Modelowanie białek ab initio / de novo

Podobne dokumenty
Modelowanie białek ab initio / de novo

Modelowanie białek ab initio / de novo

Bioinformatyka II Modelowanie struktury białek

Bioinformatyka wykład 10.I.2008

Bioinformatyka II Modelowanie struktury białek

Spis treści. Przedmowa... XI. Wprowadzenie i biologiczne bazy danych. 1 Wprowadzenie Wprowadzenie do biologicznych baz danych...

Bioinformatyka wykład 12, 18.I.2011 Białkowa bioinformatyka strukturalna c.d.

Komputerowe wspomaganie projektowania leków

4.1 Hierarchiczna budowa białek

Badanie długości czynników sieciujących metodami symulacji komputerowych

Struktura i funkcja białek (I mgr)

Żwirki i Wigury 93, Warszawa TEL.: , FAX: , E- MAIL: Dr hab. Joanna T

Dokowanie molekularne. Karol Kamel Uniwersytet Warszawski

Materiały pochodzą z Platformy Edukacyjnej Portalu

BIOINFORMATYKA. edycja 2016 / wykład 11 RNA. dr Jacek Śmietański

QSAR i związki z innymi metodami. Karol Kamel Uniwersytet Warszawski

Komputerowe wspomaganie projektowanie leków

Bioinformatyka wykład 9

Komputerowe wspomaganie projektowanie leków

Przegląd budowy i funkcji białek

Przewidywanie struktur białek

Podstawy projektowania leków wykład 12

Kryteria samorzutności procesów fizyko-chemicznych

Wybrane techniki badania białek -proteomika funkcjonalna

Modelowanie homologiczne

Bioinformatyka wykład 10

Chemiczne składniki komórek

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych

Oddziaływanie leków z celami molekularnymi i projektowanie leków

Molecular dynamics investigation of the structure-function relationships in proteins with examples

Dokonane w latach sześćdziesiątych odkrycie, w

Bioinformatyka wykład 3.I.2008

protos (gr.) pierwszy protein/proteins (ang.)

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.

Optymalizacja optymalizacji

Bioinformatyka wykład 11, 11.I.2011 Białkowa bioinformatyka strukturalna c.d.

Projektowanie Nowych Chemoterapeutyków

Kombinatoryczna analiza widm 2D-NOESY w spektroskopii Magnetycznego Rezonansu Jądrowego cząsteczek RNA. Marta Szachniuk

Informacje. W sprawach organizacyjnych Slajdy z wykładów

Wybrane techniki badania białek -proteomika funkcjonalna

Bioinformatyka wykład 8, 27.XI.2012

na podstawie artykułu: Modeling Complex RNA Tertiary Folds with Rosetta Clarence Yu Cheng, Fang-Chieh Chou, Rhiju Das

TERMODYNAMIKA I TERMOCHEMIA

były jedynie sekwencje aminokwasowe, a także wykorzystał go do oszacowania aktywności przeciwdrobnoustrojowej wybranych bakteriocyn.

Proteomika: umożliwia badanie zestawu wszystkich lub prawie wszystkich białek komórkowych

Komputerowe wspomaganie projektowanie leków

Przewidywanie struktury białek: od modelowania opartego o szablony. do rekombinacji fragmentów metodą dr Frankensteina

DRUGA ZASADA TERMODYNAMIKI

Badanie oddziaływań związków biologicznie aktywnych z modelowymi membranami lipidowymi

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }

- parametry geometryczne badanego związku: współrzędne i typy atomów, ich masy, ładunki, prędkości początkowe itp. (w NAMD plik.

SPECJALNE TECHNIKI ROZDZIELANIA W BIOTECHNOLOGII. Laboratorium nr1 CHROMATOGRAFIA ODDZIAŁYWAŃ HYDROFOBOWYCH

etyloamina Aminy mają właściwości zasadowe i w roztworach kwaśnych tworzą jon alkinowy

Generator testów Bioinformatyka wer / 0 Strona: 1

Recenzja rozprawy doktorskiej mgra Mateusza Pikory pt. "Zastosowanie modelu Markova do badania ścieżek zwijania białek"

Substancje o Znaczeniu Biologicznym

Elementy teorii powierzchni metali

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Structure and Charge Density Studies of Pharmaceutical Substances in the Solid State

Metody teoretyczne przewidywania struktury białek oraz ich kompleksów z peptydami

DRUGA ZASADA TERMODYNAMIKI

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Wieloskalowe modelowanie molekularne bia³ek

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Możliwości współczesnej inżynierii genetycznej w obszarze biotechnologii

Przemiana materii i energii - Biologia.net.pl

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

Aminokwasy, peptydy i białka. Związki wielofunkcyjne

Komputerowe wspomaganie projektowanie leków

Oddziaływanie leków z celami molekularnymi i projektowanie leków

Stabilność II Metody Lapunowa badania stabilności

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU KSZTAŁT BIAŁEK.

Model wiązania kowalencyjnego cząsteczka H 2

Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra

modelowania makromolekuł wydawało się interesującym zadaniem. W pewnym sensie tego typu podejście zbliżone było do idei de Gennes a, z jedną jednak

Budowa aminokwasów i białek

Laboratorium 5. Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna

Dr. habil. Anna Salek International Bio-Consulting 1 Germany

Bioinformatyka wykład 8

Porównywanie i dopasowywanie sekwencji

Obliczenia inspirowane Naturą

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.

Recenzja. Warszawa, dnia 22 października 2018 r.

RECENZJA rozprawy doktorskiej Mgr. Aleksandry E. Badaczewskiej-Dawid pt.

Symulacja Monte Carlo izotermy adsorpcji w układzie. ciało stałe-gaz

Translacja i proteom komórki

Atomy wieloelektronowe

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.

Biomolekuły (3) Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. piątek, 7 listopada 2014 Biofizyka

Opis zakładanych efektów kształcenia OPIS ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II

Techniki optymalizacji

Ogólny schemat postępowania

Twierdzenie 2: Własności pola wskazujące na istnienie orbit

Transkrypt:

Modelowanie białek ab initio / de novo

Słowniczek de novo - od początku, na nowo ab initio - od początku

Słowniczek de novo - kategoria metod przewidywania struktury, w których nie używa się wzorców homologicznych struktur z PDB ab initio - przewidywanie struktury wyłącznie na podstawie praw fizyki

Modelowanie ab initio Ab initio opiera się na hipotezie termodynamicznego zwijania białek czyli natywna struktura sekwencji białkowej odpowiada stanowi globalnego minimum energetycznego

Dwa podejścia PODEJŚCIE EWOLUCYJNE SZKOŁA DARWINOWSKA Rekonstrukcja procesu powstania sekwencji i struktury białka na drodze ewolucji (przyrodzie zabiera to miliony lat) PODEJŚCIE FICZYCZNE SZKOŁA BOLTZMANNOWSKA Modelowanie zwijania białka ( procesu poszukiwania przez łańcuch konformacji o najniższej energii swobodnej, który w komórkach trwa zaledwie ułamki sekundy) korzystając z praw fizyki statystycznej

Hipoteza Anfinsena Sekwencja aminokwasowa białka ściśle determinuje jego strukturę przestrzenną, która w danych warunkach fizjologicznych odpowiada globalnemu minimum energii swobodnej.

Hipoteza Anfinsena Zatem znajomość sekwencji aminokwasowej białka powinna wystarczyć do obliczenia konformacji o najniższej energii.

Struktura natywna białka Struktura natywna zależy od wielu czynników: -temperatura -siła jonowa roztworu -ph roztworu -obecność jonów metali, cząsteczek organicznych, grup prostetycznych (np. hemu)

Modelowanie ab initio problemy: -paradoks Liventhala: liczba konformacji swobodnego łańcucha dąży do nieskończoności.?

Modelowanie ab initio Paradoks Liventhala -jeśli liczba możliwych stopni swobody jednego aminokwasu wynosiłaby 2, to dla łańcucha N=150 aminokwasów liczba możliwych konformacji wynosi 2 150

Modelowanie ab initio Paradoks Liventhala -jeśli liczba możliwych stopni swobody jednego aminokwasu wynosiłaby 2, to dla łańcucha N=150 aminokwasów liczba możliwych konformacji wynosi 2 150 -jeśli czas sprawdzania 1 konformacji wynosi 10-13 s, to dla takiego białka sprawdzenie wszystkich stanów wynosi: 2 150 10-13 s = 4.6 10 24 lat (czas życia Ziemi = 4.5 10 9 lat)

Hiperpowierzchnia energetyczna Zależność energii swobodnej (E) od współrzędnej Q opisującej proces zwijania białka za pomocą tzw. hipotezy lejka. A - wyidealizowany kształt lejka o gładkiej powierzchni, która mogłaby poprowadzić szybko do minimum B - przykładowy kształt lejka z całym krajobrazem wzgórz, pułapek i barier energetycznych.

Hiperpowierzchnia energetyczna Badania problemy: -jeśli białko jest niekompletne może nie osiągnąć stabilnej struktury podobnej do struktury natywnej (rybonukleaza A pozbawiona 4 reszt z C-końca) -w białkach wielodomenowych domeny mogą zwijać się niezależnie od siebie z różnymi prędkościami, a domeny są połączone giętkimi łącznikami

Podejście fizyczne Nawet krótki łańcuch białkowy teoretycznie może zwinąć się na tyle różnych sposobów, że obliczenie ich energii najszybszym współczesnym komputerom zajęłoby więcej czasu, niż upłynęło od początku wszechświata. Metody oceny energii oddziaływań wewnątrz cząsteczki białka oraz między białkiem a otoczeniem są niedoskonałe - dlatego możliwa jest sytuacja że komputer generuje właściwą (natywną) konformację, jednak algorytm oblicza jej energię tak nieprecyzyjnie, że okazałaby się wyższa od energii oszacowanej dla innych (nienatywnych) konformacji i dobry model zostaje odrzucony. Dlatego nie udało się jeszcze opracować metody ab initio, tzn. opierającej się wyłącznie na prawach fizyki, która poprawnie i dokładnie przewidywałaby natywną konformację całego białka. Udaje się w najlepszym razie przewidzieć strukturę peptydów długości kilkudziesięciu aminokwasów, a i tak rzadko można mieć pewność, że jest ona zgodna z rzeczywistą. Symulacja nawet niewielkich zmian konformacyjnych w cząsteczce białka, które w naturze zachodzą w ułamku mikrosekundy, wymaga długotrwałych obliczeń podczas gdy przejście od rozwiniętej konformacji przypadkowej do globularnej formy, ściśle określonej przez sekwencję aminokwasów, zajmuje rzeczywistemu białku od kilku milisekund do kilku minut.

Podejście fizyczne Rozwiązanie problemu: Aby przyśpieszyć obliczenia i umożliwić symulację całego procesu zwijania, już od lat siedemdziesiątych podejmowano próby zastosowania uproszczonych modeli białek, w których unifikuje się grupy atomów (np. łańcuchy boczne), traktując je jako pojedyncze pseudoatomy. 1. zmniejsza to liczbę oddziaływań, które trzeba obliczyć 2. wygładza tzw. krajobraz energetyczny, który opisuje minima i maksima w przestrzeni konformacyjnej

Zwijanie białka stany pośrednie I n I n U stanu U (unfolding) niezwinięty N stan N (native) zwinięty-natywny

Zwijanie białka model dyfuzyjno-kolizyjny (ang. diffusion-collision model) model nukleacyjny (ang. nucleation model ) model hydrofobowego kolapsu (ang. hydrophobic collapse model )

Zwijanie białka model dyfuzyjno-kolizyjny (ang. diffusion-collision model) model nukleacyjny (ang. nucleation model ) 01-08

Zwijanie białka model hydrofobowego kolapsu (ang. hydrophobic collapse model ) -minimalizacja powierzchni hydrofobowej dostępnej dla rozpuszczalnika -zbliżenie polaryzowalnych grup hydrofobowych umożliwia powstanie między nimi oddziaływań van der Waalsa -tym samym wciągniecie polarnych grup C=O i N-H łańcucha głównego staje się siłą sprawczą powstania struktur drugorzędowych

Zwijanie białka I n U N

Zwijanie białka sekwencyjny I n dyfuzyjno-zderzeniowoadhezyjny U N U I n N rosnącego zarodka U I n szkieletowy N U I n N hydrofobowego kolabsu U I n N wielotorowy - układanki U I n N U I n I n I n N

Zwijanie białka -sekwencyjne zwijanie do struktury natywnej -szybkie zwinięcie do rozluźnionej globuli -zwinięcie przy pomocy białek opiekuńczych (czaperonów)

Zwijanie białka model dyfuzyjno-kolizyjny model nukleacyjny model hydrofobowego kolapsu

Hiperpowierzchnia energetyczna

Zwijanie białka Są dwa zasadnicze powody, dla których pełna znajomość praw rządzących fałdowaniem jest tak istotna. 1. Po pierwsze zdobywanie i gromadzenie danych o sekwencji jest stosunkowo szybkie, a informacje na ten temat są coraz szerzej rozpowszechniane. Z kolei zdobywanie informacji na temat trójwymiarowej struktury białek jest nadal czasochłonne i ograniczone tylko do molekuł tworzących regularne kryształy (do badań metodami dyfrakcji promieni rentgenowskich) lub wystarczająco małe (do ok. 30 kda), aby możliwe było określenie ich struktury metodami NMR.

Zwijanie białka Są dwa zasadnicze powody, dla których pełna znajomość praw rządzących fałdowaniem jest tak istotna. 1. Po pierwsze zdobywanie i gromadzenie danych o sekwencji jest stosunkowo szybkie, a informacje na ten temat są coraz szerzej rozpowszechniane. Z kolei zdobywanie informacji na temat trójwymiarowej struktury białek jest nadal czasochłonne i ograniczone tylko do molekuł tworzących regularne kryształy (do badań metodami dyfrakcji promieni rentgenowskich) lub wystarczająco małe (do ok. 30 kda), aby możliwe było określenie ich struktury metodami NMR. Przemiany rodopsyny po zadziałaniu bodźca świetlnego. Pod nazwami izoform są umieszczone maksima absorbcji odpowiednie dla każdej z n i ch, a n a n i e b i e s ko z o s t a ł przedstawiony czas jaki potrzebny jest do przejścia z jednej izoformy w drugą.

Zwijanie białka Są dwa zasadnicze powody, dla których pełna znajomość praw rządzących fałdowaniem jest tak istotna 1. Po pierwsze zdobywanie i gromadzenie danych o sekwencji jest stosunkowo szybkie, a informacje na ten temat są coraz szerzej rozpowszechniane. Z kolei zdobywanie informacji na temat trójwymiarowej struktury białek jest nadal czasochłonne i ograniczone tylko do molekuł tworzących regularne kryształy (do badań metodami dyfrakcji promieni rentgenowskich) lub wystarczająco małe (do ok. 30 kda), aby możliwe było określenie ich struktury metodami NMR. 2. Po drugie jesteśmy obecnie w stanie syntetyzować białka o dowolnej sekwencji metodami inżynierii genetycznej, więc synteza np. enzymów o zadanych własnościach katalitycznym jest wyzwaniem, które czeka na zrealizowanie. Aby jednak zadanie to mogło być wykonane musi być spełnionych kilka warunków: 1. możliwość przewidzenia najbardziej stabilnego sfałdowania dla danej sekwencji; 2. możliwość zaprojektowania pożądanej struktury; 3. możliwość przewidzenia, czy osiągnięcie pożądanej struktury jest kinetycznie osiągalne; 4. możliwość zaprojektowania precyzyjnych cech wiązań wewnątrz struktury; 5. możliwość zaprojektowania precyzyjnych orientacji grup w białku dla otrzymania jak największej efektywności katalitycznej.

Zwijanie białka Dlaczego? Muszą w stanie rozwiniętym przekraczać błony komórkowe Muszą być elastyczne, aby sprawnie pełnić swoje funkcje (np. katalityczne, czy podczas wiązania ligandów) Mogą potrzebować przyjmować różne kształty w zależności od warunków w ich otoczeniu Mogą mieć "zaprogramowany" czas "życia" poprzez podatność na proteolizę

Zwijanie białka Stan zdenaturowany posiada znaczną swobodę konformacyjną. Nie jest zorganizowaną i ustaloną strukturą, a poszczególne segmenty łańcucha mogą się względem siebie poruszać, a poszczególne grupy chemiczne mogą rotować wokół pojedynczych wiązań. Mówi się o wysokiej entropii konformacyjnej, którą określić można jako: S = k ln W gdzie: k - stała Boltzmanna, W - liczba dostępnych stanów konformacyjnych Stan natywny jest konformacyjnie ograniczony, a jego entropia konformacyjna jest bardzo niska. Jak to się dzieje, iż stan o niższej entropii jest bardziej preferowany niż stan o entropii wyższej?

Zwijanie białka Stan zdenaturowany posiada znaczną swobodę konformacyjną. Nie jest zorganizowaną i ustaloną strukturą, a poszczególne segmenty łańcucha mogą się względem siebie poruszać, a poszczególne grupy chemiczne mogą rotować wokół pojedynczych wiązań. Mówi się o wysokiej entropii konformacyjnej, którą określić można jako: S = k ln W gdzie: k - stała Boltzmanna, W - liczba dostępnych stanów konformacyjnych Stan natywny jest konformacyjnie ograniczony, a jego entropia konformacyjna jest bardzo niska. Jak to się dzieje, iż stan o niższej entropii jest bardziej preferowany niż stan o entropii wyższej? Otóż "utrata" entropii musi być zrekompensowana przez efekty energetyczne, aby spełniony był podstawowy warunek samorzutności procesu: ΔG fałdowania = ΔH fałdowania - TΔS fałdowania < 0 Dla prawidłowego opisu zjawiska należy brać pod uwagę nie tylko zmiany funkcji termodynamicznych samego białka, ale także rozpuszczalnika.

Woda i białko Pierwsza powłoka hydratacyjna elastazy -cząsteczki wody ściśle związane z białkiem stanowią część jego struktury - atomy we wnętrzu są upakowane prawie jak w ciele stałym -kanały i szczeliny pozwalają jednak na ruch atomów i zapewniają elastyczność -jeśli w rdzeniu znajdują się większe przestrzenie, to wypełnione są cząsteczkami wody, które mogą oddziaływać z okolicznymi grupami polarnymi

Dwa wodne tetramery tworzące klaster oktamerowy Zwijanie białka

Zwijanie białka Wkład rozpuszczalnika na proces zwijania białek: 1. Inny układ dla polarnych i dla niepolarnych grup bocznych hydrofobowe hydrofilowe

Zwijanie białka Wkład rozpuszczalnika na proces zwijania białek: 2. Entropia uwolnienia cząsteczek wody podczas fałdowania: w stanie zdenaturowanym występuje wyeksponowanie hydrofobowych reszt do rozpuszczalnika.

Zwijanie białka Wkład rozpuszczalnika na proces zwijania białek: 3. Ciepło właściwe rozwijania: rozpuszczalnik ma także inny wpływ na proces zwijania/rozwijania łańcucha polipeptydowego, a mianowicie poprzez swoje ciepło właściwe Cp (definiowane jako energia potrzebna do podniesienia temperatury jednego mola substancji o 1K). Wysoka wartość Cp ma kilka poważnych konsekwencji: Entalpia rozwijania zmienia się znacząco wraz ze zmianą temperatury Entropia rozwijania rośnie wraz z temperaturą Powoduje to wraz ze wzrostem temperatury zmianę znaku przy wartości G

Zwijanie białka Entalpia rozwijania zmienia się znacząco wraz ze zmianą temperatury a) Entalpia transferu grup polarnych z wnętrza białka do wody jest dodatnia w niskich temperaturach i ujemna w wyższych temperaturach b) Entalpia transferu grup niepolarnych z wnętrza białka do wody jest ujemna poniżej około 25 C i dodatnia powyżej. Entropia rozwijania rośnie wraz z temperaturą a) Entropia hydratacji niepolarnych grup wzrasta wraz ze wzrostem temperatury do zera b) Entropia hydratacji grup polarnych zmniejsza się, stając się bardziej ujemna wraz ze wzrostem temperatury (Pamiętajmy, że więcej jest reszt niepolarnych w środku więc ogólna tendencja to wzrost entropii wraz z temperaturą. )

Modelowanie ab initio problemy: -fizyczne podstawy stabilności strukturalnej białek ciągle nie są w pełni poznane -sekwencja I-rzędowa może nie determinować struktury III-rzędowej czasami łańcuchowi białka towarzyszą czaperony (ang. chaperones) białka, które mają zdolność do indukowania określonej ścieżki zwijania innych białek -struktura natywna uzależniona jest od warunków środowiska i nie zawsze biologicznie czynne białko ma strukturę preferowaną termodynamicznie -symulacja zwijania się białka w strukturę natywną przy pomocy metod dynamiki molekularnej nie jest powszechnie stosowane zarówno ze względów teoretycznych jak i praktycznych.

Modelowanie ab initio Modelowanie struktur białkowych de novo /ab initio polega na zbudowaniu trójwymiarowego modelu białka od zera.

Modelowanie ab initio Modelowanie struktur białkowych de novo /ab initio polega na zbudowaniu trójwymiarowego modelu białka od zera. -Zredukowane modele siatkowe -Rosetta

Zredukowana reprezentacja struktury białka -uwzględnia się tylko kilka pseudoatomów na resztę aminokwasową - np. Cα Cβ -ograniczona liczba możliwych położeń psuedoatomów -specjalne potencjały dla pseudoatomów -gruboziarniste pole siłowe -problem przejścia od reprezentacji zredukowanej do pełnej (atomowej) -metody często łączone z elementami rozpoznawania kształtów grupa Andrzeja Kolińskiego biocomp.chem.uw.edu.pl 2009-01-08

Zredukowana reprezentacja struktury białka reprezentacja all atom model CABS Kmiecik S., Gront D., Kolinski M., Wieteska L., Dawid A.E., and Kolinski A. "Coarse-grained protein models and their applications." Chemical reviews 116, no. 14 (2016): 7898-7936.

Zredukowana reprezentacja struktury białka Elementy pola siłowego CABS: Wyrazy niezależne od sekwencji modelowanie giętkości łańcucha głównego wymuszają preferowanie białkopodobnych konformacji łańcucha Wyrazy zależne od sekwencji oddziaływania par aminokwasów wpływ lokalnej geometrii łańcucha na oddziaływania Kmiecik S., Gront D., Kolinski M., Wieteska L., Dawid A.E., and Kolinski A. "Coarse-grained protein models and their applications." Chemical reviews 116, no. 14 (2016): 7898-7936.

Zredukowana reprezentacja struktury białka Elementy pola siłowego CABS: Wyrazy niezależne od sekwencji modelowanie giętkości łańcucha głównego wymuszają preferowanie białkopodobnych konformacji łańcucha Wyrazy zależne od sekwencji oddziaływania par aminokwasów wpływ lokalnej geometrii łańcucha na oddziaływania Kmiecik S., Gront D., Kolinski M., Wieteska L., Dawid A.E., and Kolinski A. "Coarse-grained protein models and their applications." Chemical reviews 116, no. 14 (2016): 7898-7936.

Zredukowana reprezentacja struktury białka grupa Andrzeja Kolińskiego biocomp.chem.uw.edu.pl

Zredukowana reprezentacja struktury białka grupa Andrzeja Kolińskiego biocomp.chem.uw.edu.pl

Dynamika Monte Carlo dynamika Monte Carlo (MC) - polega na wprowadzaniu losowych zmian we fragmentach struktury i obliczaniu energii nowej konformacji. -kroki prowadzące do konformacji o niższej energii są zawsze akceptowane -kroki prowadzące do wyższych temperatur są akceptowane lub odrzucane w zależności od prawdopodobieństwa

problemy: Modelowanie ab initio -dokładna i wiarygodna funkcja oceniająca energię swobodną układu

problemy: Modelowanie ab initio -dokładna i wiarygodna funkcja oceniająca energię swobodną układu -zamiast energii fizycznej oblicza się pseudoenergię, czyli potencjał statystyczny wyprowadzony z analizy częstości występowania oddziaływań danego typu w uprzednio poznanych strukturach

Modelowanie ab initio metody wykorzystujące oba podejścia (fizyczne i ewolucyjne) do modelowania 1. alternatywne przyrównania pomiędzy sekwencją celu i białkami o znanych strukturach

Modelowanie ab initio metody wykorzystujące oba podejścia (fizyczne i ewolucyjne) do modelowania 1. alternatywne przyrównania pomiędzy sekwencją celu i białkami o znanych strukturach 2. budowa alternatywnych modeli i ocena ich jakości

Modelowanie ab initio metody wykorzystujące oba podejścia (fizyczne i ewolucyjne) do modelowania 1. alternatywne przyrównania pomiędzy sekwencją celu i białkami o znanych strukturach 2. budowa alternatywnych modeli i ocena ich jakości 3. poprawa modelu

Modelowanie ab initio metody wykorzystujące oba podejścia (fizyczne i ewolucyjne) do modelowania 1. alternatywne przyrównania pomiędzy sekwencją celu i białkami o znanych strukturach 2. budowa alternatywnych modeli i ocena ich jakości 3. poprawa modelu 4. niekompletny model można uzupełnić przez lokalne przeszukiwanie przestrzeni konformacyjnej

Rosetta -Modele budowane są z krótkich, 9- i 3-aminokwasowych fragmentów znanych struktur, tworzących bibliotekę możliwych konformacji. -Danemu regionowi sekwencji nie jest przyporządkowywana na stałe jedna konformacja. -ROSETTA przeprowadza symulację, w trakcie której 9- lub 3-aminokwasowe odcinki sekwencji celu przyjmują różne konformacje w oparciu o model probabilistyczny opisujący związki między konformacją i sekwencją fragmentów. -Lista konformacji dopuszczalnych dla wszystkich odcinków sekwencji ustalana jest na początku symulacji na podstawie lokalnego podobieństwa odcinków sekwencji celu i przewidywanej struktury drugorzędowej do sekwencji i obserwowanej konformacji fragmentów tworzących bibliotekę. -Fragmenty do budowy modelu pobierane są z niespokrewnionych struktur, które mogą wykazywać globalnie odmienną architekturę. -Ostateczny model generowany jest przez ROSETTĘ w oparciu o ocenę energii oraz/lub przez identyfikację globalnych konformacji, które najczęściej powtarzały się w całej symulacji.

Rosetta Możliwości programu ROSETTA zostały wykorzystane w metaserwerze ROBETTA, który umożliwia konstruowanie modelu białka częściowo w oparciu o szablon, a częściowo de novo. ROBETTA automatycznie dzieli sekwencję celu na regiony, które można wymodelować w oparciu o szablon i na takie, które nie wykazują globalnego podobieństwa do żadnej ze znanych struktur. Część białka jest modelowana poprzez tradycyjną homologię, natomiast pozostała część jest zwijana poprzez wstawianie 9 i 3- aminokwasowych fragmentów.

Modelowanie ab initio Wiele struktur zbudowanych metodami Darwinowskimi jest wystarczająco poprawnych i dokładnych, aby stanowić dogodny punkt wyjścia do rozważań dotyczących funkcji badanego białka i może pomóc np. w identyfikacji aminokwasów odpowiedzialnych za stabilność lub oddziaływanie z innymi cząsteczkami w komórce.

Modelowanie ab initio Wiele struktur zbudowanych metodami Darwinowskimi jest wystarczająco poprawnych i dokładnych, aby stanowić dogodny punkt wyjścia do rozważań dotyczących funkcji badanego białka i może pomóc np. w identyfikacji aminokwasów odpowiedzialnych za stabilność lub oddziaływanie z innymi cząsteczkami w komórce. Standardowa minimalizacja energii całego modelu Darwinowskiego praktycznie zawsze prowadzi do pogorszenia jego jakości, na skutek wprowadzenia go w lokalne, a nie globalne minimum energetyczne.

Modelowanie ab initio Wiele struktur zbudowanych metodami Darwinowskimi jest wystarczająco poprawnych i dokładnych, aby stanowić dogodny punkt wyjścia do rozważań dotyczących funkcji badanego białka i może pomóc np. w identyfikacji aminokwasów odpowiedzialnych za stabilność lub oddziaływanie z innymi cząsteczkami w komórce. Standardowa minimalizacja energii całego modelu Darwinowskiego praktycznie zawsze prowadzi do pogorszenia jego jakości, na skutek wprowadzenia go w lokalne, a nie globalne minimum energetyczne. Dobre modele Darwinowskie mają konformację stosunkowo bliską konformacji natywnej i z tego powodu mogą służyć jako punkt wyjścia do lokalnego przeszukiwania przestrzeni konformacyjnej metodami Boltzmanowskimi.

Modelowanie ab initio Wiele struktur zbudowanych metodami Darwinowskimi jest wystarczająco poprawnych i dokładnych, aby stanowić dogodny punkt wyjścia do rozważań dotyczących funkcji badanego białka i może pomóc np. w identyfikacji aminokwasów odpowiedzialnych za stabilność lub oddziaływanie z innymi cząsteczkami w komórce. Standardowa minimalizacja energii całego modelu Darwinowskiego praktycznie zawsze prowadzi do pogorszenia jego jakości, na skutek wprowadzenia go w lokalne, a nie globalne minimum energetyczne. Dobre modele Darwinowskie mają konformację stosunkowo bliską konformacji natywnej i z tego powodu mogą służyć jako punkt wyjścia do lokalnego przeszukiwania przestrzeni konformacyjnej metodami Boltzmanowskimi. Liczba możliwych struktur pozostaje zbyt wielka, by można było obliczyć energię dla wszystkich.

Modelowanie ab initio

Modelowanie ab initio metody przewidywania możliwych globalnych zmian konformacyjnych w oparciu o analizę plastyczności białka

Modelowanie ab initio = Wartość pracy jednego twórcy wirtualnych białek Jacek Leluk, Instytut Biotechnologii i Ochrony Środowiska, Uniwersytet Zielonogórski