jako prądnica (generator) lub jako silnik.

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Napęd pojęcia podstawowe

Wyboczenie ściskanego pręta

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH

ZMIANA PARAMETRÓW TERMODYNAMICZNYCH POWIETRZA W PAROWNIKU CHŁODZIARKI GÓRNICZEJ Z CZYNNIKIEM R407C***

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego. Schemat punktowania zadań

Równania różniczkowe opisujące ruch fotela z pilotem:

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji

Badania właściwości dynamicznych sieci gazowej z wykorzystaniem pakietu SimNet TSGas 3

SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i

WPŁYW ZAKŁÓCEŃ PROCESU WZBOGACANIA WĘGLA W OSADZARCE NA ZMIANY GĘSTOŚCI ROZDZIAŁU BADANIA LABORATORYJNE

Turbina wiatrowa vawt komputerowe badania symulacyjne

TEORETYCZNY MODEL PANEWKI POPRZECZNEGO ŁOśYSKA ŚLIZGOWEGO. CZĘŚĆ 3. WPŁYW ZUśYCIA PANEWKI NA ROZKŁAD CIŚNIENIA I GRUBOŚĆ FILMU OLEJOWEGO

SILNIK INDUKCYJNY KLATKOWY

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

WYZNACZANIE CHARAKTERYSTYK SIŁOWNIKÓW UDAROWYCH Z NASTAWIANĄ OBJĘTOŚCIĄ KOMORY

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Transkrypt:

Prace Instytutu Mechaniki Górotworu PAN Tom 18, nr, czerwiec 016, s. 1-6 Instytut Mechaniki Górotworu PAN Optymalizacja właściwości dynamicznych anemometru z wirującym elementem pomiarowym PAWEŁ LIGĘZA Instytut Mechaniki Górotworu PAN; ul. Reymonta 7, 30-059 Kraków Streszczenie Anemometry wykorzystujące zjawisko wymiany pędu pomiędzy przepływem a wirującym elementem pomiarowym stanowią ważną klasę przyrządów stosowanych w metrologii przepływów, w szczególności w pomiarach meteorologicznych oraz wentylacyjnych. Wadą anemometrów mechanicznych z wirującym elementem pomiarowym są złe właściwości dynamiczne wynikające ze stosunkowo dużych wymiarów i bezwładności mechanicznej elementu pomiarowego. W przyrządach tych występuje zjawisko zawyżania pomiaru prędkości średniej związane z inercją wirnika. Optymalizacja dynamiki procesu pomiarowego oraz szacowanie i minimalizacja niepewności pomiaru możliwe są w oparciu o model matematyczny anemometru. W pracy zaproponowano metodę optymalizacji właściwości dynamicznych anemometru z wirującym elementem pomiarowym. Słowa kluczowe: anemometr skrzydełkowy, model matematyczny, stany dynamiczne, badania modelowe 1. Wprowadzenie Anemometry z wirującym elementem pomiarowym (wirnikiem, rotorem, turbinką) stanowią ważną klasę przyrządów przeznaczonych do pomiaru prędkości przepływu płynów. Znajdują one wszechstronne zastosowanie w metrologii przepływów, jednak głównym obszarem aplikacyjnym są pomiary meteorologiczne oraz pomiary wentylacyjne [1]. Anemometry mechaniczne z wirującym elementem pomiarowym posiadają szereg korzystnych właściwości metrologicznych. Należą do nich w przybliżeniu liniowa charakterystyka, szeroki zakres mierzonych prędkości, właściwości uśredniające wynik pomiaru oraz ograniczona wrażliwość na zmianę parametrów fizycznych gazu. Natomiast ze względu na stosunkowo duże wymiary i bezwładność elementu wirującego, pomiary w niejednorodnym polu prędkości, oraz w przepływach zmiennych w czasie wymagają złożonej interpretacji wyniku. Pomiary takie są także obarczone znaczną niepewnością. Analiza tych zjawisk możliwa jest w oparciu o model matematyczny anemometru. Modelowaniu anemometrów z wirującym elementem pomiarowym oraz ich eksperymentalnej weryfikacji poświęcona jest obszerna literatura. W fundamentalnej pracy [] autor podaje równanie ruchu dla anemometru skrzydełkowego oraz zwraca uwagę na efekt zawyżania pomiaru prędkości średniej związany z inercją wirnika. Dalsze prace w tej dziedzinie [3-6] opierają się na podobnym do przyjętego w pracy [] modelu zjawiska. Dla przyjętych założeń rozważane jest równanie ruchu wirnika, przy czym uwzględniane są momenty siły związane z wymianą pędu z przepływem oraz z tarciem. Generalnie zakładany model dynamiczny anemometru, oparty na równaniu ruchu jest w tych pracach zbliżony. Punktem wyjścia jest druga zasada dynamiki dla ruchu obrotowego wirnika anemometru przy uwzględnieniu sumarycznego momentu siły działającego na wirnik. Podobną metodykę konstrukcji uproszczonego modelu anemometru skrzydełkowego przedstawionego w pracach [7-10]. Model ten opisuje dynamiczną zależność prędkości wskazywanej przez anemometr od prędkości mierzonej, przy czym zawiera on tylko jeden parametr. Posiada on jednak pewne istotne wady wynikające z przyjętych założeń. Zgodnie z tym modelem przy skoku prędkości mierzonej z pewnej

Paweł Ligęza niezerowej wartości do zera prędkość wskazywana nie zmieni się. Ogólnie model nie opisuje poprawnie stanów dynamicznych anemometru przy skokowej, dużej zmianie prędkości mierzonej. Ponao model ten nie uwzględnia wpływu kąta nachylenia skrzydełek na dynamikę anemometru oraz osiowej wymiany pędu pomiędzy przepływem a wirnikiem. W pracy [11] autor zaproponował eliminujący powyższe wady alternatywny model anemometru, wykorzystujący bilans mocy. W oparciu o ten model możliwe jest stosunkowo dokładne przeprowadzenie optymalizacji dynamiki procesu pomiarowego oraz szacowanie i minimalizacja niepewności pomiaru. W tym artykule zaproponowano metodę optymalizacji właściwości dynamicznych anemometru z wirującym elementem pomiarowym. Rozwiązanie to jest przedmiotem zgłoszenia patentowego [1]. Przedstawiono proponowaną metodę i rozwiązanie układowe oraz przeprowadzono porównawcze badania modelowe anemometru bez układu optymalizacji oraz wyposażonego w taki układ.. Model matematyczny anemometru skrzydełkowego bazujący na bilansie mocy Autor w pracy [11] zaproponował konstrukcję modelu matematycznego w oparciu o bilans mocy. Bilans ten bazuje na fakcie, że zmiana energii kinetycznej wirnika anemometru jest równa różnicy energii kinetycznej strumienia medium wpływającego i wypływającego z przekroju czynnego anemometru. Autor zakłada zachowawczy charakter procesu oraz jednorodne pole prędkości mierzonej v medium o gęstości ρ. Przyjmuje się, że wirnik posiada skrzydełka nachylone do przepływu pod kątem α, odległość środka aerodynamicznego skrzydełek od osi obrotu wynosi R, przekrój czynny oddziaływania przepływu z wirnikiem w płaszczyźnie prostopadłej do osi obrotu wirnika wynosi S, moment bezwładności wirnika względem osi obrotu wynosi J, a prędkość kątowa wirnika ω. W konstrukcji modelu autor przyjmuje założenie, że medium dociera do przekroju czynnego S anemometru i wypływa z niego z prędkością średnią U równą: R U V (1) tg Postulat ten w założeniu odzwierciedla proces pracy wirnika anemometru jako pewnego rodzaju turbiny. W przypadku gdy mierzona prędkość v jest mniejsza od V następuje zasysane medium przez turbinę, natomiast gdy v jest większe od V następuje tłumienie przepływu. Zgodnie z tym założeniem masa medium docierająca oraz wypływająca z przekroju czynnego anemometru w czasie wynosi: d m SV () Bilans mocy związany z wymianą energii kinetycznej pomiędzy przepływem a turbiną anemometru można zapisać w postaci: d SVv SVV J (3) Z tego równania uwzględniając (1) otrzymujemy model matematyczny anemometru skrzydełkowego dla przyjętych założeń w postaci: dv c V v (4) Jtg gdzie: c jest jedynym parametrem modelu i posiada wymiar długości. Zgodnie z równaniem (4) R S w stanie ustalonym prędkość wskazywana jest równa prędkości mierzonej. W dalszej części pracy omówiono metodę i rozwiązanie układowe optymalizacji właściwości dynamicznych anemometru z wirującym elementem pomiarowym. Na bazie modelu (4) przeprowadzono porównawcze badania modelowe anemometru bez układu optymalizacji oraz wyposażonego w taki układ.

Optymalizacja właściwości dynamicznych anemometru z wirującym elementem pomiarowym 3 3. Metoda optymalizacji właściwości dynamicznych anemometru z wirującym elementem pomiarowym Anemometry mechaniczne z wirującym elementem pomiarowym posiadają szereg korzystnych właściwości metrologicznych. Należą do nich w przybliżeniu liniowa charakterystyka, szeroki zakres mierzonych prędkości, właściwości uśredniające wynik pomiaru oraz ograniczona wrażliwość na zmianę parametrów fizycznych płynącego medium. Wadą anemometrów mechanicznych z wirującym elementem pomiarowym są złe właściwości dynamiczne wynikające ze stosunkowo dużych wymiarów i bezwładności mechanicznej elementu pomiarowego. Czas ustalania się prędkości wirnika przy zmianie prędkości przepływu jest znaczny, przy czym czas ten jest mniejszy przy rozpędzaniu wirnika, a większy przy zwalnianiu. W wyniku tego zjawiska pomiary w przepływach zmiennych w czasie wymagają złożonej interpretacji wyników oraz są obarczone znaczną niepewnością. W anemometrach tych pomiar prędkości średniej w przepływach zmiennych w czasie może być zawyżany nawet o kilkanaście procent. W pracy [13] przedstawiono wyniki badań możliwości wykorzystania siły poosiowej anemometru skrzydełkowego do kompensacji tego zjawiska. Autor tej pracy przedstawia wstępne wyniki badań eksperymentalnych i modelowych tej metody oraz analizuje jej możliwości aplikacyjne. Alternatywne rozwiązanie jest przedmiotem niniejszego artykułu. Na rysunku 1 przedstawiono schematycznie proponowany układ optymalizacji właściwości dynamicznych anemometru z wirującym elementem pomiarowym. Rys. 1. Układ optymalizacji właściwości dynamicznych anemometru z wirującym elementem pomiarowym Układ optymalizacji właściwości dynamicznych anemometru z wirującym elementem pomiarowym zbudowane jest z umieszczonego w badanym przepływie o prędkości v wirnika anemometru 1, czujnika prędkości obrotowej wirnika, układu przetwarzania prędkości obrotowej wirnika na sygnał wyjściowy 3, elektronicznego układu wspomagania rozpędzania lub hamowania wirnika 4 oraz zespołu elektromagnesów 5. Poprzez wymianę pędu pomiędzy badanym przepływem v a wirującym elementem pomiarowym wirnik osiąga prędkość obrotową stanowiącą miarę prędkości przepływu. Wirnik wykonany jest z materiału dobrze przewodzącego prąd elektryczny lub materiału oddziałującego z polem magnetycznym. Jego prędkość obrotowa mierzona jest za pomocą czujnika, a następnie przetwarzana w bloku 3 na sygnał wyjściowy V stanowiący miarę prędkości przepływu. Równocześnie sygnał ten przetwarzany jest w układzie wspomagania rozpędzania lub hamowania wirnika 4 na sygnał sterujący zespołem elektromagnesów 5 umieszczonych przy wirniku, na jego obwodzie. Układ wspomagania 4 pracuje sekwencyjnie zgodnie z przyjętym algorytmem, sterując prądem zespołu elektromagnesów w taki sposób, aby poprzez pole magnetyczne i prądy wirowe generowane w wirniku lub oddziaływanie magnetyczne wytwarzać moment siły przyspieszający lub hamujący obroty wirnika. Proces optymalizacji właściwości dynamicznych anemometru z wirującym elementem pomiarowym realizowany jest sekwencyjnie, w dwóch etapach, w układzie wspomagania rozpędzania lub hamowania wirnika 4. W pierwszym etapie, w celu stwierdzenia, czy oddziaływanie wirnika z przepływem powoduje wzrost, czy spadek prędkości obrotowej wirnika, wyznaczana jest pochodna dv/ sygnału pomiarowego V.

4 Paweł Ligęza W drugim etapie generowany jest impulsowy sygnał do zespołu elektromagnesów 5. Jeśli pochodna jest dodatnia, zespół elektromagnesów 5 wytwarza chwilowy moment siły przyspieszający wirnik 1, a jeśli ujemna wytwarza moment siły hamujący wirnik 1. Następnie sygnał generacji momentu siły jest wyłączany i następuje powrót do pierwszego etapu, a proces odbywa się cyklicznie. W ten sposób następuje przyspieszenie procesu nadążania prędkości obrotowej wirnika za zmianami prędkości przepływu, a tym samym optymalizacja właściwości dynamicznych anemometru. Możliwy jest również uproszczony tryb pracy wyłącznie z hamowaniem wirnika. Pozwala to na skrócenie czasu hamowania wirnika, a także wyrównanie czasu rozpędzania i hamowania wirnika. Metoda i układ optymalizacji właściwości dynamicznych anemometru z wirującym elementem pomiarowym pozwalają na redukcję czasu odpowiedzi anemometru na zmiany sygnału prędkości, przy czym możliwe jest uzyskania zbliżonego czasu przy rozpędzaniu i przy zwalnianiu wirnika. Powoduje to minimalizację dynamicznej niepewności pomiaru oraz minimalizację zjawiska zawyżania pomiaru prędkości średniej w przepływach zmiennych w czasie. 4. Wyniki badań modelowych Wstępne badania zaproponowanej metody i układu optymalizacji właściwości dynamicznych anemometru z wirującym elementem pomiarowym przeprowadzono w oparciu o symulację komputerową. Na bazie modelu (4) przeprowadzono porównawcze badania modelowe anemometru bez układu optymalizacji oraz wyposażonego w taki układ. Przyjęto parametry fizyczne rzeczywistego anemometru zawarte w pracy [10]. Do modelu (4) wprowadzono parametr u o wymiarze prędkości, umożliwiający symulację procesu hamowania lub rozpędzania wirnika za pomocą pola magnetycznego: dv c V v u (5) W procesie badań symulacyjnych przyjęto postać tego parametru jako: I u h i V (6) gdzie: V I ' pochodna prędkości wyznaczona w pierwszym etapie cyklu optymalizacji, h i parametr procesu rozpędzania lub hamowania wirnika o wymiarze długości. Parametr h i w pierwszym etapie cyklu optymalizacji przyjmuje wartość zero, natomiast w drugim etapie w zależności od znaku pochodnej przyjmuje jedną z dwóch dobranych, oddzielnie dla procesu przyspieszania, oddzielnie dla hamowania wartości. Parametr ten może być również funkcją prędkości wyznaczonej w pierwszym etapie. Na rysunku przedstawiono przykładowy przebieg symulacji pracy układu optymalizacji właściwości dynamicznych anemometru. Przedstawia on przebieg sygnału wyjściowego V z anemometru z wirującym elementem pomiarowym oraz układem optymalizacji właściwości dynamicznych anemometru przebieg A. Jest to odpowiedź anemometru na skokową zmianę mierzonej prędkości od wartości 0,1 m/s do wartości 1 m/s w chwili t = 10 s, a następnie spadek prędkości do wartości 0,1 m/s w chwili t = 0 s. W tej symulacji czas modelowania 50 s podzielono równomiernie na 500 przedziałów. W każdym przedziale realizowano dwuetapowy cykl optymalizacji. Dobrano wartość parametru h i równą 00 m dla przyspieszania oraz 1000 m dla hamowania. Dla porównania przedstawiono odpowiedź anemometru bez układu optymalizacji właściwości dynamicznych przebieg B. Na rys.. widoczny jest uzyskany efekt działania układu optymalizacji właściwości dynamicznych anemometru, polegający na znacznym skróceniu oraz wyrównaniu czasów narastania i opadania sygnału. Pozwala na minimalizację dynamicznej niepewności pomiaru oraz minimalizację zjawiska zawyżania pomiaru prędkości średniej w przepływach zmiennych w czasie.

Optymalizacja właściwości dynamicznych anemometru z wirującym elementem pomiarowym 5 Rys.. Przebieg symulacji pracy układu optymalizacji właściwości dynamicznych anemometru 5. Podsumowanie W pracy poddano teoretycznej analizie i badaniom symulacyjnym nową metodę i układ optymalizacji właściwości dynamicznych anemometru z wirującym elementem pomiarowym. Omówiono ideę metody oraz metodologię badań modelowych. Zaprezentowano także wstępne wyniki eksperymentów symulacyjnych. Z przeprowadzonych badań wynika, że metoda może okazać się przydatna w zastosowaniu do optymalizacji właściwości dynamicznych anemometrów. Metoda pozwala na kontrolowanie i optymalizację czasu narastania i opadania sygnału pomiarowego, a w szczególności na minimalizację i wyrównanie tych czasów. Wiąże się to jednak z wprowadzeniem do przyrządu dodatkowych elementów konstrukcyjnych oraz rozbudową oprogramowania sterującego, co komplikuje jego budowę i zwiększa koszty. Jednak w przypadku pewnej klasy przyrządów, w której istotna jest minimalizacja błędów dynamicznych, proponowane rozwiązanie może zostać zastosowane. Wymaga to dalszych prac badawczych w zakresie modelowania, a następnie przejścia do etapu prac eksperymentalnych i prototypowych. Praca została wykonana w ramach prac statutowych 016 realizowanych w IMG PAN w Krakowie, finansowanych przez Ministerstwo Nauki i Szkolnictwa Wyższego. Literatura [1] Unwin I. D., Phil M.: The Measurement of Air Flow in British Coal Mines: A Historical Review; B. SC. D.I.S, http:// www.cmhrc.co.uk/cms/document/air_flow_007.pdf, (007). [] Ower E.: On the response of a vane anemometer to an air-stream of pulsating speed. Phil. Mag. Series 7 3, 157, 99-1005 (1937). [3] Lee W.F.Z., Kirik M.J., Bonner J.A.: Gas Turbine Flowmeter Measurement of Pulsating Flow. J. Eng. Power, 97, 4, 531-539 (1975). [4] Wyngaard J.C.: Cup, Propeller, Vane, and Sonic Anemometers in Turbulence Research. Annual Review of Fluid Mechanics, 13, 399-43 (1981) [5] Lee B., Cheesewright R., Clark C.: The dynamic response of small turbine flowmeters in liquid flows. Flow Measurement and Instrumentation, 15, 39-48, (004). [6] Pindado S., Sanz A., Wery A.: Deviation of Cup and Propeller Anemometer Calibration Results with Air Density. Energies, 5(3), 683-701, (01). [7] Lee B.: Dynamic Response of Small Turbine Flowmeters in Pulsating Liquid Flows. Submitted for the Degree of Doctor of Philosophy, Department of Systems Engineering Brunel University, (00). [8] Krach A., Krawczyk J., Kruczkowski J., Pałka T.: Zmienność pola prędkości i strumienia objętości powietrza w wyrobiskach kopalń głębinowych. Archives of Mining Sciences, Monograph 1, Kraków, (006).

6 Paweł Ligęza [9] Kruczkowski J., Krach A., Krawczyk J.: Badania czujników anemometrycznych wykorzystywanych w metodach pomiaru pola prędkości i strumienia objętości wyznaczanie źródeł błędów, analiza niepewności. Prace Instytutu Mechaniki Górotworu PAN, 10, 1-4, 115-130, (008). [10] Ostrogórski P.: Właściwości dynamiczne cyfrowego anemometru skrzydełkowego. Przegląd Górniczy, 71, 4, 67-71, (015). [11] Ligęza P.: O modelu matematycznym anemometru skrzydełkowego. Prace Instytutu Mechaniki Górotworu PAN, 17, 3-4, 55-60, (015). [1] Ligęza P.: Sposób pomiaru prędkości płynu za pomocą anemometru z wirującym elementem pomiarowym i anemometr z wirującym elementem pomiarowym. Zgłoszenie Patentowe UP RP, P 416351, (016). [13] Ostrogórski P.: Badania możliwości wykorzystania siły poosiowej anemometru skrzydełkowego do kompensacji zawyżania wyniku pomiaru prędkości zmiennych. Prace Instytutu Mechaniki Górotworu PAN, 17, 3-4, 61-66, (015). Optimization of the dynamic properties of an anemometer with a rotating measuring element Abstract Anemometers using the phenomenon of transfer of momentum between the gas flow and the rotating measuring element are an important class of instruments used in the metrology of flows, in particular in meteorology and ventilation measurements. The phenomenon of over-estimation of the average velocity measurements associated with the inertia of the rotor is known. The research of this phenomenon and of the dynamics of measurement process, as well as the estimation of measurement uncertainty and its reduction needs a mathematical model of the anemometer. The paper proposes a method to optimize the dynamic properties of an anemometer with a rotating measuring element. The article presents the concept of the proposed system and the results of comparative simulation studies of anemometer equipped with such a system, and without system. Keywords: vane anemometer, mathematical model, dynamic states, model tests