II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014. Zadanie 2



Podobne dokumenty
1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt)

II ETAP EGZAMINU EGZAMIN PISEMNY

1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt)

Treść zadań egzaminacyjnych II Etap Styczeń 2014

II ETAP EGZAMINU EGZAMIN PISEMNY

Zadanie 1. Zadanie 2. Zadanie 3

β i oznaczmy współczynnik Beta i-tego waloru, natomiast przez β w - Betę całego portfela. Wykaż, że prawdziwa jest następująca równość

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I. Matematyka finansowa

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.

Zarządzanie wartością przedsiębiorstwa

Dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1

1. Charakterystyka obligacji. 2. Rodzaje obligacji. 3. Zadania praktyczne-duration/ceny obligacji.

Kopia dla: demo. Wszystkie prawa zastrzeżone. Nie zezwala się na kopiowania, wykorzystywanie, przekazywanie innym osobom bez pisemnej zgody autora.

Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Budżetowanie kapitałowe Cz.II

Powtórzenie. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa

3. Optymalizacja portfela inwestycyjnego Model Markowitza Model jednowskaźnikowy Sharpe a Model wyceny aktywów kapitałowych CAPM

dr hab. Renata Karkowska

kontraktu. Jeżeli w tak określonym terminie wykupu zapadają mniej niż 3 serie

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Prof. nadzw. dr hab. Marcin Jędrzejczyk

Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures

Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem. Temat wykładu: Wycena kontraktów swap

Inżynieria Finansowa: 4. FRA i Swapy

1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe

Matematyka finansowa. Ćwiczenia ZPI. Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Kalkulator rentowności obligacji

Wycena przedsiębiorstw w MS Excel

Krzywa dochodowości. Kontrakty na obligacje w praktyce. Jesteś tu: Bossafx.pl» Edukacja» Magazyn Bossa

8. Papiery wartościowe: obligacje

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

Przychody = 200 (EUR); Wydatki = 140 (EUR); Amortyzacja = 20 (EUR) (czyli 10% wartości maszyny). Oblicz księgową stopę zwrotu.

dr hab. Marcin Jędrzejczyk

1. Wzrost zbyt szybki prowadzi do utraty samodzielności firmy (take-over). 2. Jednym z założeń modelu wzrostu zrównoważonego jest płynna struktura

Inwestowanie w obligacje

Wybór i ocena spółki. Warszawa, 3 marca 2013 r. Copyright Krzysztof Borowski

Inżynieria Finansowa: 4. FRA i IRS

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Metody mieszana. Wartość

Matematyka finansowa

PKO BANK HIPOTECZNY S.A.

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI

Forward Rate Agreement

Rozwiązanie zadań egzaminacyjnych. marzec 2010

Rozwiązania zadań (próbka) Doradca Inwestycyjny 2 etap

4.5. Obligacja o zmiennym oprocentowaniu

CZĘŚĆ I. Wprowadzenie do zarządzania finansami

Wyniki finansowe 2014

Zadania do wykładu Rachunek efektywności projektów inwestycyjnych

TRANSAKCJE SWAP: - PROCENTOWE - WALUTOWE - WALUTOWO-PROCENTOWE - KREDYTOWE

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

ZAMORTYZOWANY KOSZT WYCENA ZOBOWIAZAŃ FINANSOWYCH WYCENIANE W WARTOŚCI GODZIWEJ PRZEZ WYNIK

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce

Analiza instrumentów pochodnych

Wycena opcji. Dr inż. Bożena Mielczarek

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje

OPIS PRZEDMIOTU ZAMÓWIENIA. Usługa przygotowania i przeprowadzenia certyfikowanego kursu na Maklera Papierów Wartościowych

RYNKI INSTRUMENTY I INSTYTUCJE FINANSOWE RED. JAN CZEKAJ

10. / 42! 1 A$!! )$$$% 0 " ! "!" 1!" ""!1!!!!42 % "" t "1%/4( " '8 A B C D E. 5.82

RYZYKO. Rodzaje ryzyka w działalności gospodarczej Włączanie ryzyka w projekcji strumieni finansowych

MSSF 7 - potencjalny wpływ ryzyka rynkowego

KOSZT KAPITAŁU W WYCENIE PRZEDSIĘBIORSTW


Dział Rozwoju Rynku Terminowego. Modyfikacja parametrów kontraktów terminowych na akcje. Wypłata dywidendy.

MIĘDZYNARODOWE FINANSE PRZEDSIĘBIORSTW. Anna Chmielewska, SGH Warunki zaliczenia

- w art. 8 ust. 3 Statutu otrzymuje nowe, następujące brzmienie:

EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I

Bilans i Raport Ryzyka Alior Bank S.A. wg stanu na r.

AKADEMIA ANALIZ Runda 1

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego).

WSTĘP ZAŁOŻENIA DO PROJEKTU

OGŁOSZENIE O ZMIANIE STATUTU ALIOR SPECJALISTYCZNEGO FUNDUSZU INWESTYCYJNEGO OTWARTEGO

Informacja dodatkowa do raportu kwartalnego Fortis Bank Polska S.A. za III kwartał 2005 roku

Metody oceny efektywności inwestycji rzeczowych

Podsumowanie raportu z wyceny wartości Hubstyle Sp. z o.o.

8. Zarządzanie portfelem inwestycyjnym za pomocą instrumentów pochodnych Zabezpieczenie Spekulacja Arbitraż 9. Charakterystyka i teoria wyceny

Charakterystyka i wycena kontraktów terminowych forward

Ocena kondycji finansowej organizacji

NOTY OBJAŚNIAJĄCE NOTA NR 1 POLITYKA RACHUNKOWOŚCI FUNDUSZU

OGŁOSZENIE O ZMIANACH STATUTU SFIO AGRO Kapitał na Rozwój

Transkrypt:

II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014 Zadanie 2 1/ Analizowane są dwie spółki Alfa i Gamma. Spółka Alfa finansuje swoją działalność nie korzystając z długu, natomiast spółka Gamma finansuje swoją działalność w 50% długiem. Zgodnie z założeniami projekcji finansowej, każda ze spółek ma realizować zysk operacyjny (EBIT) w jednakowej wysokości 200 000 PLN rocznie, począwszy od końca roku pierwszego aż do nieskończoności. Dla akcji spółki Alfa współczynnik beta wynosi 1,1, a dla akcji spółki Gamma współczynnik beta wynosi 1,6. Koszt długu dla obu spółek wynosi 7% rocznie i równy jest stopie zwrotu z aktywów wolnych od ryzyka. Oczekiwana stopa zwrotu z portfela rynkowego wynosi 14% rocznie. Stopa podatku dochodowego równa jest 20%. 1.1/ Spółka Gamma rozważa podjęcie projektu inwestycyjnego Y i planuje przeprowadzenie emisji akcji w wysokości 200 000 PLN. Emisja umożliwi współfinansowanie i zapewni realizację projektu inwestycyjnego Y. Nie przewiduje się zaciągnięcia dodatkowego długu. Projekt Y wymaga poniesienia w początkowym okresie wydatku inwestycyjnego, natomiast w późniejszych okresach uzyskiwane będą dodatnie przepływy pieniężne. Zakłada się, że projekt nie zmieni ryzyka operacyjnego spółki i będzie się on charakteryzował taką samą strukturą kapitałową, jak cała spółka. Na podstawie powyższych danych, wykorzystując model Millera-Modiglianiego, wyznacz graniczną minimalną wewnętrzną stopę zwrotu z projektu Y, która zapewni spółce nieujemną wartość bieżącą netto (NPV) z tego projektu. Załóż, że wewnętrzna stopa zwrotu z projektu będzie rozpatrywana z wykorzystaniem przepływów operacyjnych netto (tj. EBIT pomniejszony o podatek dochodowy) związanych z projektem. Załącz obliczenia. Przedstaw przyjęte w kalkulacjach założenia, (od 0 do 32 pkt) 1.2/ Spółka Gamma rozważa spłatę połowy swojego zadłużenia ze środków pozyskanych z emisji akcji. Cena emisyjna tych akcji równa jest aktualnej wartości akcji, wyznaczonej metodą zdyskontowanych przepływów pieniężnych. Wartość rynkowa długu równa jest wartości księgowej długu. Wykorzystują model Millera-Modiglianiego, wyceń skutki przeprowadzonej restrukturyzacji zadłużenia, tj. wyznacz wielkość zmiany wartości całej spółki oraz względną (procentową) zmianę wskaźnika Cena/Zysk (C/Z, P/E) po restrukturyzacji zadłużenia. Załącz obliczenia. Przedstaw przyjęte w kalkulacjach założenia. (od 0 do 40pkt) 1.3/ Spółka Alfa rozważa podjęcie projektu inwestycyjnego Z, polegającego na zakupie linii technologicznej. Zakup wymaga poniesienia w momencie zerowym wydatku inwestycyjnego w wysokości 250 000 PLN finansowanego kapitałami własnymi spółki. Przewiduje się, że pod koniec kolejnych 10 lat dzięki podjętej inwestycji spółka może uzyskać dodatkowe operacyjne przepływy pieniężne netto (tj. po podatku) w wysokości 30 000 PLN z 25% prawdopodobieństwem, 60 000 PLN z 50% prawdopodobieństwem lub 90 000 PLN z 25% prawdopodobieństwem. Wartość końcowa zakupionej linii technologicznej jest zerowa. Przyjmij, że stopa właściwa do dyskontowania tych przyrostowych operacyjnych przepływów pieniężnych równa jest średniemu ważonemu kosztowi 1

kapitału dla spółki Alfa. W spółce Alfa rozważa się również modyfikację opisanego wyżej bazowego projektu Z. Otóż dopuszcza się możliwość podjęcia tego projektu z rocznym opóźnieniem (z tą samą liczbą 10 lat eksploatacji, z przepływami pieniężnymi w tej samej wysokości, co w projekcie bazowym i z tymi samymi prawdopodobieństwami osiągnięcia zakładanych przepływów pieniężnych). Przewiduje się, że za rok spółka będzie posiadać wiarygodne informacje nt. możliwych do osiągnięcia przepływów pieniężnych. Oznacza to, że po roku (na koniec pierwszego roku) inwestor będzie miał pewność, czy kolejne przepływy pieniężne będą równe 30 000 PLN, 60 000 PLN, czy 90000 PLN. Pozwoli to porzucić realizację projektu, gdyby okazało się, że prowadzi on do zmniejszenia wartości spółki. Na podstawie powyższych danych, oceń zasadność podjęcia zmodyfikowanego projektu, w którym wydatek inwestycyjny poniesiony zostałby dopiero za rok i jednocześnie inwestor mógłby porzucić projekt, o ile jego realizacja prowadziłaby do zmniejszenia wartości spółki. Wyznacz zmiany wartości kreowanej przez projekt powstałe na skutek realizacji zmodyfikowanego projektu, w porównaniu z realizacją projektu bazowego. Załącz obliczenia. Przedstaw przyjęte w kalkulacjach założenia, (od 0 do 28 pkt) 2

Zadanie 3 1/ Na rynku giełdowym notowane są kontrakty terminowe futures na 15 - letnie, hipotetyczne obligacje skarbowe (niepodlegające przedterminowemu wykupowi przez emitenta) o wartości nominalnej 100.000 USD i kuponie równym 6,26% w skali roku, wypłacanym co pół roku. Strona kontraktu terminowego, zajmująca pozycję krótką w kontraktach futures, zdecydowała się na rozliczenie kontraktu poprzez dostawę rzeczywistych obligacji notowanych na rynku. W danym momencie inwestor ma do dyspozycji trzy obligacje wypłacające kupon co pól roku, które mogą być, przedmiotem dostawy: Obligacja Okres do wykupu Kupon Kurs obligacji (w latach) (% w skali roku) (za 100 USD nominału) X 16,5 6 98,3 Y 18 6,2 99,3 Z 20 6,22 99,6 Przyjmij założenie, że: - wartość nominalna kontraktu wynosi 100.000 USD, mnożnik do wyznaczenia wartości kontraktu wynosi 1000 USD, cena kontraktu podawana jest w punktach procentowych za 100 USD wartości nominalnej kontraktu, wartość kontraktu wyliczana jest jako kurs kontraktu pomnożony przez mnożnik, - aktualny kurs kontraktu futures wystawionego na obligacje hipotetyczne wynosi 98,25, - pierwsze płatności kuponowe obligacji, które mogą być przedmiotem dostawy, nastąpią za 6 miesięcy, a następne na końcu kolejnych okresów półrocznych, aż do terminu wykupu obligacji, kiedy to zostanie wypłacony nominał i ostatni kupon. Wyznacz koszty dostawy każdej z obligacji oraz wskaż, która z nich będzie dostarczona przez stronę zajmującą pozycję krótką w kontrakcie, w celu rozliczenia kontraktu, jako najtańsza do dostarczenia (cheapest to delivery - CTD ). Przeprowadź stosowne obliczenia i uzasadnij rozwiązanie,(od 0 do 40 pkt). 2/ Załóż, że w przypadku kontraktu terminowego wystawionego na hipotetyczne obligacje skarbowe o kuponie 6% w skali roku wypłacanym co 6 miesięcy, najtańszą do dostarczenia, celem rozliczenia kontraktu, jest obligacja skarbowa o kuponie 6,5% w skali roku i współczynniku konwersji równym 1,2, dla której płatności odsetkowe następują co 6 miesięcy. Załóż również, że strona zajmująca pozycję krótką w kontrakcie terminowym dostarczy obligacje za 200 dni od chwili obecnej. Przyjmij, że wolna od ryzyka stopa procentowa w skali rocznej wynosi 6% przy kapitalizacji ciągłej, dla wszystkich terminów. Ostatnia płatność kuponowa wynikająca z dostarczanej obligacji nastąpiła 30 dni temu, kolejna nastąpi za 152 dni, a następna, która będzie jednocześnie pierwszą płatnością kuponową po dacie realizacji kontraktu - za 333 dni. Przyjmij do obliczeń rok=365 dni. Wartość nominalna kontraktu wynosi 100.000 USD, mnożnik do wyznaczenia wartości kontraktu wynosi 1000 USD, kurs kontraktu podawany jest w punktach procentowych za 100 USD wartości nominalnej kontraktu, wartość kontraktu wyliczana jest jako kurs kontraktu pomnożony przez mnożnik. Załóż, że aktualny kurs obligacji wynosi 101,00. (Punktacja dot. pkt 2, razem: od 0 do 40 pkt) 3

Wyznacz: 2.1/ kurs kontraktu futures, jeżeli kontrakt byłby wystawiony na obligacje będące przedmiotem dostawy, jeżeli na rynku nie ma możliwości arbitrażu; (od 0 do 30pkt) 2.2/ kurs kontraktu futures na obligacje będące przedmiotem wystawionego kontraktu (hipotetyczne), jeżeli na rynku nie ma możliwości arbitrażu. (od 0 do 10 pkt) 3/ Przyjmij założenie, że zarządzasz portfelem obligacji o wartości 10 milionów USD. W dniu 30 lipca czas trwania tego portfela (duration) wynosi 8,5 lat. Kurs marcowych kontraktów terminowych futures na długoterminowe obligacje skarbowe wynosi 103,15, a najtańsze do dostarczenia obligacje mają czas trwania (duration) równy 7,8 lat. W jaki sposób możesz zabezpieczyć wartość portfela przed zmianami stóp procentowych w ciągu najbliższych sześciu miesięcy wykorzystując do tego celu marcowe kontrakty terminowe? Przeprowadź obliczenia i uzasadnij odpowiedź. (od 0 do 20 pkt) 4

Zadanie 4 1/ Zarządzasz portfelem obligacji P, składającym się z dwóch podportfeli: P2 i P5: P2 jest portfelem dwuletnich obligacji zerokuponowych o wartości nominalnej 200 mln PLN; P5 jest portfelem pięcioletnich obligacji zerokuponowych o wartości nominalnej 120 mln PLN. Zero kuponowa krzywa dochodowości (z kapitalizacją roczną) jest określona poniższą tabelą: Termin Stopa Odchylenie standardowe dziennej zmiany stopy procentowej (p.b. oznacza punkt bazowy) 1 rok 3,5 % 60 p.b. 2 lata 4,0 % 50 p.b. 3 lata 4,5 % 50 p.b. 4 lata 5,0 % 40 p.b. 5 lat 5,0 % 40 p.b. 1.1/ Oblicz wartość cenową punktu bazowego (basis point value BPV) dla każdego z podportfeli P2 i P5 oraz całego portfela P; (od 0 do 10 pkt) 1.2/ Oszacuj zmodyfikowany średni czas życia (modified duration) portfela P; (od 0 do 10 pkt) 1.3/ Twój analityk szacuje, że z dnia na dzień stopa dwuletnia wzrośnie o 25 p.b., a stopa pięcioletnia wzrośnie o 30 p.b. Oblicz dzienną zmianę wyniku z wyceny, dla każdego z podportfeli P2 i P5 oraz całego portfela P; (od 0 do 10 pkt) 1.4/ Oszacuj dzienne wartości zagrożone (Value at Risk), na poziomie ufności 95%, każdego z podportfeli P2 i P5; (od 0 do 30 pkt) 1.5/ Oszacuj dzienną wartość zagrożoną (Value at Risk), na poziomie ufności 95%, całego portfela P, jeżeli współczynnik korelacji zmian stopy dwuletniej i stopy pięcioletniej wynosi 0,8. (od 0 do 40pkt) 5

Zadanie 5 1/ Załóż, że na rynku kapitałowym istnieją jedynie trzy rodzaje aktywów: aktywa wolne od ryzyka, akcje spółki A oraz akcje spółki B. Roczna stopa zwrotu z aktywów wolnych od ryzyka wynosi 0,02, oczekiwana roczna stopa zwrotu z akcji spółki A wynosi 0,10, zaś oczekiwana roczna stopa zwrotu z akcji spółki B wynosi 0,14. Odchylenie standardowe rocznej stopy zwrotu z akcji spółki A wynosi 0,30, zaś odchylenie standardowe rocznej stopy zwrotu z akcji spółki B wynosi 0,50. Współczynnik korelacji pomiędzy roczną stopą zwrotu z akcji spółki A oraz roczną stopą zwrotu z akcji spółki B wynosi 0,7. Na rynku panuje równowaga opisana modelem CAPM w warunkach, w których możliwe jest zajmowanie długiej pozycji w aktywach wolnych od ryzyka, niemożliwe zaś zajmowanie krótkiej pozycji w takich aktywach (czyli możliwe jest udzielanie pożyczek wolnych od ryzyka przy braku możliwości ich zaciągania). W akcjach można natomiast zajmować pozycje zarówno długie, jak i krótkie. Działający na opisanym rynku inwestor X zakłada, że kapitalizacja (rynkowa wartość wszystkich akcji) spółki A jest dwukrotnie wyższa aniżeli kapitalizacja spółki B, zaś działający na tym rynku inwestor Y zakłada, że kapitalizacja spółki A jest taka sama, jak kapitalizacja spółki B. Na podstawie powyższych informacji, przedstawiając obliczenia, wykonaj wymienione poniżej polecenia. 1.1/ Określ, ile wynosi ryzyko systematyczne akcji spółki A przy założeniach przyjętych przez inwestora X; (od 0 do 15 pkt) 1.2/ Określ, ile wynosi ryzyko niesystematyczne akcji spółki B przy założeniach przyjętych przez inwestora Y; (od 0 do 15 pkt) 1.3/ Wyznacz równanie linii rynku papierów wartościowych (ang. Security Market Line) przy założeniach przyjętych przez inwestora X oraz przy założeniach przyjętych przez inwestora Y; (od 0 do 25 pkt) 1.4/ Określ, ile w warunkach opisanej równowagi rynkowej wynosi współczynnik beta efektywnego portfela o oczekiwanej rocznej stopie zwrotu wynoszącej 0,06, złożonego z akcji spółki A, akcji spółki B oraz aktywów wolnych od ryzyka, przy założeniach przyjętych przez inwestora Y. (od 0 do 45 pkt) 6