Problemy modelowania niezawodności systemów wielofazowych. Słowa kluczowe: niezawodność, modelowanie, system wielofazowy. 1.



Podobne dokumenty
Modelowanie niezawodności prostych struktur sprzętowych

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Niezawodność i Diagnostyka

WSPÓŁCZYNNIK GOTOWOŚCI SYSTEMU LOKOMOTYW SPALINOWYCH SERII SM48

Niezawodność i Diagnostyka

PRZYKŁAD OCENY RYZYKA SYSTEMU PRZEŁADUNKU KONTENERÓW

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD

W6 Systemy naprawialne

EKSPLOATACJA SYSTEMÓW TECHNICZNYCH

Określenie maksymalnego kosztu naprawy pojazdu

Rys. 1. Instalacja chłodzenia wodą słodką cylindrów silnika głównego (opis w tekście)

Struktury niezawodności systemów.

Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH

OCENA NIEZAWODNOŚCI EKSPLOATACYJNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ

WYBRANE ZAGADNIENIA OPTYMALIZACJI PRZEGLĄDÓW OKRESOWYCH URZĄDZEŃ ELEKTRONICZNYCH

ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW

Management Systems in Production Engineering No 2(6), 2012

Konspekt. Piotr Chołda 10 stycznia Modelowanie niezawodności systemów złożonych

OPTYMALIZACJA PROCESU EKSPLOATACJI PORTOWEGO SYTEMU TRANSPORTU PALIWA

Cechy eksploatacyjne statku. Dr inż. Robert Jakubowski

W3 - Niezawodność elementu nienaprawialnego

PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV

Mapy ryzyka systemu zaopatrzenia w wodę miasta Płocka

Statystyczna analiza awarii pojazdów samochodowych. Failure analysis of cars

PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ

Politechnika Krakowska im. Tadeusza Kościuszki KARTA PRZEDMIOTU

J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006).

Laboratorium Metrologii

XXXIII Konferencja Statystyka Matematyczna

WYZNACZANIE OPTYMALIZOWANYCH PROCEDUR DIAGNOSTYCZNO-OBSŁUGOWYCH

Metodyka projektowania komputerowych systemów sterowania

Streszczenie: Zasady projektowania konstrukcji budowlanych z uwzględnieniem aspektów ich niezawodności wg Eurokodu PN-EN 1990

Karol ANDRZEJCZAK

RACJONALIZACJA PROCESU EKSPLOATACYJNEGO SYSTEMÓW MONITORINGU WIZYJNEGO STOSOWANYCH NA PRZEJAZDACH KOLEJOWYCH

Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego

Wrocław, r.

Systemy zabezpieczeń

Oszacowanie niezawodności elektronicznych układów bezpieczeństwa funkcjonalnego

2. Metoda impulsowa pomiaru wilgotności mas formierskich.

Funkcje: wejściowe, wyjściowe i logiczne. Konfigurowanie zabezpieczeń.

Zapora ziemna analiza przepływu nieustalonego

Walidacja elementów systemów sterowania związanych z bezpieczeństwem jako krok do zapewnienia bezpieczeństwa użytkowania maszyn

Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

Zad. 3: Układ równań liniowych

EKSPLOATACJA STATKÓW LATAJĄCYCH. WYKŁAD 20 MARCA 2012 r. dr inż. Kamila Kustroń

Obwody elektryczne prądu stałego

KOMPUTEROWA SYMULACJA PROCESÓW ZWIĄZANYCH Z RYZYKIEM PRZY WYKORZYSTANIU ŚRODOWISKA ADONIS

ĆWICZENIE 4 WYZNACZANIE OPTYMALIZOWANYCH PROCEDUR DIAGNOSTYCZNO-OBSŁUGOWYCH

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Urząd Dozoru Technicznego. RAMS Metoda wyboru najlepszej opcji projektowej. Ryszard Sauk. Departament Certyfikacji i Oceny Zgodności Wyrobów

Niezawodność i diagnostyka projekt. Jacek Jarnicki

MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH ZEWNĘTRZNYCH WYKONANYCH Z UŻYCIEM LEKKICH KONSTRUKCJI SZKIELETOWYCH

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Spis treści do książki pt. Ocena ryzyka zawodowego Autorzy: Iwona Romanowska-Słomka Adam Słomka

STOCHASTYCZNY MODEL BEZPIECZEŃSTWA OBIEKTU W PROCESIE EKSPLOATACJI

Spacery losowe generowanie realizacji procesu losowego

(b) Oblicz zmianę zasobu kapitału, jeżeli na początku okresu zasób kapitału wynosi kolejno: 4, 9 oraz 25.

MOC OPISOWA DRZEW NIEZDATNOŚCI Z ZALEŻNOŚCIAMI CZASOWYMI

Metody statystyczne kontroli jakości i niezawodności Lekcja II: Niezawodność systemów. Charakterystyki niezawodności.

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Niezawodność i diagnostyka projekt

System bonus-malus z mechanizmem korekty składki

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

Projektowanie oprogramowania cd. Projektowanie oprogramowania cd. 1/34

Diagnozowanie sieci komputerowej na podstawie opinii diagnostycznych o poszczególnych komputerach sieci

Niezawodność eksploatacyjna środków transportu

SPIS TREŚCI. Str. WSTĘP 9 CZĘŚĆ I 1. WPROWADZENIE 13

Elementy modelowania matematycznego

NK315 WYKŁAD WPROWADZAJĄCY

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia. Język polski

Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny

Definicje i przykłady

Maciej Oleksy Zenon Matuszyk

Modelowanie komputerowe

SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU)

A B x x x 5 x x 8 x 18

POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD 4. dr inż. Kamila Kustroń

"Wsparcie procesu decyzyjnego dla metodyk zwinnych w procesie testowania z wykorzystaniem modeli z obszaru teorii niezawodności."

4. ZNACZENIE ROZKŁADU WYKŁADNICZEGO

Analiza ryzyka nawierzchni szynowej Iwona Karasiewicz

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

PROBLEM ROZMIESZCZENIA MASZYN LICZĄCYCH W DUŻYCH SYSTEMACH PRZEMYSŁOWYCH AUTOMATYCZNIE STEROWANYCH

ELEMENTÓW PODANYCH W PN-EN i PN-EN

Rachunek kosztów. Sem. 8 Komputerowe Systemy Elektroniczne, 2009/2010. Alicja Konczakowska 1

Systemy zarządzania bezpieczeństwem informacji: co to jest, po co je budować i dlaczego w urzędach administracji publicznej

ZASTOSOWANIE TEORII PROCESÓW SEMI-MARKOWA DO OPRACOWANIA MODELU NIEZAWODNOŚCIOWEGO SAMOCHODU

Model odpowiedzi i schemat oceniania do arkusza II

Statystyka i Analiza Danych

2b. Inflacja. Grzegorz Kosiorowski. Uniwersytet Ekonomiczny w Krakowie. Matematyka finansowa

POTRZEBA I MOŻLIWOŚCI ZABEZPIECZENIA LOGISTYCZNEGO SYSTEMÓW UZBROJENIA REQUIREMENTS FOR THE WEAPON SYSTEMS LOGISTIC SUPPORT

Efektywność algorytmów

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik elektroniki medycznej 322[18]

Ekonometryczne modele nieliniowe

Modelowanie i analiza systemów informatycznych

Inteligencja obliczeniowa

Transkrypt:

Dr hab. inż. Tomasz NOWAKOWSK Politechnika Wrocławska nstytut Konstrukcji i Eksploatacji Maszyn Wyb. Wyspiańskiego 27, 50-370 Wrocław tomasz.nowakowski@pwr.wroc.pl Problemy modelowania niezawodności systemów wielofazowych Słowa kluczowe: niezawodność, modelowanie, system wielofazowy Streszczenie: W artykule omówiono podstawowe problemy związane z modelowaniem systemów wielofazowych. Eksploatacja takich systemów związana jest z realizacją różnych zadań, które składają się na osiągnięcie celu końcowego. Do takich systemów można zaliczyć systemy logistyczne i systemy transportowe. Omówiono dwa rodzaje modeli: modele syntetyczne ujmujące cały okres eksploatacji systemu i modele, w których poszczególne fazy są rozpatrywane oddzielnie. Wykorzystano przykładowy system o strukturze progowej zmiennej w kolejnych trzech fazach eksploatacji. Przedstawiono zalety i wady korzystania z modelu konserwatywnego bazującego na analizie modelu blokowego i modeli Markowa z ustaloną i losowo zmiennych czasem trwania poszczególnych faz. 1. Wprowadzenie stnieje wiele systemów, których okres eksploatacji składa się z szeregu rozdzielnych przedziałów czasu. W każdym z tych przedziałów system realizuje różne zadania, których wyniki muszą złożyć się na osiągnięcie celu końcowego. Takie systemy nazywa się w literaturze (np. [4]) systemami o zadaniach (misjach) okresowych (Phased Mission System PMS). Przykłady takich systemów, poza systemami transportowymi i logistycznymi, można znaleźć w wielu obszarach zastosowań takich jak energetyka jądrowa, lotnictwo, okrętownictwo, telekomunikacja, budownictwo, elektronika i wiele innych (np. [8], [9]). Prowadzone obecnie prace naukowo-badawcze [10] dotyczą m. in. systemu transportu łamanego kolejowo-wodnego węgla w korytarzu Odrzańskiej Drogi Wodnej. Ponieważ koncepcja okresowego wykonywania zadań przez tak złożone systemy jak system transportowy lub system logistyczny dotyczy znacznie szerszego zbioru systemów niż to wynika z pojęcia mission, proponuje się w [4] stosowanie nazwy systemy wielofazowe (Multiple-Phased Systems MPS). W systemach wielofazowych poszczególne fazy mogą charakteryzować się wieloma różnymi właściwościami [4]: zadanie wykonywane w danej fazie może różnić się od zadań wykonywanych w pozostałych fazach, wymagania dotyczące osiągów i niezawodności mogą się różnić pomiędzy fazami, podczas niektórych faz system może być poddany szczególnie silnym oddziaływaniom otoczenia co może wywoływać znaczący wzrost intensywności uszkodzeń, struktura systemu może zmieniać się w funkcji czasu, w zależności od wymagań funkcjonalnych i niezawodnościowych sformułowanych dla fazy, która jest aktualnie wykonywana,

prawidłowe wykonanie zadań w danej fazie może przynieść inne efekty dla systemu niż te osiągane w innych fazach. 2. Modele niezawodności systemów wielofazowych Podczas modelowania niezawodności systemu, korzystanie z koncepcji systemu wielofazowego pozwala na lepsze przybliżenie rzeczywistości ze względu na następujące założenia: eksploatacyjna struktura systemu nie jest stała, może zmieniać się pomiędzy fazami w zależności od ważności / krytyczności danej fazy, historia uszkodzeń lub napraw danego elementu w danej fazie wywiera wpływ na zachowanie systemu w kolejnej fazie. Stąd, stan komponentu na początku danej fazy zależy od stanu danego komponentu na końcu poprzedniej fazy. kryteria definiujące poziom spełnienia wymagań dotyczących osiągów i niezawodności danej fazie mogą różnić się tych wartości dla kolejnej fazy. Te założenia są w różny sposób wykorzystywane w modelach znanych z literatury. Znane są dwa rodzaje modeli: modele syntetyczne ujmujące cały okres eksploatacji systemu i modele, w których poszczególne fazy są rozpatrywane oddzielnie. Modele syntetyczne, w których wszystkie fazy są reprezentowane razem (np. [1], [2], [5], [14]) charakteryzują się szeregiem zalet ze względu na możliwość wykorzystania podobieństw pomiędzy fazami w celu otrzymania modelu zwartego, w którym wszystkie fazy są prawidłowo wbudowane. Budowanie takiego syntetycznego modelu może nie być łatwe ani wygodne w tych przypadkach, w których wspomniane powyżej różnice przeważają nad podobieństwami pomiędzy poszczególnymi fazami. Z drugiej strony oddzielne modelowanie każdej fazy (np. [7], [14]) pozwala na natychmiastowe charakteryzowanie różnic pomiędzy fazami, w warunkach różnic intensywności uszkodzeń i różnic wymagań strukturalnych. Każda faza może być rozwiązywana oddzielnie i otrzymane wyniki następnie łączone z tymi z innych faz aby otrzymać całościowe wyniki dla systemu. Główną słabością rozdzielnego podejścia do modelowania (nie występująca w modelach syntetycznych) polega na podejściu do zależności pomiędzy fazami, które trzeba wziąć pod uwagę przy rozdzielaniu komponentów pomiędzy fazami. Takie podejście wymaga wyraźnie określonego mapowania stanów komponentu na końcu fazy w stosunku do stanu komponentu na początku fazy następnej. Takie zadanie jest koncepcyjnie proste, ale może być niewygodne i na pewno pozostaje potencjalnym źródłem błędów dla złożonych systemów. Najtrudniejszą decyzją w procesie modelowania jest sposób łączenia poszczególnych faz w jeden model i szacowania wartości charakterystyk niezawodności całego systemu. Analizie [11] został poddany przykładowy system opisany następującymi założeniami: system zbudowany z 3 komponentów (A, B, C), w czasie eksploatacji system znajduje się kolejno w 3 fazach (,, ), intensywności uszkodzeń poszczególnych komponentów są stałe w czasie trwania danej fazy eksploatacji, ale mogą się różnić w poszczególnych fazach (λ i j, i = A, B, C, j =,, ), komponenty mogą być obsługiwane lub naprawiane; intensywność napraw w poszczególnych fazach jest stała, ale także może zmieniać się w kolejnych fazach eksploatacji (µ i j, i = A, B, C, j =,, ), struktura niezawodności systemu jest strukturą progową k j z n ; parametr k zależy od fazy i wynosi: k = 1, k = 2, k = 3, przy n = 3. 2

System ma strukturę progową typu k z n, jeżeli system jest zdatny wtedy i tylko wtedy, gdy co najmniej k dowolnych spośród n elementów jest zdatnych. Schemat blokowy takiego systemu pokazano na rys. 1. Na schemacie k elementów jest połączonych szeregowo i mogą być zastąpione przez dowolny z (k+1, n) elementów (istnieją modele o bardziej sformalizowanych zasadach rezerwowania np. [3]). Łatwo można również wykazać, że struktura progowa jest uogólnieniem struktury szeregowej i równoległej: struktura 1 z n jest strukturą równoległą, struktura n z n jest strukturą szeregową. 1 2 k k+1 k+2 n Rys. 1. Schemat blokowy struktury progowej Funkcja niezawodności systemu o strukturze progowej przy założeniu, że system zbudowany jest z identycznych elementów (R 1 (t) = R 2 (t) = = R n (t) = R(t)) wyraża się wzorem: n n! Rs ( t) = R 1 i!! i= k ( n i) i ( t) ( R( t) ) n i (1) Modelując system zbudowany z elementów odnawialnych najczęściej korzysta się z modelu Markowa - odpowiednie grafy stanów dla poszczególnych faz eksploatacji przykładowego systemu pokazano na rys. 2, 3, 4. Stan systemu zapisano w następującej notacji: przy czym: S i = 0 element niezdatny, S i = 1 element zdatny. S = <S A, S B, S C > (2) Stany niezdatności systemu w poszczególnych fazach zostały zaciemnione. Należy podkreślić jedno z przyjętych założeń [11], że podczas naprawy elementów systemu niemożliwe są dalsze ich uszkodzenia. 3

111 110 101 100 010 001 000 Rys. 2. Model Markowa dla fazy [11] µc λb 111 µb 110 101 µb 100 010 λa 001 Rys. 3. Model Markowa dla fazy [11] 4

µa 111 101 λc 110 Rys. 4. Model Markowa dla fazy [11] 2.1. Konserwatywny model niezawodności Najprostszym podejściem do łączenia niezawodności faz w niezawodność systemu jest wykorzystanie modelu struktury szeregowej niezawodności systemu, w której elementami struktury będą kolejne fazy eksploatacji systemu. Jest to możliwe jeżeli komponenty systemu nie charakteryzują się dynamicznymi zmianami właściwości takich jak błędy przejścia lub niezupełną naprawą uszkodzeń [5]. Wówczas otrzymuje się konserwatywne oszacowanie funkcji niezawodności systemu. Przykład takiej struktury pokazano na rys. 5. A B A B A B C C C Rys. 5. Struktura niezawodności systemu szeregowa struktura faz [11] Wyniki obliczeń niezawodności takiego systemu, jeżeli elementy są nienaprawialne, są dokładne, ale prowadzą do oszacowania niezawodności rzeczywistego systemu z dołu. Pewnym rozwiązaniem sygnalizowanych trudności jest wykorzystanie do analizy systemu metody ścieżek zdatności lub przekrojów niezdatności [6]. Własności minimalnych ścieżek zdatności i minimalnych przekrojów niezdatności są m.in. następujące [3]: strukturę systemu można przedstawić za pomocą pseudostruktury utworzonej z minimalnych ścieżek zdatności połączonych równolegle, strukturę systemu można przedstawić za pomocą pseudostruktury utworzonej z minimalnych cięć niezdatności połączonych szeregowo, struktura minimalnej ścieżki zdatności P j (j = 1,..., p) jest strukturą szeregową, struktura minimalnego przekroju niezdatności K j (j = 1,..., k) jest strukturą równoległą. 5

Strukturę systemu ϕ można wobec tego przedstawić za pomocą struktur jej minimalnych ścieżek: ( x) = maxmin xi ϕ (3) 1 j p i P co odpowiada pseudostrukturze ϕ P utworzonej z minimalnych ścieżek lub za pomocą struktur minimalnych cięć: ( x) = min max xi 1 j k i K j j ϕ (4) co odpowiada pseudostrukturze ϕ K utworzonej z minimalnych cięć. Wówczas można oszacować od góry i z dołu niezawodność systemu, która jest nie gorsza niż niezawodność systemu o pseudostrukturze ϕ K i nie lepsza niż niezawodność systemu o pseudostrukturze ϕ P. Niezawodność systemów o pseudostrukturach ϕ P i ϕ K jest stosunkowo łatwa do wyznaczenia: max P min xi 1 j p i P j = 1 R s min P max xi 1 j k i K j = 1 (5) 2.2. Model Markowa ustalony czas trwania faz Jeżeli system wykazuje zachowania zmienne w czasie wykonywania zadania, takie jak, np.: zmieniające się prawdopodobieństwa przejść pomiędzy fazami, ograniczona liczbą zespołów naprawczych, wykorzystanie modelu Markowa może się okazać efektywne do analizy niezawodności tak złożonego systemu. W proponowanym sposobie modelowania, każda faza eksploatacji systemu wielofazowego jest modelowana oddzielnym modelem Markowa. Zakłada się, że końcowy stan niezawodnościowy systemu w fazie j dla fazy j + 1 jest stanem początkowym. Schemat postępowania pokazano na rys. 6. W fazie realizowanej przez okres czasu T 1 stanami zdatności są m.in. stany (111), (101), (110), () i możliwe jest przejście do fazy do analogicznych stanów zdatności. Natomiast stany (100), (010), (001) będą w fazie stanami niezdatności i końcowe prawdopodobieństwa przebywania w tych stanach będą sumowały się do prawdopodobieństwa uszkodzenia systemu. Oczywiście system może także ulec uszkodzeniu w fazie stan (000). Dla fazy tylko stan zdatności wszystkich elementów (111) jest stanem zdatności. Niedogodności tego sposobu modelowania niezawodności systemu wielofazowego związane są z trudnościami powiązania odpowiadających sobie stanów systemu w poszczególnych fazach. nne komplikacje powstają (np. [5]) jeżeli dany komponent podlega uszkodzeniom w jednej fazie a nie uszkadza się w innej lub gdy uszkodzenia w jednej fazie nie są diagnozowalne dopóki element nie zostanie użyty w kolejnej fazie. 6

λb 1 11 µb µa T 110 101 λb 100 0 10 001 µb 0 00 111 λa T µc λb µb µa 110 101 µc µa µb 100 010 µ µc λb B λc 001 T 111 101 110 Rys. 6. Schemat modelu niezawodności z ustalonym czasem trwania faz [11] Syntetyczny model sformułowanego wcześniej podejścia zaproponowano w [5]. Wprowadzono wskaźnik występowania fazy φ j : gdzie: T j chwila końca fazy j. φ j = 1 jeżeli (T j-1 t < T j ) (6) 0 jeżeli t < T j-1, t > T j Wskaźnik φ j określa, które przejście pomiędzy stanami należy do danej fazy j. Użycie tej metody nie zmienia przestrzeni stanów systemu ani nie wymaga wyznaczania nowych prawdopodobieństw przejść miedzy stanami. Otrzymany model jest nadal modelem Markowa ale nie jest już jednorodny wartości prawdopodobieństw przejść zależą od czasu eksploatacji systemu. Przykład modelu pokazano na rys. 7. Dla uproszczenia rysunku uwzględniono tylko intensywności uszkodzeń elementów; zapis intensywności napraw jest analogiczny. Przy numerach stanów zaznaczono numer fazy, w której dany stan jest stanem niezdatności. 7

φ + φ + φ 111 φ + φ + φ φ + φ + φ 110 φ + φ 101 φ + φ φ + φ φ + φ 100 φ + φ 010 φ + φ 001 φ φ φ 000 Rys. 7. Model syntetyczny przykładowego systemu wielofazowego [11] 2.3. Model Markowa losowy czas trwania faz Jeżeli nie można zdefiniować zdeterminowanego czasu trwania poszczególnych faz eksploatacji systemu i te okresy czasu są zmiennymi losowymi to do modelowania trzeba wykorzystać niejednorodny proces Markowa. Podejście zaprezentowane w [14] bazuje na rozwiązaniu pojedynczego niejednorodnego modelu Markowa, w którym koncepcja przejść między stanami została uogólniona aby uwzględnić zmiany faz. Zaletą tego podejścia jest możliwość uwzględnienia zależności zmian fazy od stanu systemu oraz zależności uszkodzeń i napraw od czasu w poszczególnych fazach. Nie ma również potrzeby uzgadniania prawdopodobieństw przebywania w stanach pomiędzy fazami. Wadą metody jest duży stopień skomplikowania modelu. Przestrzeń stanów może być bardzo duża ponieważ stanowi sumę stanów wszystkich modeli cząstkowych ([11]). Ponieważ wielkość przestrzeni stanów w modelach Markowa jest (w najgorszym przypadku) wykładniczą funkcja ilości komponentów, jej przyrost może być krytyczny dla możliwości modelowania. 3. Podsumowanie Z otrzymanych modeli można oszacować podstawowe miary oceny niezawodności systemu, takie jak np.: prawdopodobieństwo prawidłowego zrealizowania zadania logistycznego, prawdopodobieństwo wystąpienia błędu / uszkodzenia w funkcji czasu wykonywania zadania lub średni czas między uszkodzeniami. 8

Przedstawiony sposób podejścia został wykorzystany do modelowania niezawodności systemów transportu intermodalnego przy wykorzystaniu modeli Markowa i semi-markowa (np. [12], [13], [16]). Można powiedzieć że system transportu intermodalnego jest wzorcowym przykładem (z punktu widzenia modelowania niezawodności) systemu o zadaniach (misjach) okresowych / fazowych. Transport ładunków jest dzielony na fazy realizowane różnymi środkami transportu. Możliwości modelowania niezawodności i bezpieczeństwa systemu transport łąmanego węgla na Odrzańskiej Drodze Wodnej [10] zestawiono w tabeli 1. Tabela 1. Schemat analizowanych modeli transport łamanego System transportowy Model niezawodności Kolej Schemat blokowy Model Markowa Kolej-woda-kolej Schemat blokowy Ustalony czas trwania fazy Losowy czas trwania fazy Dla przykładu, biorąc pod uwagę cały system, dla ustalonych okresów trwania poszczególnych faz transport kolejowego i wodnego oraz przy założeniu pełniej niezawodności fazy przeładunku otrzymano następujące oszacowania: gotowość transportu kolejowego: ( t) = [ µ ( λ + µ )] + [( P( t ) λ (1 P( t ) µ ) exp( ( λ + µ ) t) ]/( λ + ) A / 0 0 µ (7) gdzie: P(t 0 ) prawdopodobieństwo stanu zdatności dla t = 0, gotowość transportu łamanego: i ( t) [ µ ( λ + µ )] + [( P ( t ) λ (1 P ( t ) µ ) exp( ( λ + µ ) t) ]/( λ + ) A = µ (8) i / i i i 0 i i 0 i i i i i gdzie: i numer fazy. Pi 0 = + 1 ( t ) Ai ( t) (9) Oszacowane dane statystyczne pogrupowano na zdarzenia niepożądane dla transportu szynowego oraz śródlądowego uzyskując (na pierwszym poziomie dekompozycji systemu transportowego) dwie grupy zdarzeń. W przypadku systemu transportu szynowego są to zdarzenia związane z uszkodzeniami i zagrożeniami wynikającymi z eksploatacji pociągów oraz uszkodzeń, błędów funkcjonowania infrastruktury. Natomiast dla systemu transportu śródlądowego są to zdarzenia powstałe na skutek uszkodzeń i błędów infrastruktury drogi wodnej i ograniczeń wynikających z niewłaściwych przepływów oraz zdarzenia związane z uszkodzeniami i obsługami statków (pchaczy i barek). Różnica w strukturze uszkodzeń i zagrożeń wynika z uwarunkowań i udziału poszczególnych zdarzeń rys. 8. 9

Rys. 8. Zestawienie udziałów zdarzeń niepożądanych [10] Dla oszacowanych wartości intensywności uszkodzeń i intensywności napraw i zadania transportowego trwającego 50 godzin podzielonego na fazę kolejową - 6 godzin i fazę wodną - 44 godziny uzyskano wyniki pokazane na rys. 9. Rys. 9. Porównanie gotowości systemu transportu łamanego i kolejowego [10] Jak widać model w poprawny sposób ujmuje zmianę rodzaju transportu w 6-tej godzinie zadania transportowego i uwzglednia wzrost gotowości całego systemu wynikający z lepszej niezawodności transportu wodnego. Oczywiście wiarygodność uzyskanego oszacownia gotowości systemu transportu łamanego zależy od omawianej wiarygodności danych wejściowych. 10

Literatura [1] Alam M., Al-Saggaf U.M. Quantitative reliability evaluation of repairable phased-mission systems using Markov approach. EEE Transactions Reliability1986; 35: 498-503. [2] Aupperle B.E., et al. Evaluation of fault-tolerant systems with non-homogeneous workloads. 19th EEE nt. Fault Tolerant Computing Symp 1989. [3] Birolini A. Reliability Engineering. Theory and Practice. Springer-Verlag, Berlin Heidelberg 1999. [4] Bondavalli A., Chiaradonna S., Di Giandomenico F., Mura. Dependability Modeling and Evaluation of Multiple-Phased Systems Using DEEM. EEE Transactions on Reliability 2004; 53: 4. [5] Dugan J.B. Automated Analysis of Phased-Mission Reliability. EEE Transactions on Reliability 1991; 40: 1. [6] Dugan J.B., Veeraraghavan M., Boyd M., Mittal N. Bounded approximate reliability models for fault tolerant distributed systems. Proc. 8th Symp. Reliable Distributed Systems 1989. [7] Esary J.D., Ziehms H. Reliability analysis of phased missions. Reliability and Fault Tree Analysis. Philadelphia: SAM; 1975. [8] Hoła B. Methodology of estimation of accident situation in building industry. Archives of Civil and Mechanical Engineering 2009; 9; 1. [9] Kobyliński L. System and risk approach to ship safety, with special emphasis on stability. Archives of Civil and Mechanical Engineering 2007; 7; 4. [10] Kulczyk J., Nowakowski T., Restel F. Reliability analysis of combined coal transport system in Odra river corridor. Proceedings of ESREL 2 (w przygotowaniu). [11] Nowakowski T. Niezawodność systemów logistycznych. Wrocław University of Technology Publishing House 2. [12] Nowakowski T. Reliability model of combined transportation system. Probabilistic safety assessment and management. PSAM7-ESREL 2004. London [etc.] : Springer. [13] Nowakowski T. Zając M. Analysis of reliability model of combined transportation system. Advances in safety and reliability. Proceedings of the European Safety and Reliability Conference 2005. Leiden : A.A.Balkema. [14] Smotherman M., Zemoudeh K. A nonhomogeneuous Markov model for phased-mission reliability analysis. EEE Transactions Reliability 1989; 38: 585-590. [15] Xing L., Dugan J.B. Analysis of generalized phased mission system reliability, performance and sensitivity. EEE Transactions Reliability 2002; 51: 199-211. [16] Zając M. Model niezawodności systemu transportu intermodalnego. Raporty nst. Konstr. Ekspl. Masz. PWroc. 2007, Ser. Matrices 3. Doctoral dissertation. 11