lb. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym /0 długości okręgu.. Wyznacz kąty i y. Odpowiedź uzasadnij. 3. Wyznacz miary kątów α i β. 4. Wyznacz miary kątów α i β. 5. Dwa okręgi o środkach A i C są styczne zewnętrznie. Trzeci okrąg o środku B jest styczny do tych dwóch okręgów wewnętrznie, a punkty A, B, C są współliniowe. Oblicz promienie tych okręgów, jeśli IABI=6 i IACI=8. 6. Proste PA i PB są stycznymi do okręgu o(o,r). Prosta ED jest styczną do tego okręgu w punkcie C. Wiedząc, że IPAI=5cm oblicz obwód trójkąta PDE. 7.
8. Oblicz miary kątów zaznaczonych na rysunku. 9. Oblicz miary kątów zaznaczonych na rysunku 0.. Długość promienia okręgu wpisanego w trójkąt równoboczny wynosi cm. Oblicz długość boku trójkąta. Oblicz promień okręgu wpisanego w trójkąt równoboczny boku. 3. Znajdź promień okręgu wpisanego w trójkąt prostokątny, którego przyprostokątne mają długość 7cm i 4cm. 4. Oblicz wysokość i pole trójkąta równobocznego na którym opisano okrąg o promieniu 8 5. Jaką długość może mieć środkowa w trójkącie prostokątnym o bokach 7, 5,? 6. 7. Podaj długość trzeciego boku trójkąta prostokątnego, jeśli długości dwóch boków mają 3 i. Czy jest tylko jedna odpowiedź?
8. W trójkąt prostokątny o przyprostokątnych długości 9 oraz wpisano okrąg. Uzasadnij, że długość promienia tego okręgu jest równa 3. 3 9. W trójkąt równoboczny o boku długości 6 cm wpisano okrąg. Oblicz długość tego okręgu. 0. Dany jest trójkąt równoramienny ABC, w którym długość podstawy AB wynosi cm, a ramiona BC i AC mają po 0 cm długości. Na trójkącie ABC opisano okrąg. Oblicz odległość środka tego okręgu od prostej AB. Wykonaj odpowiedni rysunek.. Dla jakich wartości m prosta położona w odległości m+ od środka okręgu o(o, 3) jest sieczną okręgu? 6 3. Oblicz iloczyn wyrażeń: i 9 8 3. Oblicz iloraz wyrażeń: i 6 4 4. Rozwiąż równanie: 3 5 6 0 3 5 5. Ze wzoru 6. Ze wzoru a by m 5 n a by m 5 n wyznacz b. wyznacz. 7. Naszkicuj wykres funkcji oraz podaj dziedzinę funkcji, zbiór wartości funkcji i miejsca zerowe. f 8. Jan drogę 00 km pokonał w tym samym czasie co Hubert, który przejechał 80 km. Jan jechał z prędkością o 0 km/h większą niż Hubert. Oblicz czas podróży każdego z chłopców. 9. Joasia i Ola jechały rowerami z tą samą prędkością średnią. Jedna pokonała 80 km, a druga 75 km, lecz była w drodze 0 minut krócej. Z jaką prędkością jechały Joasia i Ola? 30. 3.
5 5 8 6 3. Oblicz wartość wyrażenia 55 30 4 4 33. 34. 35. Prosta o równaniu y = 8 przecina wykres funkcji określonej wzorem w punkcie P. Podaj współrzędne tego punktu. 36. 37. Rozwiąż graficznie równanie 8. 38. 39. 40. Kwotę 0000zł ulokowano na lokacie oprocentowanej 6% w skali roku z roczną kapitalizacją odsetek. Oblicz po jakim czasie kapitał przekroczy 50000zł? 4. Znajdź wzór ogólny podanego ciągu: 3, 6, 9,, 5,.... 4. Oblicz sumę pięciu początkowych wyrazów ciągu geometrycznego, jeśli: a 0, q 43. Liczby,, 3 są kolejnymi wyrazami ciągu arytmetycznego. Oblicz. 44. W ciągu arytmetycznym pierwszy wyraz wynosi 3 a różnica r wynosi. Oblicz sumę 0 wyrazów tego ciągu. 45. Ciąg jest określony wzorem a n 4n Oblicz średnią arytmetyczną wyrazów a 4 i a 6. 46. Trzy liczby, których suma jest równa 6 tworzą ciąg arytmetyczny. Jeśli do ostatniej z nich dodamy, to otrzymamy ciąg geometryczny. Jakie to liczby? 47. Wypisz osiem wyrazów ciąg geometrycznego jeśli a oraz q. 48. Oblicz sumę wszystkich liczb dwucyfrowych podzielnych przez 3.. 49. Wyznacz ciąg geometryczny, jeśli wiadomo, że trzeci wyraz ciągu to 48 a piąty 768.
5 50. W napisie,,, 8 wpisz w kwadraty liczby tak, by trzy pierwsze kolejne wyrazy tworzyły ciąg arytmetyczny, a trzy ostatnie ciąg geometryczny. 5. Sprawdź, czy dany ciąg jest ciągiem arytmetycznym. Określ monotoniczność tego ciągu. 5. Podaj wzór ciągu arytmetycznego jeśli wiadomo, że. Podaj wartość 5 wyrazu tego ciągu. 53. Dla jakiej wartości liczby a, b, c są kolejnymi wyrazami ciągu arytmetycznego? 54. Do jakiej kwoty wzrośnie kapitał w wysokości 000zł, złożony na 3 lata, jeżeli roczna stopa wynosi 8%, a odsetki są kapitalizowane kwartalnie? 55. 56. Napisz równanie symetralnej odcinka, którego końcami są punkty przecięcia prostej o równaniu z osiami układu współrzędnych. 57. Napisz równanie prostej przechodzącej przez punkty A(-,3) i B(,-5). Przedstaw równanie prostej w postaci ogólnej. 58. 59. 60. Punkt A = (-3b +, 5) jest obrazem punktu A = (4, a -) w symetrii względem początku układu współrzędnych. Podaj wartości a i b. 6. 6. 63. 64. 65. 66.