ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa



Podobne dokumenty
Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001

Fizyka Termodynamika Chemia reakcje chemiczne

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.

Termochemia elementy termodynamiki

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA

Jak mierzyć i jak liczyć efekty cieplne reakcji?

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)

DRUGA ZASADA TERMODYNAMIKI

TERMODYNAMIKA I TERMOCHEMIA

WYKŁAD 3 TERMOCHEMIA

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.

DRUGA ZASADA TERMODYNAMIKI

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)

Wykład 10 Równowaga chemiczna

Jak mierzyć i jak liczyć efekty cieplne reakcji?

Kontakt,informacja i konsultacje

PODSTAWY TERMODYNAMIKI

Termochemia efekty energetyczne reakcji

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J

TERMOCHEMIA SPALANIA

Ćwiczenie III. Oznaczanie wartości kalorycznej produktów spożywczych metodą spalania w bombie kalorymetrycznej

Zasady termodynamiki

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Inżynieria procesów przetwórstwa węgla, zima 15/16

Odwracalność przemiany chemicznej

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Warunki izochoryczno-izotermiczne

Kryteria samorzutności procesów fizyko-chemicznych

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

Podstawowe pojęcia 1

Inżynieria Biomedyczna. Wykład IV Elementy termochemii czyli o efektach cieplnych reakcji

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

I. Podstawowe pojęcia termodynamiki Termodynamika (nauka o transformacjach energii; zajmuje się badaniem efektów energetycznych przemian fizycznych i

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawy termodynamiki

Wykład 4: Termochemia

AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie OLIMPIADA O DIAMENTOWY INDEKS AGH 2017/18 CHEMIA - ETAP I

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Prawo Hessa. Efekt cieplny reakcji chemicznej lub procesu fizykochemicznego

Podstawy termodynamiki

Termodynamika. Energia wewnętrzna ciał

TERMOCHEMIA SPALANIA

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Opracowała: mgr inż. Ewelina Nowak

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

Wykład 3. Entropia i potencjały termodynamiczne

prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1

Wykład z Chemii Ogólnej i Nieorganicznej

Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych

TERMODYNAMIKA FENOMENOLOGICZNA

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem

Elementy termodynamiki chemicznej. Entalpia:

I piętro p. 131 A, 138

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego

Wykład 7: Przekazywanie energii elementy termodynamiki

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2016/17)

c. Oblicz wydajność reakcji rozkładu 200 g nitrogliceryny, jeśli otrzymano w niej 6,55 g tlenu.

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

a. Dobierz współczynniki w powyższym schemacie tak, aby stał się równaniem reakcji chemicznej.

TERMODYNAMIKA Termodynamika chemiczna ilościowym opisem efektów energetycznych towarzyszących przemianom oraz przewidywaniem możliwości samorzutnego

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata.

Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część IV - Elementy termodynamiki i kinetyki chemicznej

PODSTAWY OBLICZEŃ CHEMICZNYCH DLA MECHANIKÓW

Obraz statyczny układu

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E

1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego:

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska

II Podkarpacki Konkurs Chemiczny 2009/10. ETAP II r. Godz Zadanie 1 (10 pkt.)

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna

4. Przyrost temperatury gazu wynosi 20 C. W kelwinach przyrost ten jest równy

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Ciepła tworzenia i spalania (3)

Kiedy przebiegają reakcje?

Elementy termodynamiki chemicznej. Entalpia:

Przemiany termodynamiczne

Kinetyka reakcji chemicznych. Dr Mariola Samsonowicz

Wykład 6: Przekazywanie energii elementy termodynamiki

Termodynamika 25/10/2017. Definicje. Układ i otoczenie

Przegląd termodynamiki II

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wydział Chemiczny PW, Termodynamika, kierunek Biotechnologia, , kolokwium I K (A) 1 do 75 atm. atm.

1 I zasada termodynamiki

WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.

ZADANIE 1 W temperaturze 700 K gazowa mieszanina dwutlenku węgla i wodoru reaguje z wytworzeniem pary wodnej i tlenku węgla. Stała równowagi reakcji

Wykład 6: Przekazywanie energii elementy termodynamiki

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Transkrypt:

Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem zmniejszania zasobu energii otoczenia o dokładnie taką samą jej ilość. Prawo zachowania energii w termodynamice nazywane jest I zasadą termodynamiki: W układzie izolowanym energia wewnętrzna U jest stała i niezależna od przemian dokonujących się w tym układzie. Wymiana energii między elementami układu lub między układem i otoczeniem może być dokonana na dwa sposoby: 1) na sposób pracy, ) na sposób ciepła. Zmiana energii układu ( U) jest sumą algebraiczną ilości energii wymienianej na sposób pracy (w) i ilości energii, wymienianej na sposób ciepła (q), czyli: Jaka jest istota obu sposobów wymiany energii? U = q + w (1) Wymiana energii na sposób pracy W procesach chemicznych najczęściej rozpatrywanymi formami pracy są: - praca zmiany objętości układu, - praca elektryczna wykonana przez układy zwane ogniwami lub wykonana na układach zwanych elektrolizerami, - praca zmiany powierzchni granicy faz. Podstawy termodynamiki najlepiej można zrozumieć rozpatrując układy znajdujące się w fazie gazowej. Dla takich układów głównym sposobem wymiany energii na sposób pracy jest praca zmiany objętości. Rozpatrzmy układ, którym niech będzie cylinder z tłokiem zawierający gaz doskonały (rys. 1). Przesuwając tłok w cylindrze wykonujemy pracę na układzie równą: dw = F dl () Gdzie: dw - ilość energii wymienianej na sposób pracy między układem a otoczeniem (dw > 0 oznacza, zgodnie z przyjętą międzynarodową konwencją, wykonanie pracy przez układ), dl - droga przesunięcia tłoka powodującego zmianę objętości układu. Rysunek 1. Schemat przedstawiający wymianę energii na sposób pracy. Przesuwając tłok w cylindrze, zawierającym gaz doskonały, powodujemy, że układ zwiększa swoją energię wewnętrzną Ponieważ F = p s (p- ciśnienie, s- powierzchnia tłoka), a s dl= dv (dv- zmiana objętości układu), to:

Całkując równanie (3), otrzymujemy: dw = p dv (3) w = p(v 1 v ) (4) Gdy v 1 > v,to w < 0 co oznacza, że praca została wykonana na układzie, tzn. układ zwiększył swoją energię wewnętrzną: U = q p v (5) W przypadku rozprężania gazu (układ wypycha tłok z cylindra, tzn. układ wykonuje pracę) energia wewnętrzna układu zmniejsza się, w > 0. W równaniu (5) q oznacza energię przekazaną układowi przez otoczenie na sposób ciepła, czyli gdy układ pobiera energię na sposób ciepła, to q > O, a gdy oddaje, to q < 0. Wymiana energii na sposób ciepła Znamy dwie formy wymiany energii zaliczane do wymiany energii na sposób ciepła: 1) wymiana energii przez przewodzenie, ) wymiana energii przez promieniowanie. Wymiana energii przez przewodzenie polega na przekazywaniu energii kinetycznej pomiędzy molekułami układów o różnej temperaturze. Przepływ energii następuje tylko do momentu wyrównania średnich energii kinetycznych molekuł w obu układach. Stanowi takiemu odpowiada równość temperatur obu układów. Stan taki nazywamy stanem równowagi termicznej. Wymiana energii przez promieniowanie polega na przekazywaniu energii między dwoma układami za pośrednictwem fal elektromagnetycznych. Każda substancja w temperaturze wyższej od temperatury zera bezwzględnego, tj. -73,15 C, emituje promieniowanie elektromagnetyczne, tzn. wysyła w przestrzeń energię w formie fotonów. Fotony padając na inny układ zwiększają energię oscylacji jego molekuł, co oznacza zwiększenie energii wewnętrznej tego układu. Ciepło przemiany chemicznej w stałej objętości Ilość energii, jaka wymieniana jest z otoczeniem lub innym układem na sposób ciepła w wyniku przebiegu reakcji chemicznej w stałej objętości nazywa się ciepłem przemiany chemicznej w stałej objętości (q v ). W przypadku reakcji przebiegającej w warunkach v = cons.t i T = const., wykluczona jest wymiana energii na sposób pracy zmiany objętości układu (p v=0): U= q v (6) Ciepło przemiany chemicznej w stałej objętości równe jest zmianie energii wewnętrznej układu. Ciepło przemiany chemicznej pod stałym ciśnieniem. Entalpia układu Kombinacja liniowa funkcji stanu z parametrami stanu lub wyrażeniami utworzonymi z parametrów stanu jest też funkcją stanu - funkcją termodynamiczną, tzn. funkcją, której dziedziną są parametry stanu (p, T, k, n). Wykorzystując to zdefiniowano nową funkcję termodynamiczną entalpię układu (H): H = U + pv (7) W przypadku reakcji przebiegającej w warunkach p = const. i T = const. układ wymienia energię na sposób ciepła (q) i na sposób pracy objętościowej (w = p v). Zmiana entalpii układu w takiej przemianie jest równa: H = q p p v (8) Gdy układ wymienia energię z otoczeniem na sposób pracy objętościowej: U =q p p v (9)

otrzymujemy: H= q p (10) Ciepło przemiany chemicznej przebiegającej pod stałym ciśnieniem równe jest zmianie entalpii układu. Ilość energii, jaka wymieniana jest między układem a otoczeniem na sposób ciepła w wyniku przebiegu reakcji chemicznej zachodzącej w warunkach p = const. i T = const. nazywa się ciepłem przemiany chemicznej pod stałym ciśnieniem (q p ). Konwencja standardowych wartości funkcji termodynamicznych. Standardowe ciepło tworzenia związku chemicznego Ponieważ dla energii wewnętrznej układu (U) podobnie jak i dla entalpii układu (H) nie można wyznaczyć ich wartości bezwzględnych, przyjęto konwencję względnego układu odniesienia, tzw. stanów standardowych. Założono mianowicie, że wartości funkcji termodynamicznych (z wyjątkiem entropii, której wartości bezwzględne mogą być określone) l mola substancji prostej, trwałej w temperaturze 5 o C i pod ciśnieniem 101 35 Pa (warunki standardowe) są równe zero. Standardowe ciepło tworzenia związku chemicznego ( U o tw) jest równe ilości energii wymienionej na sposób ciepła przez układ, w którym zachodzi reakcja syntezy l mola związku chemicznego z substancji prostych w warunkach standardowych, gdy v = const. Standardowe ciepło tworzenia związku chemicznego ( H o tw) dotyczy analogicznej przemiany, gdy p = const. Wartości U o tw i H o tw mogą być wyznaczone eksperymentalnie, np. metodami kalorymetrycznymi. Prawo Hessa Ilość energii wymieniona na sposób ciepła w czasie przebiegu reakcji chemicznej jest równa różnicy ciepłej tworzenia produktów i substratów reakcji. Dla reakcji przebiegających w stałej objętości: Gdzie: U tw,pr, i -ciepło tworzenia produktu i v = const, U tw,s,m i -ciepło tworzenia substratu i, v = const Dla reakcji przebiegających pod stałym ciśnieniem: U= n pr,i U tw,pr,i n s,i U tw,s,i (11) H = n pr, i H tw,pr,i n s, i H tw, s, i (1) Gdzie: H tw,r, i - ciepło tworzenia produktu i, p= const, H tw,s, i - ciepło tworzenia substratu i, p= const Należy zwrócić uwagę, że prawo Hessa dotyczy ciepła reakcji chemicznej przebiegającej niekoniecznie w warunkach standardowych. Ponieważ większość reakcji przebiega w warunkach ciśnienia atmosferycznego, a więc mniej więcej takich jak w warunkach standardowych, pominiemy problem zależności ciepła reakcji od ciśnienia. Zajmiemy się jedynie zależnością od temperatury. Aby można było wykorzystać prawo Hessa do obliczania efektów energetycznych reakcji chemicznych przebiegających w różnych temperaturach, należy znać zależność ciepła tworzenia związku chemicznego od temperatury (Prawo Kirchhoffa).

ZADANIA RACHUNKOWE 1. Standardowe ciepło tworzenia związku chemicznego ( U o tw, H o tw). Prawo Hessa: U = ni U H = ni H i,tw,p i,tw,p - ni U - ni H i,tw, s i,tw, s Zadanie 1. 10-3 kg He w temperaturze 73K i pod ciśnieniem 10 5 Pa, izotermicznie rozprężono do objętości = 10-3 m 3. Oblicz wykonaną pracę (dw) i ilość wymienionego ciepła (dq). m He = 10-3 kg T = 73K p = 10 5 Pa = 10-3 m 3 w =? q =?. Rozwiązanie: W czasie rozprężania (układ wykonuje pracę) dw < 0 W procesie izotermicznym (T = const.) du = 0 Z równania stanu gazu: p = n R T => dw = n R T 1 d = n R T ln dw 1 du = dq + dw dw = p d dq = p d n R T p = m R T 8,31 73 1 = = = 5,67 10 5 M p 4 10 3 10 8,31 73 ln 4 5,67 10 = 3 = 118J 3 m 3 Zadanie. Oblicz entalpię reakcji CH 4 = C H 6 + H, znając standardowe entalpie spalania: metanu ( 890,3 kj/mol), etanu ( 1 559,9 kj/mol) i wodoru ( 85,8 kj/mol). CH 4 + O = CO + H O, H o 1= 890.3 kj/mol Rozwiązanie: 4 O CO + 4 H O C H 6 + 3,5 O = CO + 3 H O, H o = 1559,9 kj/mol H + 0,5 O = H O (c), H o 3 = 85.8 kj/mol CH 4 H o 1 4 O H o H o r H o 3 C H 6 + H H o r + H o + H o 3 = H o 1 => H o r = H o 1 H o H o 3 = ( 890,3) + 1559,9 + 85,8 = 65,1 kj

Zadanie. Oblicz energię wiązania C H w metanie, znając: standardową entalpię tworzenia metanu ( H o tw,1= 74,93 kj/mol), standardową entalpię kondensacji C ( C (g) -> C (s), H o = 718,74 kj/mol) i standardową entalpię dysocjacji wodoru ( H o 3 = 87,36 kj/mol). Rozwiązanie: Energia wiązania C-H to ¼ entalpii reakcji: CH 4,(g) = C (g) + 4 H (g), H o r C (s) + H,(g) = CH 4,(g), H o tw,1= 74,93 kj/mol C (s) + H (g) H o tw C (g) = C (s), H o = 718,74 kj/mol CH 4(g) H,(g) = H (g), H o 3 = 436,18 kj/mol H o H o 3 H o r H o tw,1 + H o r + H o = H o 3 C (g) + 4 H (g) H o r = H o 3 H o tw,1 H o = 436,18 + 74,93 + 718,74 H o r = 1 666,03 kj/mol E C H = 416,5 kj/mol Wiązanie Energia Energia Wiązanie [kj/mol] [kj/mol] C H 416,5 C=O 74, C C 334,9 O=O 493,9 C=C 606,9 O H 460,5 C C 88,3 N H 385,1 H H 431, H Cl 46,9 C N 46,9 H Br 364, C O 334,9 H I 97, Zadanie 3. Przy spalaniu 1 mola: a) glukozy, b) etanolu w temp. 98 K i pod stałym ciśnieniem H wynosi: a) 81,4 kj, b) 1 367,1 kj. Jaki jest efekt energetyczny powstawania 1 mola etanolu w procesie fermentacji glukozy w podanych warunkach temperatury i ciśnienia? Ciepło rozcieńczenia pomija się. Odp.: 43,6 kj. Rozwiązanie: C 6 H 1 O 6 + 6 O = 6 CO + 6 H O, H o 1= 81,4 kj CHC 4 + O = CO + H O, H o H 5 OH+ 3 O = CO + 3 H 1= O, H 890.3 o = kj/mol 1 367,1 kj H 3 C 6 H 1 O6 C H OH + CO H1 H 6 CO + 6 H O H 1 = H 3 + H 5 H 3 = H 1 H = 81,4 + 1 367,1 = 87, kj W procesie fermentacji pobierana jest energia równa: 43,6 kj/mol etanolu.

Zadania do samodzielnego rozwiązania: 1. Oblicz standardową entalpię tworzenia cyjanamidu (H N=C=N H) znając: entalpię spalania tego związku H 0 1= -741,9 kj oraz entalpię tworzenia wody H 0 = -86,0 kj mol 1 i entalpię tworzenia CO, H 0 3 = -393,4 kj mol 1. Odp.: H 0 = 6,5 kj mol 1.. Po spaleniu,65 g indu temperatura w kalorymetrze wzrosła o 1,055 K. Stała kalorymetru K=10101,95 [J K 1 ]. Oblicz molowe ciepło spalania indu. M = 114,81 [g mol 1 ]. Odp.: Q v = 461,7 kj mol 1. 3. Ciepło spalania 1 mola węgliku cyrkonu (ZrC) do ZrO i dwutlenku węgla, zmierzone w bombie kalorymetrycznej wynosi: 1301,7 kj. Oblicz standardową entalpię tego procesu. Odp.: H 0 = 1304, kj. 4. Ciepło dysocjacji H O na tlen i wodór w temperaturze 91 K wynosi 41,9 kj. Jakie jest ciepło tej reakcji w temperaturze 98 K, jeżeli wiadomo, że: C p (H O,g) wynosi 33,58 [J mol 1 K 1 ], a C p (H,g) = 8,85 [J mol 1 K 1 ], C p (O,g) = 9,14 [J mol 1 K 1 ]? Odp.: 4,04 kj. 5.Oblicz standardową entalpię tworzenia etanolu z węgla, wodoru i tlenu wiedząc, że ciepła spalania węgla, wodoru i etanolu w warunkach T=98 K i p=1013,15 Pa wynoszą odpowiednio: 393,6 [kj]; 86,4 [kj] i 1369 [kj].odp.: H 0 = 77,4 kj mol 1. 6. Jaka energia potrzebna jest do podwyższenia temperatury 48 g tlenu od 83 do 373 K: a) Pod stałym ciśnieniem, C p (O,g) = 9,48 [J mol 1 K 1 ], b) W stałej objętości. Odp.: a) 3979,8 J, b) 857,5 J. 7. W czasie spalania 1g kwasu benzoesowego w bombie kalorymetrycznej w temperaturze303 K wydziela się 6 419 J. Oblicz H procesu spalania 1 mola kwasu benzoesowego w temperaturze 303 K. Odp.: H = 31,9 kj. 8. W temperaturze 91 K U reakcji spalania 1 mola: a) acetylenu wynosi: 1303,9 kj, b) benzenu: 375,5 kj. Jaka jest wartość U i H reakcji powstawania 1 mola ciekłego benzenu z acetylenu? Odp.: U = 636, kj, H = 643,4 kj. 9.Ciepło tworzenia dwutlenku siarki wynosi 97, kj mol 1, a ciepło tworzenia dwutlenku węgla wynosi 394,3 kj mol 1. Ciepło spalania dwusiarczku węgla wynosi 1109,3 kj. Oblicz ciepło tworzenia dwusiarczku węgla. Odp.: H = 10,6 kj mol 1. 10. Ciepło spalania 1 mola C (grafitu) pod stałym ciśnieniem i w temperaturze 98 K wynosi 394,3 kj, 1 mola metanu 890,8 kj, jeżeli substratami są: dwutlenek węgla i woda. Oblicz ciepło tworzenia metanu w temperaturze 98 K: a) pod stałym ciśnieniem oraz b) w stałej objętości. Odp.: H = 75,5 kj/mol, U = 73,00 kj/mol. 11. W temperaturze 98 K i pod stałym ciśnieniem ciepło spalania propanu wynosi 1,1 kj mol 1, ciepło tworzenia wody 87,9 kj mol 1. Oblicz ciepło tworzenia propanu w temp. 98 K: a) pod stałym ciśnieniem oraz b) w stałej objętości. Odp.: H = 105,9 kj/mol, U = 98,37 kj/mol.