ĆWICZENIA Z MIKROBIOLOGII I IMMUNOLOGII DLA STUDENTÓW FARMACJI

Wielkość: px
Rozpocząć pokaz od strony:

Download "ĆWICZENIA Z MIKROBIOLOGII I IMMUNOLOGII DLA STUDENTÓW FARMACJI"

Transkrypt

1 ZAKŁAD MIKROBIOLOGII FARMACEUTYCZNEJ I DIAGNOSTYKI MIKROBIOLOGICZNEJ Katedra Biologii i Biotechnologii Farmaceutycznej Wydziału Farmaceutycznego ĆWICZENIA Z MIKROBIOLOGII I IMMUNOLOGII DLA STUDENTÓW FARMACJI POD REDAKCJĄ ELIGII M. SZEWCZYK Łódź

2 AUTORZY: Bożena Dudkiewicz Wioletta Kmieciak Anna Kwaszewska Paweł Lisiecki Maria Sobiś-Glinkowska Jadwiga Szarapińska-Kwaszewska Magdalena Szemraj Eligia M. Szewczyk Piotr Wysocki ISBN: Wydanie drugie zmienione 2

3 Spis treści: MIKROBIOLOGIA Rozdział 1 Morfologia drobnoustrojów... 5 Rozdział 2 Pożywki, morfologia wzrostu bakterii na podłożach Rozdział 3 Posiew bakterii na podłoża; otrzymywanie czystej hodowli...33 Rozdział 4.. Wymagania wzrostowe bakterii Rozdział 5 Wykorzystanie cech biochemicznych bakterii do ich Identyfikacji..51 Rozdział 6 Liczenie bakterii Rozdział 7 Dezynfekcja i antyseptyka Rozdział 8 Wpływ czynników środowiskowych na wzrost i rozwój bakterii. Sterylizacja Rozdział 9 Bakterie bytujące na skórze i błonach śluzowych Rozdział 10 Bakterie w przewodzie pokarmowym Rozdział 11 Inne bakterie bytujące w środowisku człowieka Rozdział 12 Bakterie wywołujące choroby o swoistym przebiegu, trudne do hodowli lub identyfikacji Rozdział 13 Wirusologia

4 Rozdział 14 Mikologia Rozdział 15 Bakterie w lekach kontrola czystości mikrobiologicznej Rozdział 16 Schematy identyfikacyjne drobnoustrojów w badaniu leków wg Farmakopei Polskiej IX..205 Rozdział 17 Indukcja mutacji, wykrywanie mutagenów, przekazywanie Plazmidów. 211 Rozdział 18 Podstawy wiedzy o antybiotykach i antybiotykoterapii..217 IMMUNOLOGIA Rozdział 1 Podstawy diagnostyki immunologicznej i immunoprofilaktyki 233 4

5 Rozdział 1 Morfologia drobnoustrojów Cześć teoretyczna Drobnoustroje prokariotyczne i eukariotyczne Do mikroorganizmów prokariotycznych zaliczamy - bakterie i Archea, a do eukariotycznych - grzyby, glony i pierwotniaki. Te dwie grupy organizmów prezentują dwa odmienne typy budowy komórki. Choroby u ludzi wywołują zarówno drobnoustroje prokariotyczne (bakterie), jak i eukariotyczne (grzyby i pierwotniaki). Organizmy eukariotyczne mogą być zbudowane z jednej lub wielu komórek. Wszystkie drobnoustroje prokariotyczne są organizmami jednokomórkowymi. Podstawowe różnice w budowie komórki i replikacji materiału genetycznego pomiędzy komórkami prokariotycznymi i eukariotycznymi przedstawiono w tabeli 1. Morfologia komórki bakterii Wymiar większości komórek bakteryjnych pozwala na ich obserwację w mikroskopie świetlnym, gdyż mieści się w granicach od 1 do 10 µm. Przeciętna długość komórki bakteryjnej to 1-5 µm, a średnica od 1-2 µm. Jednak rozmiar najmniejszych bakterii wynosi od 0,15 do 0,2 µm i jest na granicy zdolności rozdzielczej mikroskopu świetlnego, ale największych wynosi od 250 do 600 µm. Komórki grzybów chorobotwórczych są znacznie większe od komórek bakteryjnych (do 40 μm). Ich wielkość waha się zależnie od gatunku i warunków hodowli. Bakterie różnią się między sobą kształtem. Wyróżniamy kształty: kulisty, cylindryczny i spiralny. 5

6 Tabela 1. Podstawowe różnice w strukturze i funkcji komórek prokariotycznych i eukariotycznych Cecha Komórka prokariotyczna Komórka eukariotyczna DNA wolny, zawieszony w cytoplazmie, zwykle jeden chromosom; plazmidy zawarty w jądrze, otoczonym błoną jądrową; jąderko Rozmnażanie Wymiana materiału genetycznego Ściana komórkowa Błona cytoplazmatyczna Układ błon wewnętrznych tylko bezpłciowe przez podział komórki poprzez koniugację, transdukcję i transformację zawiera peptydoglikan (u bakterii) lub inne polimery (Archea) brak steroli (poza mikoplazmami); zawiera hopanoidy (poza Archea) brak podział komórek przez mitozę; rozmnażanie płciowe z wytworzeniem gamet w czasie rozmnażania płciowego może zawierać chitynę, mannany, glukany (grzyby) lub celulozę obecne są sterole; organelle błonowe (lizosomy, peroksysomy). retikulum endoplazmatyczne, aparat Golgiego Mitochondria brak obecne Rybosomy 70 S 80S (cytoplazmatyczne), 70S (mitochondrialne) Rzęski z białka - flagelliny złożona, tubullarna struktura Bakterie kuliste, nazywane także ziarenkowcami, mogą być ułożone pojedynczo lub tworzyć charakterystyczne układy komórek. Powstawanie układów związane jest z płaszczyzną i liczbą podziałów komórek w trakcie rozmnażania oraz brakiem ich rozdziałów po podziale. Wśród bakterii kulistych wyróżniamy następujące układy popodziałowe: 6

7 dwoinki (Diplococcus) komórki po podziale pozostają po dwie, ziarniaki czworacze (Tetracocus) komórki dzielą się w dwóch płaszczyznach, pakietowce (Sarcina) komórki dzielą się w trzech płaszczyznach do siebie prostopadłych tworząc sześcianki, paciorkowce (Sterptococcus) komórki układają się w krótsze lub dłuższe łańcuszki, gronkowce (Staphylococcus) komórki mogą się dzielić w dwóch lub trzech płaszczyznach, tworząc skupiska przypominające kiście winogron. Do form cylindrycznych bakterii zaliczamy: pałeczki (Bacterium), laseczki (Bacillus), maczugowce (Corynebacterium), prątki (Mycobacterium), wrzecionowce (Fusobacterium). Niektóre formy bakterii cylindrycznych mogą także tworzyć charakterystyczne przestrzenne układy popodziałowe: dwoinki, krótsze lub dłuższe łańcuszki, palisady, ugrupowania w kształcie liter V, X, Y. Do form spiralnych bakterii zaliczamy: przecinkowce (Vibrio) z sierpowato zagiętą komórką, śrubowce (Spirillum), które tworzą pełną spiralę, krętki (Borrelia, Treponema, Leptospira), różniące się między sobą liczbą skrętów, grubością komórki i wyglądem jej biegunów. Niektóre gatunki bakterii wykazują tendencję do zmienności morfologicznej i wielokształtności komórek. Obok kulistych, mogą one tworzyć formy cylindryczne czy nitkowate. Zjawisko to nazywamy polimorfizmem (pleomorfizmem). Strukturami anatomicznymi występującymi w każdej komórce bakteryjnej są: nukleoid, rybosomy, cytoplazma i błona (membrana) cytoplazmatyczna. Wszystkie bakterie (z wyjątkiem mykoplazm) mają złożoną w swej strukturze ścianę komórkową. Niektóre bakterie wytwarzają warunkujące ruchliwość rzęski czy włókno osiowe, a także ważne dla kolonizacji fimbrie adhezyjne, dla wymiany materiału genetycznego fimbrie płciowe (pili), albo wpływającą na chorobotwórczość otoczkę. Niektóre rodzaje bakterii (Clostridium, Bacillus) mogą także tworzyć przetrwalniki (endospory) czy gromadzić w cytoplazmie materiały zapasowe, najczęściej kwas poli-β- 7

8 hydroksymasłowy, ziarnistości poli-metafosforanowe zwane wolutyną, ale także skrobię, glikogen czy koloidalną siarkę. Wytwarzanie tych struktur może zależeć od warunków środowiska. Cechy te jednak mają duże znaczenie dla taksonomii, a tym samym identyfikacji bakterii. W mikroskopie świetlnym, w mokrych preparatach możemy ocenić kształt i wielkość komórek drobnoustrojów, a także ich ruchliwość spowodowaną obecnością rzęsek lub włókna osiowego (preparat w kropli wiszącej ). Można także obserwować przetrwalniki jako struktury silniej załamujące światło niż reszta komórki bakteryjnej (mikroskop fazowo-kontrastowy). Barwienie trwałych preparatów bakterii metodą Grama wykorzystuje różnice w budowie ściany komórkowej dwóch grup bakterii. Jedne mają ścianę złożoną z grubej warstwy peptydoglikanu oraz kwasów tejchojowych, lipotejchojowych i białek te nazywamy gramdodatnimi, a ściana drugiej grupy jest złożona z cienkiej, zawieszonej w peryplazmie warstwie peptydoglikanu oraz lipopolisacharydu i białek tworzących tzw. błonę zewnętrzną te nazywamy gramujemnymi. Różnice w budowie ściany są przyczyną różnego zatrzymywania przez komórki barwników stosowanych w metodzie Grama i w efekcie pozwalają na łatwe przyporządkowanie bakterii do grupy. Ma to ogromne znaczenie dla identyfikacji bakterii. Ściana komórkowa niektórych bakterii zawiera dodatkowe składniki, które sprawiają, że barwienie metodą Grama jest trudne lub niejednoznaczne. Stosowane są wtedy inne metody (np. Mycobacterium spp.). Metodą Grama barwią się komórki, ale barwników nie przyjmują przetrwalniki, stąd metoda ta uwidacznia w komórkach te struktury. Komórka bakteryjna wytwarza tylko jeden przetrwalnik. Może on mieć kształt kulisty lub owalny i być umieszczony centralnie, podbiegunowo lub biegunowo. Przetrwalnik może mieć średnicę mniejszą lub większą od wymiaru poprzecznego komórki. W przypadku, gdy jest większa, powoduje zniekształcenie komórki i nadaje jej charakterystyczny kształt. Wytwarzane przez niektóre bakterie otoczki, także nie zabarwiają się w metodzie Grama, ale są widoczne, jeśli obok komórki zabarwimy tło - metodą pozytywno-negatywną. Otoczki te mają budowę wielocukrową, wielocukrowo-peptydową lub, najrzadziej, peptydową. 8

9 Stosując specjalne metody barwienia można zabarwić niektóre struktury komórkowe: rzęski, nukleoid, przetrwalniki. Dla celów taksonomicznych zastosowanie znajduje barwienie materiałów zapasowych. Funkcje jakie spełniają w komórkach poszczególne ich struktury przedstawiono w tabeli 2. Tabela 2. Podstawowe funkcje pełnione przez struktury komórki bakteryjnej. Struktura komórkowa Pełniona funkcja Nukleoid, plazmidy zapis potencjalnych możliwości komórki; genotyp Rybosomy synteza białek Błona cytoplazmatyczna umożliwia transport do wnętrza i na zewnątrz komórki; z nią związany jest metabolizm energetyczny Ściana komórkowa nadaje kształt, chroni przed uszkodzeniami mechanicznymi, jest barierą przepuszczalności dla substancji wielkocząsteczkowych; odgrywa rolę w patogenezie zakażeń Otoczka chroni przed fagocytozą; warunkuje przeżycie w organizmie gospodarza; bierze udział w adhezji bakterii do powierzchni Rzęski ruch Fimbrie udział w adhezji bakterii do powierzchni Fimbrie płciowe (pili) udział w procesie koniugacji przekazywania materiału genetycznego z komórki do komórki Przetrwalniki warunkują wyjątkową oporność na działanie czynników fizyko-chemicznych wytwarzających je bakterii 9

10 Metody Mikroskopowanie Do obserwacji bakterii wykorzystuje się przede wszystkim mikroskop z jasnym polem widzenia, którego zdolność rozdzielcza wynosi 0,2 µm. Zdolność rozdzielcza mikroskopu jest to najmniejsza odległość między dwoma punktami oglądanego obiektu, przy której widziane są one jako dwa oddzielne punkty. Preparaty trwałe barwione należy oglądać przy użyciu obiektywu immersyjnego dającego powiększenie 100 razy i okularów powiększających 5-10 razy przy maksymalnie podniesionym kondensorze. Pozwala to na osiągnięcie największego powiększenia (1000 razy), jakie możemy uzyskać w mikroskopie świetlnym. Powiększenie mikroskopu jest iloczynem powiększenia okularu i powiększenia obiektywu. Obiektyw immersyjny wymaga zastosowania olejku immersyjnego, w którym należy zanurzyć soczewkę obiektywu przed przystąpieniem do oglądania preparatów. Promienie świetlne po przejściu przez szkiełko preparatu, wpadając do warstwy powietrza, ulegają załamaniu i większość z nich omijałaby soczewkę obiektywu immersyjnego. Wykorzystanie olejku immersyjnego niweluje to niekorzystne zjawisko. Po zakończeniu mikroskopowania z obiektywu należy usunąć pozostałości olejku bawełnianą szmatką. W przypadku zaschnięcia olejku na obiektywie, co grozi jego uszkodzeniem, usuwamy go specjalnym zmywaczem. Na jakość obrazu, jaki uzyskujemy w mikroskopie ma także wpływ oświetlenie oglądanego preparatu. Posługując się światłem dziennym, należy zastosować lusterko płaskie, a przy świetle sztucznym - lusterko wklęsłe. Preparaty przyżyciowe tzw. mokre oglądamy najczęściej przy pomocy obiektywów powiększających 40x lub 60x przy obniżonym kondensorze. Preparat w kropli spłaszczonej jest najłatwiejszy do wykonania. Badany materiał zawiesza się w kropli wody umieszczonej na szkiełku podstawowym i przykrywa się szkiełkiem nakrywkowym, które należy opuścić na szkiełko podstawowe ukośnie tak, aby do kropli nie dostały się 10

11 pęcherzyki powietrza. Jeśli badany materiał jest płynny, przenosi się kroplę wprost na szkiełko. Niekiedy stosuje się barwienie przyżyciowe, co ułatwia obserwację kształtu drobnoustrojów. Preparat w "kropli wiszącej" umożliwia obserwację ruchu bakterii. Wykonuje się go używając szkiełka podstawowego z wgłębieniem ("łezką") i szkiełka nakrywkowego. Przygotowanie rozmazów do preparatów trwałych Rozmazy wykonuje się na odtłuszczonych w płomieniu palnika szkiełkach podstawowych. Jeśli sporządza się rozmaz z bakterii zebranych z hodowli stałej, na szkiełko należy najpierw nanieść 1 oczko ezy wody, a następnie zawiesić w niej bardzo niewielką ilość masy bakteryjnej. Powstała zawiesina powinna lekko opalizować. Nie może być ona zbyt gęsta, gdyż nie uzyskamy wtedy obrazu pojedynczych komórek, co jest warunkiem prawidłowej oceny ich morfologii. Z hodowli płynnej nanosi się ezą na szkiełko 2-3 krople materiału. Każdą kroplę, przed naniesieniem następnej należy wysuszyć. Trzeba też pamiętać o przepaleniu ezy przed powtórnym zanurzeniem jej w hodowli. Przygotowane rozmazy suszy się w powietrzu lub w strumieniu ciepłego powietrza, trzymając szkiełko w palcach nad palnikiem. Utrwalenie preparatu osiąga się przez trzykrotne przeciągnięcie spodu szkiełka przez płomień palnika. Można też zalać szkiełko np. alkoholem metylowym i pozostawić do jego całkowitego odparowania. W trakcie wykonywania rozmazu wszystkie czynności należy wykonywać w pobliżu palnika, pamiętając o opalaniu ezy i wylotów probówek w trakcie pobierania materiału. Barwienie preparatów trwałych Bakterie najczęściej oglądamy w preparatach barwionych. Możemy w nich zaobserwować cechy morfologiczne komórek bakteryjnych, takie jak wymiar, kształt, sposób układania się komórek i nieliczne struktury anatomiczne. Barwienie pozwala także na różnicowanie bakterii między sobą i odróżnienie ich od składników otoczenia, w którym się znajdują. 11

12 Barwniki wykorzystywane w pracowni mikrobiologicznej dzielimy na barwniki kwaśne i barwniki zasadowe. Barwniki kwaśne to sole, w których kationem jest metal, a anion jest jonem barwnym. Do najczęściej wykorzystywanych należą nigrozyna, tusz chiński, kolargol, zieleń malachitowa i eozyna. W barwnikach zasadowych jonem barwnym jest kation. Do najczęściej wykorzystywanych zaliczamy fiolet krystaliczny, fuksynę zasadową, safraninę i błękit metylenowy. Mechanizm barwienia polega na adsorpcji barwnika na powierzchni komórki i na łączeniu się go ze związkami chemicznymi, głównie białkami, wchodzącymi w skład komórki bakteryjnej. W ph hodowli zwykle obojętnym lub lekko zasadowym białka bakteryjne mają ładunek ujemny. Kwasy nukleinowe, z którymi też będą łączyć się barwniki, w tych warunkach również wykazują ujemne naładowanie. Dlatego właśnie do barwienia bakterii używa się barwników zasadowych. Barwniki kwaśne stosowane są do barwienia tła otoczenia, w którym znajdują bakterie. Barwienie komórek bakteryjnych określamy barwieniem pozytywnym. Barwienie tła, otoczenia, w którym znajdują się komórki określamy barwieniem negatywnym. Metoda Grama Barwienie metodą Grama jest podstawowym barwieniem różnicującym stosowanym w mikrobiologii, dzielącym bakterie na dwie grupy: gramdodatnie i gramujemne. W metodzie tej wykorzystuje się kolejno następujące odczynniki: barwnik podstawowy fenolowy roztwór fioletu krystalicznego (gencjana); zaprawę w postaci roztworu jodu w jodku potasu (płyn Lugola); odbarwiacz - alkohol etylowy; barwnik kontrastowy - alkoholowo-wodny roztwór fuksyny zasadowej (fuksyna 1:10). Wykonanie barwienia - na utrwalony preparat należy nalać świeżo przesączony przez bibułę roztwór gencjany na 2 minuty; - preparat spłukać wodą; 12

13 - nalać płyn Lugola na 1 minutę; - spłukać wodą; - odbarwiać alkoholem przez sekund; - spłukać wodą; - dobarwić przez zalanie na 20 sekund roztworem fuksyny; - spłukać wodą; - osuszyć lekko odciskając w bibule. Wynik barwienia: Bakterie gramdodatnie fioletowogranatowe, gramujemne - różowe. O wyniku barwienia w metodzie Grama decyduje grubość warstwy peptydoglikanu ściany komórkowej. Warstwa peptydoglikanu bakterii gramdodatnich jest grubsza niż u bakterii gramujemnych. Fiolet krystaliczny przedostaje się do wnętrza komórki i łącząc się z jodem tworzy nierozpuszczalny w wodzie kompleks, który zabarwia ją na kolor fioletowy. Alkohol stosowany jako odbarwiacz, rozpuszcza błonę cytoplazmatyczną bakterii gramdodatnich oraz błonę cytoplazmatyczną i błonę zewnętrzną bakterii gramujemnych. Powoduje on również odwodnienie peptydoglikanu, uszczelniając w ten sposób ścianę komórkową. Gruba warstwa peptydoglikanu bakterii gramdodatnich skutecznie zatrzymuje barwny kompleks jodu z fioletem krystalicznym. W przypadku bakterii gramujemnych kompleks ten wydostaje się na zewnątrz przez cienką warstwę peptydoglikanu. Fuksyna jako barwnik kontrastowy zabarwia komórki bakterii gramujemnych na różowo. Metoda barwienia negatywno-pozytywnego Barwienie metodą negatywno-pozytywną jest jedną z technik wykrywania otoczek u bakterii. Komórka bakteryjna zabarwiana jest barwnikiem zasadowym, a tło kwaśnym. W metodzie tej można używać różnych barwników. Dla zabarwienia komórki - najczęściej stosuje się fuksynę z dodatkiem fuksyny karbolowej, dla zabarwienia tła - nigrozynę lub kolargol. 13

14 Zadania do wykonania Zadanie 1 Mikroskopowanie pod immersją i ocena preparatów Otrzymujesz gotowy preparat wykonany z hodowli Bacillus subtilis i zabarwiony metodą Grama. - Nastaw i obejrzyj go pod mikroskopem wykorzystując obiektyw immersyjny. - Narysuj obraz preparatu widzianego w mikroskopie. - Określ powiększenie oglądanego preparatu, kształt i sposób układania się komórek bakteryjnych. - Czy obserwowany przez ciebie drobnoustrój należy do bakterii gramdodatnich czy gramujemnych? Powiększenie: To bakterie gram... 14

15 Zadanie 2 Przygotowanie i barwienie preparatów Otrzymujesz hodowlę stałą Pseudomonas aeruginosa lub Staphylococcus aureus w płytce Petriego. Bakterie posiane zostały w sposób pasmowy. - Wykonaj preparat z hodowli jednego z drobnoustrojów i zabarw go metodą Grama. - Nastaw i obejrzyj go pod mikroskopem wykorzystując obiektyw immersyjny. Narysuj obraz mikroskopowy. - Określ powiększenie oglądanego preparatu, kształt i sposób układania się komórek bakteryjnych. - Czy badany przez ciebie drobnoustrój okazał się bakterią gramdodatnią czy gramujemną? Powiększenie: To bakterie gram... 15

16 Efekty uzyskiwane na poszczególnych etapach barwienia metodą Grama Wypełnienie poniższej tabeli pozwoli ci zapamiętać sposób reagowania bakterii na odczynniki wykorzystywane w metodzie Grama. Napisz, jaką barwę przyjmują komórki lub jakie zachodzą reakcje. Używane odczynniki Bakterie gramdodatnie Bakterie gramujemne Fenolowy roztwór fioletu krystalicznego (Gencjana) Roztwór jodu w jodku potasu (płyn Lugola) Alkohol etylowy Alkoholowo-wodny roztwór fuksyny zasadowej (Fuksyna 1:10) 16

17 17

18 18

19 Rozdział 2 Pożywki, morfologia wzrostu bakterii na podłożach Cześć teoretyczna Czynniki warunkujące wzrost bakterii na podłożach Bakterie mogą się rozwijać tylko w takich środowiskach, które zaspokajają ich wymagania pokarmowe. Pobrane składniki są źródłem substancji budulcowych komórki oraz energii potrzebnej dla rozmnażania i wzrostu. Do elementów pokarmowych, bez których wzrost nie jest możliwy należą: węgiel (C), azot (N), fosfor (P), siarka (S), tlen (O), wodór (H). Pierwiastki te wchodzą w skład większości związków organicznych tworzących komórkę i określane są jako pierwiastki budulcowe lub biogenne. Pewne grupy bakterii nie są zdolne do wzrostu, jeśli nie dostarczymy im gotowych związków, które nazywamy czynnikami wzrostowymi. Należą do nich witaminy szczególnie z grupy B, zasady purynowe i pirymidynowe, a także niekiedy cholesterol, hem, hemina, NAD, NADP i nienasycone kwasy tłuszczowe. Bakterie do wzrostu wymagają znacznych ilości wody. W wodzie rozpuszczone są związki odżywcze dla bakterii. Woda jest także środowiskiem, w którym zachodzą procesy metaboliczne, a także jest istotnym źródłem wodoru i tlenu. Większość bakterii nie wzrasta, jeśli zawartość wody w środowisku jest niższa niż 20%. Zawartość wody w podłożach hodowlanych wynosi 50-90%. Wzrost bakterii zależny jest także od obecności soli mineralnych. Jony Mg 2+, Fe 2+, Ca 2+, Mn 2+, Zn 2+ są aktywatorami niektórych reakcji enzymatycznych lub grupami prostetycznymi enzymów. Sole mineralne są również czynnikami regulującymi ciśnienie osmotyczne komórki. 19

20 Podłoża do hodowli bakterii Pożywki (podłoża) bakteriologiczne służą do hodowli bakterii w warunkach laboratoryjnych. Odpowiednie dobranie składu podłoża pozwala na przeniesienie bakterii z ich naturalnych środowisk (organizm człowieka, gleba, woda) i namnożenie. Bakterie hodujemy na stałych lub w płynnych pożywkach, które umieszczone zostały w naczyniach hodowlanych (płytki Petriego, kolby Erlenmayera, probówki). Wzrost i rozwój bakterii na pożywkach pozwala na ich wyodrębnienie i zbadanie ich cech morfologicznych, fizjologicznych, biochemicznych i serologicznych. Większość bakterii rośnie na sztucznych podłożach. Nie ma jednak uniwersalnej pożywki umożliwiającej wzrost wszystkim bakteriom. Pożywki stosowane do namnażania bakterii powinny: zawierać odpowiednie składniki pokarmowe, mieć odpowiednią wilgotność, mieć odpowiednie ph, mieć odpowiednie ciśnienie osmotyczne, być jałowe. Biorąc pod uwagę ich skład chemiczny, podłoża bakteriologiczne dzielimy na syntetyczne (ściśle zdefiniowane chemiczne) i złożone (kompleksowe). Skład pożywek syntetycznych jest dokładnie zdefiniowany i oparty na syntetycznych związkach organicznych i nieorganicznych. Jest więc zawsze możliwy do dokładnego odtworzenia. Pożywki te znajdują niekiedy zastosowanie w laboratoriach badawczych. Pożywki złożone to podłoża zawierają dodatkowo surowce pochodzenia naturalnego, których skład nie jest dokładnie określony. Są to ekstrakty mięsne, hydrolizaty kwaśne i enzymatyczne białek i inne składniki. Podłoża złożone mają szerokie zastosowanie w laboratoriach diagnostycznych i naukowych. Pożywki dzielimy na proste (podstawowe), stosowane do hodowli drobnoustrojów o małych wymaganiach pokarmowych i wzbogacone, które służą do hodowli drobnoustrojów o dużych wymaganiach odżywczych. 20

21 Podstawową pożywką płynną jest bulion odżywczy, a stałą agar odżywczy. Bulion odżywczy zawiera wyciąg mięsny, pepton i NaCl. Poprzez dodanie do bulionu odżywczego agaru w stężeniu 1,5-2% otrzymujemy podłoże stałe. Agar to wielocukier otrzymywany z glonów morskich. Silnie chłonie wodę, upłynnia się w temperaturze 100 C, a zestala w temperaturze C. W temperaturze 37 C, a więc optymalnej dla wzrostu większości bakterii ma konsystencję stałą. Służy on do zestalenia pożywki. Nie jest wykorzystywany przez bakterie jako składnik odżywczy. Agar odżywczy przygotowywany jest w postaci skosów agarowych, słupków lub płytek agarowych. Podłoża wzbogacone to najczęściej podłoża podstawowe zawierające dodatkowe składniki odżywcze. Elementami wzbogacającymi mogą być: węglowodany (np. glukoza), białka zwierzęce (surowica lub krew), hydrolizaty białek (np. kazeiny). Powszechnie wykorzystywanym w badaniach mikrobiologicznych podłożem wzbogaconym jest agar z krwią. Zawiera on 5-10% odwłóknionej jałowej krwi (najczęściej baraniej), zmieszanej z roztopionym agarem odżywczym. Po wylaniu na płytkę Petriego otrzymujemy tak zwaną płytkę krwawą. Innym, często wykorzystywanym podłożem wzbogaconym jest agar czekoladowy. Zawiera on agar odżywczy i zdenaturowaną termicznie krew. Po zestaleniu podłoża ma ono barwę czekoladową, stąd jego nazwa. Pożywki mogą zawierać dodatkowe składniki, które wpływają na rozwój hodowanych na nich bakterii. Ze względu na wynikające z ich składu zastosowanie, podłoża możemy podzielić na: namnażające lub namnażająco-wybiórcze, wybiórcze (selektywne), diagnostyczne (różnicujące), transportowe. Pożywki namnażające lub namnażająco-wybiórcze są to najczęściej podłoża płynne, wykorzystywane do namnażania bakterii występujących w niewielkiej ilości w badanej próbce, często jako pojedyncze komórki, w licznej populacji bakterii towarzyszących. Skład pożywki i warunki hodowli umożliwiają namnożenie się tylko bakterii poszukiwanych. 21

22 Pożywki wybiórcze (selektywne) oprócz składników odżywczych zawierają składniki wybiórcze, które powodują całkowite zahamowanie wzrostu pewnych gatunków bakterii lub znaczne ograniczenie ich wzrostu. Czynnikiem decydującymi o wybiórczości podłoża może być azydek sodu, sole kwasów żółciowych niektóre barwniki i antybiotyki. Są to najczęściej podłoża stałe. Przykładem podłoża wybiórczego może być podłoże Loewensteina-Jensena do hodowli prątków gruźlicy. Pożywki różnicujące (diagnostyczne) pozwalają na zmierzające do identyfikacji, różnicowanie bakterii. Zawierają one substrat diagnostyczny, który może być rozłożony enzymatycznie tylko przez określone gatunki bakterii. Do podłoża często dodawany jest wskaźniki, który, na przykład zmienia swoje zabarwienie w zależności od ph pożywki. Dlatego właśnie rozkład substratu manifestuje się zmianą zabarwienia pożywki (podłoża stałe lub podłoża płynne) lub odpowiednim zabarwieniem wyrosłych kolonii (podłoża stałe). Stałe podłoża różnicujące mogą być jednocześnie podłożami wybiórczym dla określonej grupy bakterii i są nazywane wybiórczo-różnicującymi. Przykładem takiej pożywki może być podłoże SS (Salmonella-Shigella) służące do izolacji pałeczek z rodzajów Salmonella i Shigella oraz podłoże Chapmana służące do izolacji gronkowców. Pożywki transportowe nie zawierają składników pokarmowych. Zawierają składniki optymalne dla przeżycia bakterii, w tym roztwory buforowe i sole mineralne. Zadaniem tych pożywek jest utrzymanie żywotności bakterii w próbce, zanim trafi ona do laboratorium mikrobiologicznego. Na rynku dostępne są podłoża o wystandaryzowanym składzie, jałowe i gotowe do użycia, w jednorazowych naczyniach, o określonej dacie przydatności. Zastosowanie gotowych podłoży znacznie skraca czas przygotowań do badań mikrobiologicznych. Można też je przygotowywać samodzielnie korzystając z pożywek w proszku o wystandaryzowanym składzie i innych chemicznych składników. Własnoręczne komponowanie pożywek wymaga zastosowania procedur i kontroli zapewniających powtarzalność ich składu pozwalającą na porównywanie wyników hodowli otrzymywanych w różnym czasie i w różnych laboratoriach. Bezpośrednio po przygotowaniu, takie pożywki należy wyjałowić, stanowią bowiem podłoże wzrostu także dla drobnoustrojów licznie obecnych w użytych 22

23 składnikach i otoczeniu. Sterylizacji tej dokonuje się najczęściej w autoklawie lub w aparacie Kocha. Czas generacji bakterii, optymalny czas hodowli W podłożu zawierającym niezbędne do wzrostu składniki, bakterie podwajają swoją masę i replikują swój materiał genetyczny, co w konsekwencji prowadzi do ich podziału. Wzrost populacji bakterii odbywa się zgodnie z postępem geometrycznym (2 0,2 1,2 2, n ). Czas generacji (okres międzypodziałowy) jest to czas potrzebny do podwojenia liczby komórek w populacji. Szybkość wzrostu bakterii jest cechą charakterystyczną rodzaju (gatunku). Zależy ona także od rodzaju podłoża wzrostowego oraz warunków środowiskowych. W optymalnych warunkach wzrostu w laboratorium okres międzypodziałowy większości bakterii wynosi od 20 do 40 minut, ale może też być znacznie dłuższy - od kilku do kilkunastu godzin. Stąd, czas potrzebny na wyhodowanie bakterii na pożywce tak, aby ich wzrost był widoczny gołym okiem jest różny, ale dla większości bakterii chorobotwórczych wynosi godziny. Krzywa wzrostu bakterii w hodowli płynnej Bakterie na podłożach płynnych można namnażać w warunkach hodowli okresowej (zwykłej) lub ciągłej. W hodowli okresowej bakterie namnażają się w systemie zamkniętym (probówki, kolbki, butelki, bioreaktory) do momentu wyczerpania substancji odżywczych zawartych w pożywce lub nagromadzenia w niej dużej ilości toksycznych dla bakterii produktów ich metabolizmu. W hodowli ciągłej, którą prowadzi się w bioreaktorach, wzrost bakterii można utrzymywać nieskończenie długo. Możliwe jest to dzięki ciągłemu dostarczaniu do bioreaktora świeżej pożywki z jednoczesnym odprowadzeniem takiej samej objętości pożywki zawierającej wyrosłe bakterie i produkty ich metabolizmu. Objętość płynu hodowlanego w trakcie prowadzenia hodowli utrzymuje się na stałym poziomie. 23

24 Wzrost bakterii w hodowli okresowej można przedstawić graficznie pod postacią krzywej, którą nazywamy krzywą wzrostu hodowli bakteryjnej. Jest to krzywa w układzie półlogarytmicznym. Opisuje ona zależność logarytmu dziesiętnego liczby żywych komórek bakterii od czasu hodowli i ilustruje wzrost populacji (rycina 1). Obraz krzywej wzrostu dla większości bakterii jest bardzo podobny i można w nim wyróżnić sześć faz. Czas trwania poszczególnych faz wzrostu jest zależny od rodzaju bakterii i warunków hodowli. Poszczególne fazy wzrostu różnią się częstością podziałów komórek i szybkością ich wymierania. Faza pierwsza, nazywana jest fazą zastoju. Bakterie przystosowuj swój metabolizm do nowego środowiska. Wzrasta ilość rybosomów i zawartość RNA. Pojedyncze komórki powiększają swój wymiar i przygotowują się do podziału. Faza druga - przyspieszonego wzrostu. Komórki wykazują intensywny metabolizm. Rozpoczynają się podziały komórkowe. Faza trzecia, nazywana fazą wzrostu wykładniczego (logarytmicznego), jest okresem rzeczywistego rozwoju hodowli. Metabolizm komórek jest bardzo intensywny. Liczba żywych komórek przyrasta w postępie geometrycznym. W populacji prawie wszystkie komórki są żywe. W tej fazie wzrostu bakterie są najbardziej wrażliwe na działanie fizycznych i chemicznych czynników środowiskowych. Faza czwarta jest fazą zwolnionego wzrostu. Rozmiar komórek maleje. Zmniejsza się ilość rybosomów i zawartość RNA. Zwiększa się liczba komórek martwych. Częstość podziałów maleje. Faza piąta, nazywana fazą stacjonarną (równowagi), charakteryzuje się stałą liczbą żywych komórek w hodowli. Z powodu braku substancji pokarmowych komórki zużywają własne materiały zapasowe. Sporadyczne podziały komórkowe rekompensują ubytki komórek spowodowane ich wymieraniem. Faza szósta zamierania. Wzrasta liczba martwych komórek. Zaczynają się procesy autolizy, czyli samorozpuszczania się bakterii pod wpływem własnych enzymów. Zmniejsza się liczba żywych komórek i ogólna biomasa hodowli. Brak podziałów komórkowych. 24

25 lg liczby żywych komórek czas hodowli Rycina 1. Krzywa wzrostu bakterii w hodowli okresowej: 1- faza zastoju, 2 faza przyspieszonego wzrostu, 3 faza wzrostu logarytmicznego, 4 faza zwolnionego wzrostu, 5 faza stacjonarna, 6 faza zamierania Wzrost bakterii na podłożach płynnych i stałych Wygląd wzrostu na podłożach może stanowić ważne kryterium przy identyfikacji bakterii. Na podłożach płynnych bakterie wyrastają w postaci jednolitego zmętnienia, osadu na dnie naczynia, kożuszka lub błonki na powierzchni płynu. Czasami zmętnieniu towarzyszy delikatny osad lub zagęszczenie przy powierzchni, a na granicy faz (pożywka-powietrze) tworzy się przylegająca do ścianek naczynia warstwa biofilmu. Na podłożach stałych możemy oceniać wygląd kolonii bakteryjnych. Istotna może być też ocena obfitości wzrostu lub obserwacja zdolności bakterii do wzrostu mgławicowego. Kolonię bakteryjną definiujemy jako widoczne makroskopowo na powierzchni lub w głębi stałej pożywki skupisko bakterii wyrosłe z jednej jednostki wzrostowej (jtk jednostka tworząca kolonie; CFU ang. colony forming unit). Przez jednostkę wzrostową rozumiemy jedną lub kilka 25

26 komórek bakteryjnych, które nie rozdzieliły się po podziale (układ popodziałowy), a także przetrwalnik. Umiejętność oceny morfologii kolonii jest bardzo ważna, gdyż w przypadku niektórych bakterii może w istotny sposób ważyć na ich identyfikacji, jest też istotna przy określaniu czystości hodowli. W określonych warunkach środowiska kolonie charakteryzują się stałymi cechami. Metody Opis kolonii Dla celów diagnostycznych opisuje się kolonie wyrosłe na podłożach, które nie powodują ich nienaturalnego zabarwienia w wyniku oddziaływania zawartych w nich wskaźników czy barwników. Niekiedy jednak istotny także bywa opis ich wyglądu na podłożach diagnostycznych. Należy opisywać kolonie oddalone od pozostałych tak, aby ich wzrost nie był ograniczony przez zbyt liczne sąsiedztwo. W opisie kolonii należy wziąć pod uwagę następujące jej elementy: wielkość - średnica (mm); kształt - okrągła, owalna, nitkowata, rozgałęziona nieregularna,..; brzeg - równy, postrzępiony, falisty, ząbkowany,... ; powierzchnię - gładka, lśniąca, matowa, pomarszczona, grudkowata,... ; wzniesienie (profil kolonii) - płaska, wypukła, pępkowata, wrastająca w podłoże,... ; przejrzystość - przezroczysta, opalizująca, mętna,... ; barwę - biała, kremowa, szara, czerwona,... ; otoczenie kolonii - zabarwienie, zmiana cech podłoża. 26

27 Metody sterylizacji pożywek Jednym z podstawowych wymogów, jakie muszą spełniać podłoża bakteriologiczne, jest ich jałowość (sterylność). Sterylizacja to proces prowadzący do całkowitego zniszczenia form wegetatywnych i przetrwalników drobnoustrojów. Do sterylizacji pożywek najczęściej wykorzystuje się wysoką temperaturę gorąco wilgotne (para wodna). Proces sterylizacji prowadzi się w autoklawie w temperaturze 121 C przy nadciśnieniu 1 atm przez 30 minut, gdy składniki pożywki są względnie termostabilne lub metodą tyndalizacji w aparacie Kocha, gdy pożywka zawiera składniki termolabilne. Tyndalizacja polega na trzykrotnym 60- minutowym ogrzewaniu pożywki w temperaturze 100 C w odstępach 24 godzinnych. Szkło laboratoryjne, w którym umieszczamy pożywki wyjaławia się w suszarce wykorzystując działanie gorącego suchego powietrza. Czas sterylizacji zależy od zastosowanej temperatury. Najczęściej stosuje się temperaturę 160 C przez 2 godziny lub 180 C przez 30 minut. Szkło laboratoryjne można także jałowić w autoklawie. Metody kontroli urządzeń sterylizujących Niesterylność pożywek może wynikać z niewłaściwie przeprowadzonego procesu ich sterylizacji, wadliwie działających urządzeń sterylizujących lub być wynikiem późniejszego zakażenia w wyniku nieprzestrzegania zasad aseptyki w trakcie ich przechowywania lub wykonywania posiewów. Urządzenia sterylizujące muszą podlegać okresowej kontroli. Skuteczność procesu sterylizacji bada się za pomocą wskaźników fizycznych, chemicznych i biologicznych. Wskaźniki fizyczne - termometry, manometry, zegary, mierniki wilgotności, mierniki zawartości gazu i inne przyrządy wmontowane do urządzenia sterylizującego informują tylko o jego stanie technicznym. Mierzą punktowo dany parametr. Oprócz obserwacji wskazań tych przyrządów, coraz częściej stosuje się system rejestracji podstawowych parametrów fizycznych w postaci wydruków, wykresów lub raportów. Wskaźniki chemiczne zawierają substancje chemiczną, która trwale zmienia swoje zabarwienie, kiedy zostaną osiągnięte właściwe parametry 27

28 sterylizacji. Testy te mają postać rurek, pasków czy taśm. Wskaźniki chemiczne informują jedynie, czy w danym cyklu pracy zostały osiągnięte warunki sterylizacji, nie dają one gwarancji, że poddany sterylizacji materiał został wyjałowiony. W tak zwanych wskaźnikach jednoparametrowych zmiana barwy następuje pod wpływem osiągnięcia jednego z parametrów sterylizacji, najczęściej temperatury. Nie wykazują one jednak, jak długo ta temperatura utrzymywała. Chemiczne wskaźniki wieloparametrowe wykazują, że w trakcie sterylizacji zostały osiągnięte wartości wszystkich lub kilku (przynajmniej dwóch) parametrów sterylizacji. Informują one zatem o prawidłowości przebiegu procesu sterylizacji. Wskaźniki biologiczne - zawierają określoną liczbę żywych, zdolnych do przejścia w formy wegetatywne, wysoce opornych na działanie temperatury przetrwalników bakteryjnych. Wykorzystywane są przetrwalniki Geobacillus stearothermophilus lub Bacillus subtilis zawarte, odpowiednio, w zestawach testowych Sporal A (kontrola autoklawów) i Sporal S (kontrola suszarek). Wskaźniki te informują o fakcie zabicia przetrwalników. Wskaźniki biologiczne dają gwarancję jałowości - jeżeli użyte w teście przetrwalniki zostały zabite, oznacza to, iż zostały zabite wszystkie bardziej wrażliwe drobnoustroje zanieczyszczające sterylizowany materiał. Dla uzyskania pełnej informacji o urządzeniu niezbędne jest monitorowanie procesu sterylizacji za pomocą wszystkich trzech metod. Skuteczność urządzeń sterylizujących powinna być kontrolowana przy użyciu wskaźników fizycznych i chemicznych w czasie każdego procesu sterylizacji. Ponadto okresowo należy je kontrolować przy użyciu wskaźników biologicznych. 28

29 Zadania do wykonania Zadanie 1 Charakterystyka kolonii bakteryjnej - Obejrzyj płytkę z podłożem agarowym, na której wyrosły pojedyncze kolonie. Powstały one w wyniku rozmnożenia się komórek bakterii i przetrwalników, które opadły na podłoże (sedymentowały) z powietrza. - Wybierz jedną kolonię i opisz ją uwzględniając wszystkie jej cechy. 29

30 Zadanie 2 Kontrola skuteczności sterylizacji w suszarce za pomocą testu biologicznego Sporal S - Wyjmij z opakowania foliowego torebkę papierową z krążkiem Sporalu S. - Sprawdź temperaturę suszarki (180 C) i umieść w niej torebkę w szklanym otwartym naczyniu. Zanotuj czas. - Po 30 minutach sterylizacji wyjmij Sporal S z suszarki. - Otwórz papierową torebkę, posługując się jałową pęsetą i jałowo (przy palniku) przenieś krążek do probówki zawierającej bulion z glukozą. - Po inkubacji (37 C, 7 dni) oceń, czy w probówce pojawił się wzrost (zmętnienie, kożuch) czy też bulion jest klarowny. - Zinterpretuj wynik wykonanego doświadczenia Zadanie 3 Kontrola skuteczności sterylizacji w autoklawie za pomocą testu biologicznego Sporal A - Wyjmij z opakowania foliowego torebkę papierową z krążkiem Sporalu A. - Włóż torebkę do probówki i umieść ją w autoklawie. Zamknij pokrywę i włącz urządzenie. 30

31 - Po zakończonym cyklu sterylizacji otwórz autoklaw i wyjmij z niego Sporal A. - Otwórz papierową torebkę, posługując się jałową pęsetą jałowo przenieś krążek do probówki zawierającej bulion z glukozą. - Po inkubacji (55 C, 7 dni) oceń, czy w probówce pojawił się wzrost (zmętnienie, kożuch) czy bulion jest klarowny. Zinterpretuj wynik wykonanego doświadczenia 31

32 32

33 Rozdział 3 Posiew bakterii na podłoża; otrzymywanie czystej hodowli Część teoretyczna Populację bakterii rosnącą na podłożu stałym lub płynnym nazywamy hodowlą. Hodowlę składającą się z różnych gatunków bakterii nazywamy hodowlą mieszaną. Czystą hodowlą nazywamy hodowlę bakterii jednego rodzaju. Szczep to populacja drobnoustrojów w obrębie gatunku wyróżniająca się określonymi cechami. Szczepy wyprowadzone z pojedynczej komórki nazywamy klonami. W większości przypadków, przy badaniu bakteriologicznym wody, żywności, wymazów pobranych od pacjentów, zanieczyszczonych leków, spodziewamy się w próbce więcej niż jednego rodzaju drobnoustrojów. Ocena drobnoustrojów występujących w badanym materiale, może nastąpić dopiero po ich wyodrębnieniu i uzyskaniu czystych hodowli. Do tego celu wykorzystuje się metodę posiewu redukcyjnego. Taki typ posiewu pozwala na ocenę morfologii wyrosłych kolonii. Zakłada się, choć jest to pewne uproszczenie, że każda z nich powstaje z jednej komórki bakterii lub jednej jednostki wzrostowej. A zatem, ile typów kolonii, tyle rodzajów bakterii w hodowli. Ponieważ morfologia kolonii różnych gatunków czy nawet rodzajów może być zbliżona, czasem pomocnym w odróżnieniu kolonii jest posiew redukcyjny na płytkę z podłożem diagnostycznym. Izolacja pojedynczej kolonii z takiego posiewu prowadzi zwykle do uzyskania hodowli czystej. Metody Posiew bakterii na podłoża Materiał zawierający bakterie posiewa się na podłoża stałe (skos agarowy, płytka agarowa) lub płynne (bulion) ezą, pipetą lub wacikiem. Posiewając ezą, należy ją wyjałowić wyżarzając w płomieniu palnika przed i po 33

34 wykonaniu posiewu. Używamy też wyjałowionych, odpowiednio opakowanych pipet szklanych, końcówek do pipet automatycznych lub wacików. W trakcie posiewania bakterii na podłoża płynne należy także pamiętać o opalaniu wylotu naczyń w płomieniu palnika po otwarciu i przed ich zamknięciem. Ma to zapobiec zakażeniu pożywki drobnoustrojami z zewnątrz i zapewnić bezpieczeństwo osobie pracującej. Każda próbka pobierana do posiewu z hodowli lub zawiesiny bakterii, którą zakażamy świeże podłoże stanowi inokulum. Posiew na podłoże płynne ezą polega na uwolnieniu z niej materiału stanowiącego inokulum do pożywki przez pocieranie o ścianki naczynia (probówki lub kolbki). Przy posiewaniu do naczyń zawierających większe objętości pożywki konieczne jest zachowanie odpowiednich proporcji między wielkością inokulum a objętością podłoża. Zwykle stosuje się zasadę, że inokulum stanowi 5% końcowej objętości pożywki. Posiewu możemy dokonywać pipetą wprowadzając np. 5 ml hodowli stanowiącej inokulum do 95 ml pożywki. Posiewu na podłoża stałe na płytkach Petriego dokonuje w różny sposób zależnie od celu takiego posiewu. Ważnym, często stosowanym przy izolacji bakterii sposobem, prowadzącym do otrzymania pojedynczych kolonii jest posiew redukcyjny. Posiew ten wykonujemy tak, aby w kolejnych sektorach na powierzchni płytki znajdowało się coraz mniej bakterii. Sposób wykonania takiego posiewu przedstawia rycina 1. W poszczególnych etapach raz naniesiony materiał zostaje rozprowadzany na kolejne sektory płytki. Każdorazowe opalanie ezy przed rozsianiem bakterii w kolejnych strefach powoduje redukcję ich liczby do takiej ilości, przy której w ostatniej strefie uzyskany zostanie wzrost w postaci pojedynczych kolonii. Czasem wykonuje się posiew redukcyjny z materiału z wacika. Oznacza to, że pierwsza jego strefa posiana jest wacikiem, którym np. pobrano materiał kliniczny wymaz, a następne już w klasyczny sposób ezą z zachowaniem zasady jej przepalania w trakcie posiewu. Można wykonać na płytce także posiew pasmowy lub punktowy, który pozwala umieścić na płytce wiele próbek, których cechy chcemy 34

35 porównywać. Polega on na naniesieniu na płytkę inokulum z ezy w postaci pasma różnej długości. Czasem istnieje potrzeba zasiania całej powierzchni płytki i uzyskania wzrostu w postaci jednolitej murawy. Takiego posiewu można dokonać wacikiem (tzw. wymazówką). Inokulum stanowi zwykle próbka pobrana z podłoża płynnego (nadmiar płynu z wacika należy w trakcie pobierania odcisnąć o ścianki naczynia), którą rozprowadza się równomiernie na powierzchni podłoża w płytce. Czasem zawiesina stanowiąca inokulum w tej metodzie posiewu jest w odpowiedni sposób standaryzowana. Inokulum o określonej objętości, zwykle 0,1 ml można także rozprowadzić głaszczką lub odpowiednio zagiętą ezą. A B C D Rycina 1. Posiew redukcyjny 35

36 Przy posiewie na podłoże stałe w postaci skosu agarowego w probówce należy wprowadzić ezę z inokulum do dna probówki i rozprowadzić na powierzchni skosu. Prowadzi się w tym celu ezę zygzakowatym ruchem od ścianki do ścianki próbówki, przesuwając ją ku wylotowi naczynia. W zależności od rodzaju posiewanego materiału i wykorzystywanego podłoża spotykamy się z następującymi możliwościami przesiewania bakterii. Na pożywkę płynną (pipeta, eza) Z pożywki płynnej Na skos agarowy (eza) Na płytkę agarową (eza, wacik, pipeta) Z pożywki stałej (płytka agarowa, skos agarowy) Na pożywkę płynną (eza) Na skos (eza) Na płytkę agarową (eza) 36

37 Otrzymywanie czystych hodowli Postępowanie zmierzające do otrzymania czystych hodowli z nieznanych próbek sprowadza się do następujących kroków. Badany materiał posiewa się redukcyjnie na odpowiednio dobrane podłoże. Po inkubacji (czasem wydłużonej nawet do 5 dni) w temperaturze optymalnej dla oczekiwanych drobnoustrojów ocenia się morfologię wyrosłych kolonii. Obecność różnic w ich wyglądzie wskazuje, że mamy do czynienia z hodowlą mieszaną. Izoluje się wtedy pojedyncze kolonie i posiewa się je redukcyjnie na oddzielne płytki. Otrzymana w wyniku takiego posiewu hodowla może być uznana za czystą, jeśli kolonie posiadają jednakową morfologię. Namnożona (na skosie, w pożywce płynnej lub w inny sposób) pojedyncza kolonia z takiej płytki może być materiałem dla wykonywania prób i posiewów identyfikacyjnych, czy służących do określenia właściwości fizjologicznych, biochemicznych i antygenowych bakterii. Szybką, choć czasem zawodną metodą sprawdzenia czystości hodowli płynnej jest ocena morfologii komórek tworzących ją bakterii w preparatach barwionych metodą Grama. Zadania do wykonania Zadanie 1. Otrzymywanie czystej hodowli - Materiał z otrzymanej hodowli płynnej posiej redukcyjnie na płytkę agarową. - Podpisz płytkę, inkubuj w cieplarce (37 C, 24 godziny). - Obejrzyj posiew zwracając szczególną uwagę na pojedyncze kolonie w trzeciej i czwartej strefie posiewu. - Opisz każdy z widocznych rodzajów kolonii. 37

38 - Wykonaj z każdej z nich preparat barwiony metodą Grama i uzupełnij opis kolonii o morfologię komórki. - Każdą z wybranych kolonii posiej redukcyjnie na nową płytkę. Opisz płytkę, inkubuj w cieplarce (37 C, 24 godziny). Kolonia: Preparat: Kolonia: Preparat: 38

39 Kolonia: Preparat: Jeśli na każdej z posianych płytek wyrosną kolonie tylko jednego rodzaju, o wyglądzie zgodnym z wcześniej wykonanym opisem, otrzymałeś czyste hodowle tych bakterii czyli hodowle jednego gatunku pochodzące z pojedynczej kolonii, a zatem czyste hodowle poszczególnych szczepów bakteryjnych. 39

40 40

41 Rozdział 4 Wymagania wzrostowe bakterii Część teoretyczna Wymagania pokarmowe Bakterie, podobnie jak inne organizmy żywe, potrzebują dostępu do odpowiednich składników odżywczych, umożliwiających im prawidłowy wzrost i rozmnażanie. Wymagania pokarmowe bakterii są bardzo różnorodne, od bakterii skrajnie wymagających, które mają najmniejsze zdolności biosyntetyczne i wymagają do wzrostu związków wielkocząsteczkowych, poprzez stanowiące największą grupę bakterie o wymaganiach pośrednich, do których zalicza się większość bakterii chorobotwórczych, aż do skrajnie niewymagających, które wykorzystują jako źródło węgla CO 2. Wymagania pokarmowe są w dużej mierze związane ze stopniem pasożytnictwa poszczególnych drobnoustrojów. Źródła węgla i azotu Węgiel jest podstawowym pierwiastkiem budulcowym organizmów żywych. W zależności od źródeł, z jakich bakterie mogą go pozyskiwać podzielono je na: autotrofy czerpiące węgiel tylko z CO 2 i przekształcające go do związków organicznych; heterotrofy czerpiące węgiel ze związków organicznych. Heterotrofy do prawidłowego wzrostu potrzebują w środowisku co najmniej jednego związku organicznego. Najwięcej drobnoustrojów ma zdolność do rozkładu glukozy, ale zdarzają się także bakterie mogące korzystać z mleczanu, bursztynianu, metanu, a także bardziej złożonych związków, jak lignina czy węglowodory aromatyczne. Heterotrofy zostały podzielone na: 41

42 - prototrofy drobnoustroje o małych wymaganiach pokarmowych, którym do wzrostu wystarczy jeden prosty związek organiczny i sole mineralne, co świadczy o ich dużych, gwarantujących szerokie rozprzestrzenienie, możliwościach enzymatycznych; - auksotrofy drobnoustroje o dużych wymaganiach odżywczych, rosnące jedynie w obecności co najmniej dwóch związków organicznych stanowiących źródło węgla i azotu, których nie są w stanie same syntetyzować, co w znacznym stopniu uzależnia je od środowiska. Zarówno prototrofizm, jak i auksotrofizm, mogą być wykorzystywane dla celów diagnostycznych, na przykład w identyfikacji pałeczek z rodziny Enterobacteriaceae, czy przy ustalaniu gatunku pałeczek z rodzaju Haemophilus. Bakterie auksotroficzne często wymagają do wzrostu specjalnych czynników wzrostowych, którymi mogą być aminokwasy, puryny i pirymidyny lub witaminy. Azot, który jest ważnym pierwiastkiem wchodzącym w skład białek i kwasów nukleinowych, prototrofy mogą pozyskiwać ze związków nieorganicznych (np. soli amonowych, azotanów i azotynów), a auksotrofy wykorzystują organiczne źródła azotu. Źródła energii oraz donatory elektronów Drobnoustroje mają zdolność wykorzystywania energii słonecznej lub energii chemicznej uwalnianej ze związków wysokoenergetycznych. Pozwala to wyróżnić wśród bakterii: fototrofy które korzystają z energii słonecznej (bakterie fotosyntetyzujące), chemotrofy korzystające z energii pochodzącej z rozkładu związków organicznych i nieorganicznych. W zależności od donatorów elektronów dzielimy bakterie na: litotrofy - korzystające z donatorów nieorganicznych, organotrofy - korzystające z donatorów organicznych. 42

43 Zatem, zależnie od wykorzystywanych przez bakterie źródeł energii i donatorów elektronów, możemy wyróżnić cztery typy pokarmowe: fotolitotrofy, fotoorganotrofy, chemolitotrofy i chemoorganotrofy. Bakterie stanowiące florę człowieka i te, które są dla niego chorobotwórcze, są chemoorganotrofami pozyskującymi węgiel ze związków organicznych. Wymagania tlenowe bakterii Bakterie różnią się pomiędzy sobą zapotrzebowaniem na tlen. Bezwzględnie tlenowe rosną tylko w jego obecności, bezwzględnie beztlenowe rosną przy jego braku, a względnie beztlenowe rosną zarówno przy dostępie jak i braku tlenu. Różnice te wynikają ze sposobu pozyskiwania energii przez bakterie w procesie oddychania. Oddychanie tlenowe jest możliwe tylko u organizmów, u których końcowym akceptorem przenoszonych przez łańcuch oddechowy elektronów jest tlen cząsteczkowy. W przypadku oddychania beztlenowego końcowym akceptorem elektronów w łańcuchu oddechowym są związki nieorganiczne: azotany, siarczany. Możliwe jest jeszcze pozyskiwanie energii w procesie fermentacji, gdzie akceptorem elektronów jest związek organiczny. Bakteriom bezwzględnie tlenowym tlen jest niezbędny do prawidłowego wzrostu i rozmnażania. W przypadku braku tlenu giną, gdyż przenoszenie elektronów łańcucha oddechowego zostaje zahamowane i nie jest magazynowana energia. Bakterie te mają enzymy, które chronią je przed toksycznym działaniem tlenu. Dysmutaza nadtlenkowa wiąże wolne rodniki z wodorem, w wyniku czego powstaje nadtlenek wodoru.jest on rozkładany przez dwa inne enzymy: katalazę i peroksydazę do wody i tlenu. Do bezwzględnie tlenowych, chorobotwórczych bakterii zaliczane są m.in. bakterie z rodzajów Mycobacterium, Bacillus, Nocardia. Bakterie względnie beztlenowe mogą rosnąć zarówno w obecności tlenu, jak i przy jego braku w środowisku o obniżonym potencjale oksydacyjnoredukcyjnym. Do tej grupy należy wiele bakterii, w tym też chorobotwórczych. Jeżeli tlen jest obecny w środowisku, mogą korzystać z energii pozyskiwanej w wyniku oddychania tlenowego. Przy braku tlenu mogą 43

Hodowlą nazywamy masę drobnoustrojów wyrosłych na podłożu o dowolnej konsystencji.

Hodowlą nazywamy masę drobnoustrojów wyrosłych na podłożu o dowolnej konsystencji. Wzrost mikroorganizmów rozumieć można jako: 1. Wzrost masy i rozmiarów pojedynczego osobnika, tj. komórki 2. Wzrost biomasy i liczebności komórek w środowisku, tj. wzrost liczebności populacji Hodowlą

Bardziej szczegółowo

liczba godzin 2 MIKROBIOLOGIA KOSMETOLOGICZNA dla studentów II roku, studiów I st. kierunku KOSMETOLOGIA półpłynne stałe

liczba godzin 2 MIKROBIOLOGIA KOSMETOLOGICZNA dla studentów II roku, studiów I st. kierunku KOSMETOLOGIA półpłynne stałe MIKROBIOLOGIA KOSMETOLOGICZNA dla studentów II roku, studiów I st. kierunku KOSMETOLOGIA Ćwiczenie 6 i 7 6 Fizjologia drobnoustrojów Wymagania metaboliczne bakterii. Rodzaje podłóż mikrobiologicznych.

Bardziej szczegółowo

Instrukcje do ćwiczeń oraz zakres materiału realizowanego na wykładach z przedmiotu Mikrobiologia na kierunku chemia kosmetyczna

Instrukcje do ćwiczeń oraz zakres materiału realizowanego na wykładach z przedmiotu Mikrobiologia na kierunku chemia kosmetyczna 1 Zakład Mikrobiologii UJK Instrukcje do ćwiczeń oraz zakres materiału realizowanego na wykładach z przedmiotu Mikrobiologia na kierunku chemia kosmetyczna 2 Zakład Mikrobiologii UJK Zakres materiału (zagadnienia)

Bardziej szczegółowo

ĆWICZENIA Z MIKROBIOLOGII DLA STUDENTÓW ANALITYKI

ĆWICZENIA Z MIKROBIOLOGII DLA STUDENTÓW ANALITYKI ZAKŁAD MIKROBIOLOGII FARMACEUTYCZNEJ I DIAGNOSTYKI MIKROBIOLOGICZNEJ Katedra Biologii i Biotechnologii Farmaceutycznej Wydziału Farmaceutycznego ĆWICZENIA Z MIKROBIOLOGII DLA STUDENTÓW ANALITYKI CZĘŚĆ

Bardziej szczegółowo

Do jednego litra medium dodać 10,0 g skrobi ziemniaczanej lub kukurydzianej i mieszać do uzyskania zawiesiny. Sterylizować w autoklawie.

Do jednego litra medium dodać 10,0 g skrobi ziemniaczanej lub kukurydzianej i mieszać do uzyskania zawiesiny. Sterylizować w autoklawie. Ćwiczenie 3. Izolacja laseczek przetrwalnikujących z gleby Cel ćwiczenia: Izolacja i testowanie przydatności biotechnologicznej laseczek z rodzaju Bacillus występujących w glebie. Odczynniki i podłoża:

Bardziej szczegółowo

Ćwiczenie 1 Morfologia I fizjologia bakterii

Ćwiczenie 1 Morfologia I fizjologia bakterii Ćwiczenie 1 Morfologia I fizjologia bakterii 1. Barwienie złożone - metoda Grama Przygotowanie preparatu: odtłuszczone szkiełko podstawowe, nałożenie bakterii ( z hodowli płynnej 1-2 oczka ezy lub ze stałej

Bardziej szczegółowo

Protokoły do zajęć praktycznych z mikrobiologii ogólnej i żywności dla studentów kierunku: Dietetyka

Protokoły do zajęć praktycznych z mikrobiologii ogólnej i żywności dla studentów kierunku: Dietetyka Protokoły do zajęć praktycznych z mikrobiologii ogólnej i żywności dla studentów kierunku: Dietetyka Protokół I, zajęcia praktyczne 1. Demonstracja wykonania preparatu barwionego metodą Grama (wykonuje

Bardziej szczegółowo

ĆWICZENIA Z MIKROBIOLOGII DLA STUDENTÓW KOSMETOLOGII

ĆWICZENIA Z MIKROBIOLOGII DLA STUDENTÓW KOSMETOLOGII ZAKŁAD MIKROBIOLOGII FARMACEUTYCZNEJ I DIAGNOSTYKI MIKROBIOLOGICZNEJ Katedra Biologii i Biotechnologii Farmaceutycznej Wydziału Farmaceutycznego ĆWICZENIA Z MIKROBIOLOGII DLA STUDENTÓW KOSMETOLOGII STUDIA

Bardziej szczegółowo

X. Diagnostyka mikrobiologiczna bakterii chorobotwórczych z rodzaju: Corynebacterium, Mycobacterium, Borrelia, Treponema, Neisseria

X. Diagnostyka mikrobiologiczna bakterii chorobotwórczych z rodzaju: Corynebacterium, Mycobacterium, Borrelia, Treponema, Neisseria X. Diagnostyka mikrobiologiczna bakterii chorobotwórczych z rodzaju: Corynebacterium, Mycobacterium, Borrelia, Treponema, Neisseria Maczugowce (rodzaj Corynebacterium) Ćwiczenie 1. Wykonanie preparatu

Bardziej szczegółowo

ZASADY BADAŃ BAKTERIOLOGICZNYCH

ZASADY BADAŃ BAKTERIOLOGICZNYCH ZASADY BADAŃ BAKTERIOLOGICZNYCH Joanna Kądzielska Katedra Mikrobiologii Lekarskiej Warszawski Uniwersytet Medyczny METODY HODOWLI BAKTERII METODY MIKROSKOPOWE MORFOLOGIA BAKTERII TOK BADANIA DIAGNOSTYCZNEGO

Bardziej szczegółowo

Ocena skuteczności procesów sterylizacji za pomocą wskaźników biologicznych r.

Ocena skuteczności procesów sterylizacji za pomocą wskaźników biologicznych r. Ocena skuteczności procesów sterylizacji za pomocą wskaźników biologicznych 27.04.2015 r. Wstęp Sterylizacja to proces, w wyniku którego zostają zniszczone lub usunięte wszystkie drobnoustroje, zarówno

Bardziej szczegółowo

1. Demonstracja preparatów bakteryjnych barwionych metodą negatywną ukazujących kształty komórek bakteryjnych.

1. Demonstracja preparatów bakteryjnych barwionych metodą negatywną ukazujących kształty komórek bakteryjnych. Ćwiczenie 1. Mikrobiologia ogólna - Budowa komórki bakteryjnej. Metody barwienia preparatów bakteryjnych. Wzrost drobnoustrojów w warunkach laboratoryjnych. Uzyskiwanie czystej hodowli. Identyfikowanie

Bardziej szczegółowo

- podłoża transportowo wzrostowe..

- podłoża transportowo wzrostowe.. Ćw. nr 2 Klasyfikacja drobnoustrojów. Zasady pobierania materiałów do badania mikrobiologicznego. 1. Obejrzyj zestawy do pobierania materiałów i wpisz jakie materiały pobieramy na: - wymazówki suche. -

Bardziej szczegółowo

VII. Pałeczki Gram-dodatnie: Corynebacterium, Listeria, Erysipelothtix, Lactobacillus - ćwiczenia praktyczne

VII. Pałeczki Gram-dodatnie: Corynebacterium, Listeria, Erysipelothtix, Lactobacillus - ćwiczenia praktyczne VII. Pałeczki Gram-dodatnie: Corynebacterium, Listeria, Erysipelothtix, Lactobacillus - ćwiczenia praktyczne Ćwiczenie 1. Wykonanie barwionych preparatów mikroskopowych preparat barwiony metodą Grama z

Bardziej szczegółowo

II. OZNACZANIE LICZBY BAKTERII Z GRUPY COLI I BAKTERII Z GRUPY COLI TYP FEKALNY METODĄ PŁYTKOWĄ W ŻYWNOŚCI I INNYCH PRODUKTACH wg PN-ISO 4832: 2007

II. OZNACZANIE LICZBY BAKTERII Z GRUPY COLI I BAKTERII Z GRUPY COLI TYP FEKALNY METODĄ PŁYTKOWĄ W ŻYWNOŚCI I INNYCH PRODUKTACH wg PN-ISO 4832: 2007 Katedra i Zakład Mikrobiologii i Wirusologii Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Mikrobiologia ogólna Biotechnologia medyczna II rok / I o Temat: Żywność jako środowisko życia mikroorganizmów.

Bardziej szczegółowo

VII. Fizjologia bakterii - ćwiczenia praktyczne

VII. Fizjologia bakterii - ćwiczenia praktyczne VII. Fizjologia bakterii - ćwiczenia praktyczne Ćwiczenie 1. Rodzaje pożywek i ich zastosowanie a. Podłoże stałe - proste Agar zwykły (AZ) b. Podłoża wzbogacone Agar z dodatkiem 5% odwłóknionej krwi baraniej

Bardziej szczegółowo

III. Fizjologia bakterii i zasady diagnostyki bakteriologicznej

III. Fizjologia bakterii i zasady diagnostyki bakteriologicznej III. Fizjologia bakterii i zasady diagnostyki bakteriologicznej Ćwiczenie 1. Rodzaje pożywek i ich zastosowanie a. Podłoże stałe - proste Agar zwykły (AZ) b. Podłoża wzbogacone Agar z dodatkiem 5% odwłóknionej

Bardziej szczegółowo

Ćwiczenie 4-5 Mikrobiologiczne kryteria oceny sanitarnej wody

Ćwiczenie 4-5 Mikrobiologiczne kryteria oceny sanitarnej wody ĆWICZENIA Z GOSPODARKI ENERGETYCZNEJ, WODNEJ I ŚCIEKOWEJ CZĘŚĆ MIKROBIOLOGICZNA Ćwiczenie 4-5 Mikrobiologiczne kryteria oceny sanitarnej wody Część teoretyczna: 1. Kryteria jakości sanitarnej wody przeznaczonej

Bardziej szczegółowo

Kontrola pożywek mikrobiologicznych. Sekcja Badań Epidemiologicznych

Kontrola pożywek mikrobiologicznych. Sekcja Badań Epidemiologicznych Kontrola pożywek mikrobiologicznych Sekcja Badań Epidemiologicznych 27.04.2015 Zgodnie z ISO 17025 oraz ISO 15189 jednym z czynników istotnie wpływających na jakość wyników badań w przypadku badań mikrobiologicznych,

Bardziej szczegółowo

Ćwiczenie 8, 9, 10 Kontrola mikrobiologiczna środowiska pracy

Ćwiczenie 8, 9, 10 Kontrola mikrobiologiczna środowiska pracy MIKROBIOLOGIA KOSMETOLOGICZNA dla studentów II roku, studiów I st. kierunku KOSMETOLOGIA Ćwiczenie 8, 9, 10 Kontrola mikrobiologiczna środowiska pracy liczba godzin 8 Badanie mikrobiologicznej czystości

Bardziej szczegółowo

Temat 1: Morfologia komórki i kolonii. Barwienie pozytywne proste i barwienie negatywne

Temat 1: Morfologia komórki i kolonii. Barwienie pozytywne proste i barwienie negatywne Temat 1: Morfologia komórki i kolonii. Barwienie pozytywne proste i barwienie negatywne Literatura: 1. Kocwowa E.: Ćwiczenia z mikrobiologii ogólnej dla wyższych szkół technicznych. PWN 1984, str. 32-49

Bardziej szczegółowo

Interpretacja wyników analiz ilości i obecności drobnoustrojów zgodnie z zasadami badań mikrobiologicznych żywności i pasz?

Interpretacja wyników analiz ilości i obecności drobnoustrojów zgodnie z zasadami badań mikrobiologicznych żywności i pasz? Wydział Biotechnologii i Nauk o Żywności Seminarium STC 2018 Interpretacja wyników analiz ilości i obecności drobnoustrojów zgodnie z zasadami badań mikrobiologicznych żywności i pasz? Dr inż. Agnieszka

Bardziej szczegółowo

X. Pałeczki Gram-dodatnie. Rodzaje: Corynebacterium, Listeria, Erysipelothtix, Lactobacillus

X. Pałeczki Gram-dodatnie. Rodzaje: Corynebacterium, Listeria, Erysipelothtix, Lactobacillus X. Pałeczki Gram-dodatnie. Rodzaje: Corynebacterium, Listeria, Erysipelothtix, Lactobacillus Gramujemne pałeczki auksotroficzne. Rodzaj: Haemophilus, Brucella, Legionella Ćwiczenie 1. Wykonanie preparatu

Bardziej szczegółowo

Podstawy różnicowania bakterii i grzybów. Imię i nazwisko:

Podstawy różnicowania bakterii i grzybów. Imię i nazwisko: Ćw. nr 1 Podstawy różnicowania bakterii i grzybów. 1. Wykonaj barwienie preparatów własnych ze wskazanych przez nauczyciela hodowli stałych ziarniaków Gram(+), ziarniaków Gram(-), pałeczek Gram+, pałeczek

Bardziej szczegółowo

XXV. Grzyby cz I. Ćwiczenie 1. Wykonanie i obserwacja preparatów mikroskopowych. a. Candida albicans preparat z hodowli barwiony metoda Grama

XXV. Grzyby cz I. Ćwiczenie 1. Wykonanie i obserwacja preparatów mikroskopowych. a. Candida albicans preparat z hodowli barwiony metoda Grama XXV. Grzyby cz I. Ćwiczenie 1. Wykonanie i obserwacja preparatów mikroskopowych a. Candida albicans preparat z hodowli barwiony metoda Grama Opis preparatu: b. Saccharomyces cerevisiae preparat z hodowli

Bardziej szczegółowo

Biologia komórki. Skrypt do ćwiczeń dla studentów Bioinformatyki i Biologii Systemów. (część mikrobiologiczna)

Biologia komórki. Skrypt do ćwiczeń dla studentów Bioinformatyki i Biologii Systemów. (część mikrobiologiczna) Biologia komórki Skrypt do ćwiczeń dla studentów Bioinformatyki i Biologii Systemów (część mikrobiologiczna) przygotowany przez zespół pracowników Zakładu Genetyki Bakterii INSTYTUT MIKROBIOLOGII WYDZIAŁ

Bardziej szczegółowo

3 Bakteriologia ogólna

3 Bakteriologia ogólna Bakteriologia ogólna F. H. Kayser Morfologia i szczegółowa budowa bakterii Wymiary komórek bakteryjnych wynoszą od 0, do 5 m. Komórki przybierają trzy podstawowe formy: ziarenkowce, proste pałeczki oraz

Bardziej szczegółowo

Ćwiczenie 1 Podstawy różnicowania bakterii. 1. Preparat przyżyciowy (mokry, tzw. świeży) w kropli wiszącej. Technika wykonania preparatu:

Ćwiczenie 1 Podstawy różnicowania bakterii. 1. Preparat przyżyciowy (mokry, tzw. świeży) w kropli wiszącej. Technika wykonania preparatu: Ćwiczenie 1 Podstawy różnicowania bakterii. 1. Preparat przyżyciowy (mokry, tzw. świeży) w kropli wiszącej Technika wykonania preparatu: - na rogi szkiełka nakrywkowego nanieś niewielką ilość wazeliny

Bardziej szczegółowo

Ćwiczenie 11. Temat: Wskaźniki higieniczne żywności.

Ćwiczenie 11. Temat: Wskaźniki higieniczne żywności. Ćwiczenie 11 Temat: Wskaźniki higieniczne żywności. Wskaźniki higieniczne żywności są to grupy bakterii dostające się do żywności w wyniku niewłaściwej higieny produkcji i braku higieny osobistej pracowników.

Bardziej szczegółowo

Tematy- Biologia zakres rozszerzony, klasa 2TA,2TŻ-1, 2TŻ-2

Tematy- Biologia zakres rozszerzony, klasa 2TA,2TŻ-1, 2TŻ-2 Tematy- Biologia zakres rozszerzony, klasa 2TA,2TŻ-1, 2TŻ-2 Nr lekcji Temat Zakres treści 1 Zapoznanie z PSO, wymaganiami edukacyjnymi i podstawą programową PSO, wymagania edukacyjne i podstawa programowa

Bardziej szczegółowo

XIII. Staphylococcus, Micrococcus ćwiczenia praktyczne

XIII. Staphylococcus, Micrococcus ćwiczenia praktyczne XIII. Staphylococcus, Micrococcus ćwiczenia praktyczne Ćwiczenie 1. Ocena wzrostu szczepów gronkowców na: a. agarze z dodatkiem 5% odwłóknionej krwi baraniej (AK) typ hemolizy morfologia kolonii.. b. podłożu

Bardziej szczegółowo

IV. Streptococcus, Enterococcus ćwiczenia praktyczne

IV. Streptococcus, Enterococcus ćwiczenia praktyczne IV. Streptococcus, Enterococcus ćwiczenia praktyczne Ćwiczenie 1. Ocena wzrostu szczepów paciorkowców na: a. agarze z dodatkiem 5% odwłóknionej krwi baraniej (AK) typ hemolizy morfologia kolonii... gatunek

Bardziej szczegółowo

Ćwiczenie 2. Temat: Metody badań mikroskopowych. Morfologia komórki prokariota (bakterii).

Ćwiczenie 2. Temat: Metody badań mikroskopowych. Morfologia komórki prokariota (bakterii). Ćwiczenie 2 Temat: Metody badań mikroskopowych. Morfologia komórki prokariota (bakterii). Obserwacje mikroskopowe cech morfologicznych drobnoustrojów wymagają przygotowania preparatu mikrobiologicznego.

Bardziej szczegółowo

XIX. Pałeczki Gram-ujemne część I - ćwiczenia praktyczne

XIX. Pałeczki Gram-ujemne część I - ćwiczenia praktyczne XIX. Pałeczki Gram-ujemne część I - ćwiczenia praktyczne Ćwiczenie 1. Wykonanie preparatu mikroskopowego barwionego metodą Grama Opis preparatu: Ćwiczenie 2. Ocena wzrostu szczepów na podłożach stałych

Bardziej szczegółowo

Ćwiczenie 1. Mikrobiologia ogólna - Pożywki bakteryjne. Techniki posiewów. Uzyskiwanie czystej hodowli.

Ćwiczenie 1. Mikrobiologia ogólna - Pożywki bakteryjne. Techniki posiewów. Uzyskiwanie czystej hodowli. Ćwiczenie 1. Mikrobiologia ogólna - Pożywki bakteryjne. Techniki posiewów. Uzyskiwanie czystej hodowli. Część teoretyczna (obowiązujący zakres materiału) fizjologia bakterii, postacie i skład pożywek bakteryjnych

Bardziej szczegółowo

SYLABUS. Wydział Biologiczno - Rolniczy. Katedra Biotechnologii i Mikrobiologii

SYLABUS. Wydział Biologiczno - Rolniczy. Katedra Biotechnologii i Mikrobiologii SYLABUS 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Mikrobiologia Kod przedmiotu/ modułu* Wydział (nazwa jednostki prowadzącej kierunek) Nazwa jednostki realizującej przedmiot

Bardziej szczegółowo

Badania mikrobiologiczne wg PN-EN ISO 11737

Badania mikrobiologiczne wg PN-EN ISO 11737 Badania mikrobiologiczne wg PN-EN ISO 11737 mgr Agnieszka Wąsowska Specjalistyczne Laboratorium Badawcze ITA-TEST Z-ca Dyrektora ds. Badań Kierownik Zespołu Badań Mikrobiologicznych i Chemicznych Tel.022

Bardziej szczegółowo

Komórka organizmy beztkankowe

Komórka organizmy beztkankowe Grupa a Komórka organizmy beztkankowe Poniższy test składa się z 12 zadań. Przy każdym poleceniu podano liczbę punktów możliwą do uzyskania za prawidłową odpowiedź. Za rozwiązanie całego testu możesz otrzymać

Bardziej szczegółowo

Temat II. Morfologia bakterii i promieniowców. Krzywa rzeczywista wzrostu populacji bakterii w hodowli statycznej

Temat II. Morfologia bakterii i promieniowców. Krzywa rzeczywista wzrostu populacji bakterii w hodowli statycznej ĆWICZENIE V Temat II. Morfologia bakterii i promieniowców. Badania nad fiziologią drobnoustrojów oraz sposobami ich wyzyskania dla potrzeb człowieka wymagają prowadzenia długotrwałej hodowli. Rozróżniamy

Bardziej szczegółowo

woda do 1000 ml ph=6,9-7,1. Po sterylizacji dodać nystatynę (końcowe stężenie ok. 50 μg/ml). Agar z wyciągiem glebowym i ekstraktem drożdżowym (YS)

woda do 1000 ml ph=6,9-7,1. Po sterylizacji dodać nystatynę (końcowe stężenie ok. 50 μg/ml). Agar z wyciągiem glebowym i ekstraktem drożdżowym (YS) Ćwiczenie 1, 2, 3, 4 Skrining ze środowiska naturalnego: selekcja promieniowców zdolnych do produkcji antybiotyków. Testowanie zdolności do syntezy antybiotyków przez wyselekcjonowane szczepy promieniowców

Bardziej szczegółowo

Ćwiczenie 4. Temat: Metody hodowli drobnoustrojów

Ćwiczenie 4. Temat: Metody hodowli drobnoustrojów Ćwiczenie 4 Temat: Metody hodowli drobnoustrojów Podłoża hodowlane Do wykrywania mikroorganizmów, ich namnażania i identyfikacji w warunkach in vitro służą podłoża (inaczej pożywki) hodowlane. Są to mieszaniny

Bardziej szczegółowo

Dostawy

Dostawy Strona 1 z 5 Dostawy - 347310-2019 24/07/2019 S141 - - Dostawy - Dodatkowe informacje - Procedura otwarta I. II. VI. VII. Polska-Wałbrzych: Odczynniki laboratoryjne 2019/S 141-347310 Sprostowanie Ogłoszenie

Bardziej szczegółowo

Harmonogram zajęć z Mikrobiologii z parazytologią i Immunologii dla studentów II roku kierunku lekarskiego WL 2018/2019 GRUPA 5

Harmonogram zajęć z Mikrobiologii z parazytologią i Immunologii dla studentów II roku kierunku lekarskiego WL 2018/2019 GRUPA 5 Harmonogram zajęć z Mikrobiologii z parazytologią i Immunologii dla studentów II roku kierunku lekarskiego WL 2018/2019 GRUPA 5 GRUPY ĆWICZENIOWE 51, 52 : 8.00-10.30 Wtorek: 17.00-19.30 Data Godzina Rodzaj

Bardziej szczegółowo

mgr Sławomir Sułowicz Katedra Mikrobiologii UŚ

mgr Sławomir Sułowicz Katedra Mikrobiologii UŚ mgr Sławomir Sułowicz Katedra Mikrobiologii UŚ 1) Analiza sanitarna wody 2) Analiza mikrobiologiczna gleby 3) Analiza sanitarna powietrza 4) Charakterystyka szczepów bakterii opornych na antybiotyki, wyizolowanych

Bardziej szczegółowo

RAPORT Z BADAŃ 164/Z/20110825/D/JOGA. Dostarczony materiał: próbki tworzyw sztucznych. Ilość próbek: 1. Rodzaj próbek: tworzywo

RAPORT Z BADAŃ 164/Z/20110825/D/JOGA. Dostarczony materiał: próbki tworzyw sztucznych. Ilość próbek: 1. Rodzaj próbek: tworzywo Blirt S.A. 80-172 Gdańsk, ul. Trzy Lipy 3/1.38 RAPORT Z BADAŃ Dział DNA-Gdańsk Nr zlecenia 164/Z/20110825/D/JOGA NAZWA I ADRES KLIENTA GROUND-Therm spółka z o.o. ul. Stepowa 30 44-105 Gliwice Tytuł zlecenia:

Bardziej szczegółowo

DIAGNOSTYKA BEZPOŚREDNIA. Joanna Kądzielska Katedra Mikrobiologii Lekarskiej Warszawski Uniwersytet Medyczny

DIAGNOSTYKA BEZPOŚREDNIA. Joanna Kądzielska Katedra Mikrobiologii Lekarskiej Warszawski Uniwersytet Medyczny DIAGNOSTYKA BEZPOŚREDNIA Joanna Kądzielska Katedra Mikrobiologii Lekarskiej Warszawski Uniwersytet Medyczny BADANIA MIKROBIOLOGICZNE CHORZY OZDROWIEŃCY BEZOBJAWOWI NOSICIELE OSOBY Z KONTAKTU PERSONEL MEDYCZNY

Bardziej szczegółowo

Scenariusz lekcji chemii w klasie III gimnazjum. Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne

Scenariusz lekcji chemii w klasie III gimnazjum. Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne Scenariusz lekcji chemii w klasie III gimnazjum Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne Czas trwania lekcji: 2x 45 minut Cele lekcji: 1. Ogólny zapoznanie

Bardziej szczegółowo

KONSPEKTY DO ĆWICZEN Z MIKROBIOLOGII LEKARSKIEJ WYDZIAŁ LEKARSKO-DENTYSTYCZNY II ROK 2019/2020 CZĘŚĆ PRAKTYCZNA

KONSPEKTY DO ĆWICZEN Z MIKROBIOLOGII LEKARSKIEJ WYDZIAŁ LEKARSKO-DENTYSTYCZNY II ROK 2019/2020 CZĘŚĆ PRAKTYCZNA Imię i Nazwisko... grupa... ĆWICZENIE 1 1. Diagnostyka mikrobiologiczna i metody laboratoryjne. 2. Morfologia komórki bakteryjnej. 3. Morfologia kolonii bakteryjnych. CZĘŚĆ PRAKTYCZNA Zadanie 1 - Przygotowanie

Bardziej szczegółowo

ĆWICZENIE NR 3 BADANIE MIKROBIOLOGICZNEGO UTLENIENIA AMONIAKU DO AZOTYNÓW ZA POMOCĄ BAKTERII NITROSOMONAS sp.

ĆWICZENIE NR 3 BADANIE MIKROBIOLOGICZNEGO UTLENIENIA AMONIAKU DO AZOTYNÓW ZA POMOCĄ BAKTERII NITROSOMONAS sp. ĆWICZENIE NR 3 BADANIE MIKROBIOLOGICZNEGO UTLENIENIA AMONIAKU DO AZOTYNÓW ZA POMOCĄ BAKTERII NITROSOMONAS sp. Uwaga: Ze względu na laboratoryjny charakter zajęć oraz kontakt z materiałem biologicznym,

Bardziej szczegółowo

Karta modułu/przedmiotu

Karta modułu/przedmiotu Karta modułu/przedmiotu Informacje ogólne o module/przedmiocie 1. Kierunek studiów:. Poziom : STUDIA PIERWSZEGO STOPNIA BIOTECHNOLOGIA MEDYCZNA 3. Forma studiów: STACJONARNE. Rok: II 5. Semestr: III. Nazwa

Bardziej szczegółowo

CORAZ BLIŻEJ ISTOTY ŻYCIA WERSJA A. imię i nazwisko :. klasa :.. ilość punktów :.

CORAZ BLIŻEJ ISTOTY ŻYCIA WERSJA A. imię i nazwisko :. klasa :.. ilość punktów :. CORAZ BLIŻEJ ISTOTY ŻYCIA WERSJA A imię i nazwisko :. klasa :.. ilość punktów :. Zadanie 1 Przeanalizuj schemat i wykonaj polecenia. a. Wymień cztery struktury występujące zarówno w komórce roślinnej,

Bardziej szczegółowo

Mikrobiologia jamy ustnej treść ćwiczeń

Mikrobiologia jamy ustnej treść ćwiczeń Mikrobiologia jamy ustnej treść ćwiczeń Ćwiczenie 1. Mikrobiologia ogólna - Budowa komórki bakteryjnej. Metody barwienia preparatów bakteryjnych. Pożywki bakteryjne. Techniki posiewów. Uzyskiwanie czystej

Bardziej szczegółowo

VIII. Pałeczki Gram-ujemne z rodziny Enterobacteriaceae

VIII. Pałeczki Gram-ujemne z rodziny Enterobacteriaceae VIII. Pałeczki Gram-ujemne z rodziny Enterobacteriaceae Ćwiczenie 1. Wykonanie preparatu mikroskopowego barwionego metodą Grama Opis preparatu: Ćwiczenie 2. Ocena wzrostu szczepów na podłożach stałych

Bardziej szczegółowo

ĆWICZENIA Z MIKROBIOLOGII 2018/2019

ĆWICZENIA Z MIKROBIOLOGII 2018/2019 ĆWICZENIA Z MIKROBIOLOGII 2018/2019 ĆWICZENIE 1 1. Organizacja zajęć regulamin 2018/2019. 2. BHP. 3. Morfologia komórki bakteryjnej. 4. Morfologia kolonii bakteryjnych. 5. Sterylizacja, dezynfekcja, antyseptyka,

Bardziej szczegółowo

KARTA PRZEDMIOTU. (pieczęć wydziału) Z1-PU7 WYDANIE N1 Strona 8 z 9

KARTA PRZEDMIOTU. (pieczęć wydziału) Z1-PU7 WYDANIE N1 Strona 8 z 9 Załącznik Nr 5 do Zarz. Nr 33/11/12 KARTA PRZEDMIOTU (pieczęć wydziału) Z1-PU7 WYDANIE N1 Strona 8 z 9 1. Nazwa przedmiotu: Mikrobiologia ogólna 2. Kod przedmiotu: 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

Materiały dydaktyczne do kursów wyrównawczych z przedmiotu biologia

Materiały dydaktyczne do kursów wyrównawczych z przedmiotu biologia Człowiek najlepsza inwestycja Materiały dydaktyczne do kursów wyrównawczych z przedmiotu biologia Autor: dr inż. Anna Kostka Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego

Bardziej szczegółowo

BIOCHEMICZNE ZAPOTRZEBOWANIE TLENU

BIOCHEMICZNE ZAPOTRZEBOWANIE TLENU BIOCHEMICZNE ZAPOTRZEBOWANIE TLENU W procesach samooczyszczania wód zanieczyszczonych związkami organicznymi zachodzą procesy utleniania materii organicznej przy współudziale mikroorganizmów tlenowych.

Bardziej szczegółowo

GRUPA I Lp Nazwa Jm Ilość Cena jedn netto 1. Columbia agar z 5 %krwią baranią

GRUPA I Lp Nazwa Jm Ilość Cena jedn netto 1. Columbia agar z 5 %krwią baranią GRUPA I Lp Nazwa Jm Ilość Cena jedn netto 1. Columbia agar z 5 %krwią baranią 2. Agar Colubmia CNA 3. Podłoże chromogenne do posiewu moczu ze wstępną identyfikacją i oceną bakteriurii 4. Podłoże MaConkey

Bardziej szczegółowo

- na szkiełko nakrywkowe nałóż szkiełko podstawowe z wgłębieniem, tak aby kropla znalazła się we wgłębieniu

- na szkiełko nakrywkowe nałóż szkiełko podstawowe z wgłębieniem, tak aby kropla znalazła się we wgłębieniu KONSPEKT MIKROBIOLOGIA I CHOROBY ZAKAŹNE Podstawy różnicowania bakterii i grzybów. Ćwiczenie 1 Ocena morfologii bakterii i grzybów: 1. Preparat przyżyciowy (mokry, tzw. świeży) w kropli wiszącej Technika

Bardziej szczegółowo

Zapisz równanie zachodzącej reakcji. Wskaż pierwiastki, związki chemiczne, substraty i produkty reakcji.

Zapisz równanie zachodzącej reakcji. Wskaż pierwiastki, związki chemiczne, substraty i produkty reakcji. test nr 2 Termin zaliczenia zadań: IIIa - 29 października 2015 III b - 28 października 2015 zad.1 Reakcja rozkładu tlenku rtęci(ii) 1. Narysuj schemat doświadczenia, sporządź spis użytych odczynników,

Bardziej szczegółowo

CENTRALNY OŚRODEK BADAŃ JAKOŚCI

CENTRALNY OŚRODEK BADAŃ JAKOŚCI W CENTRALNY OŚRODEK BADAŃ JAKOŚCI W DIAGNOSTYCE MIKROBIOLOGICZNEJ 01-793 Warszawa, ul. Rydygiera 8 bud. 20A, tel./fax (22) 841 58 34; Księgowość-Kadry tel. (22) 841 00 90 fax. (22) 851 52 06 NIP 5212314007

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 4

KARTA KURSU. Kod Punktacja ECTS* 4 KARTA KURSU Nazwa Nazwa w j. ang. Podstawy mikrobiologii z immunologią Basics of microbiology and immunology Kod Punktacja ECTS* 4 Koordynator dr Tomasz Bator Zespół dydaktyczny dr hab. Magdalena Greczek-

Bardziej szczegółowo

Podział komórkowy u bakterii

Podział komórkowy u bakterii Mitoza Podział komórkowy u bakterii Najprostszy i najszybszy podział komórkowy występuje u bakterii, które nie mają jądra komórkowego, lecz jedynie pojedynczy chromosom tzw. chromosom bakteryjny. Podczas

Bardziej szczegółowo

II. Badanie lekowrażliwości drobnoustrojów ćwiczenia praktyczne. Ćwiczenie 1. Oznaczanie lekowrażliwości metodą dyfuzyjno-krążkową

II. Badanie lekowrażliwości drobnoustrojów ćwiczenia praktyczne. Ćwiczenie 1. Oznaczanie lekowrażliwości metodą dyfuzyjno-krążkową II. Badanie lekowrażliwości drobnoustrojów ćwiczenia praktyczne Ćwiczenie 1. Oznaczanie lekowrażliwości metodą dyfuzyjno-krążkową Zasada metody: Krążki bibułowe nasycone odpowiednimi ilościami antybiotyków

Bardziej szczegółowo

Instrukcje do ćwiczeń oraz zakres materiału realizowanego na wykładach z przedmiotu Inżynieria bioprocesowa na kierunku biotechnologia

Instrukcje do ćwiczeń oraz zakres materiału realizowanego na wykładach z przedmiotu Inżynieria bioprocesowa na kierunku biotechnologia 1 Zakład Mikrobiologii UJK Instrukcje do ćwiczeń oraz zakres materiału realizowanego na wykładach z przedmiotu Inżynieria bioprocesowa na kierunku biotechnologia 2 Zakład Mikrobiologii UJK Zakres materiału

Bardziej szczegółowo

Ćwiczenie 9. Temat: Metody ilościowe w mikrobiologicznych badaniach żywności Cz.1

Ćwiczenie 9. Temat: Metody ilościowe w mikrobiologicznych badaniach żywności Cz.1 Ćwiczenie 9 Temat: Metody ilościowe w mikrobiologicznych badaniach żywności Cz.1 Pobieranie prób do badań Próbka pobrana do badań mikrobiologicznych powinna być reprezentatywna tzn. powinna odzwierciedlać

Bardziej szczegółowo

Przygotowanie mianowanych zawiesin szczepów wzorcowych znajdujących zastosowanie w badaniach mikrobiologicznych

Przygotowanie mianowanych zawiesin szczepów wzorcowych znajdujących zastosowanie w badaniach mikrobiologicznych Przygotowanie mianowanych zawiesin szczepów wzorcowych znajdujących zastosowanie w badaniach mikrobiologicznych Krystyna Mysłowska, Katarzyna Bucała-Śladowska* Mikrobiologia jest nauką, w której nie mamy

Bardziej szczegółowo

Temat: Komórka jako podstawowa jednostka strukturalna i funkcjonalna organizmu utrwalenie wiadomości.

Temat: Komórka jako podstawowa jednostka strukturalna i funkcjonalna organizmu utrwalenie wiadomości. SCENARIUSZ LEKCJI BIOLOGII DLA KLASY I GIMNAZJUM Temat: Komórka jako podstawowa jednostka strukturalna i funkcjonalna organizmu utrwalenie wiadomości. Cele: Utrwalenie pojęć związanych z budową komórki;

Bardziej szczegółowo

7/PNP/SW/2015 Załącznik nr 1 do SIWZ

7/PNP/SW/2015 Załącznik nr 1 do SIWZ Część nr Testy do identyfikacji paciorkowców Testy łączne do automatycznej identyfikacji oraz oznaczania lekowrażliwości paciorkowców, w tym pneumokoków na jednym module testowym. Analiza wykonywana na

Bardziej szczegółowo

BIOLOGIA KOMÓRKI KOMÓRKI EUKARIOTYCZNE W MIKROSKOPIE ŚWIETLNYM JASNEGO POLA I KONTRASTOWO- FAZOWYM; BARWIENIA CYTOCHEMICZNE KOMÓREK

BIOLOGIA KOMÓRKI KOMÓRKI EUKARIOTYCZNE W MIKROSKOPIE ŚWIETLNYM JASNEGO POLA I KONTRASTOWO- FAZOWYM; BARWIENIA CYTOCHEMICZNE KOMÓREK BIOLOGIA KOMÓRKI KOMÓRKI EUKARIOTYCZNE W MIKROSKOPIE ŚWIETLNYM JASNEGO POLA I KONTRASTOWO- FAZOWYM; BARWIENIA CYTOCHEMICZNE KOMÓREK KOMÓRKI EUKARIOTYCZNE W MIKROSKOPIE ŚWIETLNYM JASNEGO POLA I KONTRASTOWO-FAZOWYM;

Bardziej szczegółowo

FORMULARZ ASORTYMENTOWO CENOWY załącznik nr 7

FORMULARZ ASORTYMENTOWO CENOWY załącznik nr 7 załącznik nr 7 Pakiet. AUTOMATYCZNY SYSTEM DO IDENTYFIKACJI BAKTERII I GRZYBÓW DROŻDŻOPODOBNYCH ORAZ OZNACZANIA WRAŻLIWOŚCI NA ANTYBIOTYKI: DZIERŻAWA APARATU wraz z wyposażeniem + TESTY DIAGNOSTYCZNE TESTY

Bardziej szczegółowo

Mikrobiologia lekarska atlas

Mikrobiologia lekarska atlas Mikrobiologia lekarska atlas Kierownik Zakładu Mikrobiologii i Laboratoryjnej Immunologii Medycznej: dr hab. n.med. prof. nadzw. Janina Grzegorczyk Opracowanie: dr n. med. Małgorzata Brauncajs prof. dr

Bardziej szczegółowo

BIOLOGIA KOMÓRKI. Mikroskopia fluorescencyjna -2 Przyżyciowe barwienia organelli wewnątrzkomórkowych

BIOLOGIA KOMÓRKI. Mikroskopia fluorescencyjna -2 Przyżyciowe barwienia organelli wewnątrzkomórkowych BIOLOGIA KOMÓRKI Mikroskopia fluorescencyjna -2 Przyżyciowe barwienia organelli Wstęp Komórki eukariotyczne, w odróżnieniu od komórek prokariotycznych (bakterie, archeony) posiadają wysoce skomplikowaną

Bardziej szczegółowo

Litowce i berylowce- lekcja powtórzeniowa, doświadczalna.

Litowce i berylowce- lekcja powtórzeniowa, doświadczalna. Doświadczenie 1 Tytuł: Badanie właściwości sodu Odczynnik: Sód metaliczny Szkiełko zegarkowe Metal lekki o srebrzystej barwie Ma metaliczny połysk Jest bardzo miękki, można kroić go nożem Inne właściwości

Bardziej szczegółowo

Przemiana materii i energii - Biologia.net.pl

Przemiana materii i energii - Biologia.net.pl Ogół przemian biochemicznych, które zachodzą w komórce składają się na jej metabolizm. Wyróżnia się dwa antagonistyczne procesy metabolizmu: anabolizm i katabolizm. Szlak metaboliczny w komórce, to szereg

Bardziej szczegółowo

ĆWICZENIA Z MIKROBIOLOGII DLA STUDENTÓW PIELĘGNIARSTWA

ĆWICZENIA Z MIKROBIOLOGII DLA STUDENTÓW PIELĘGNIARSTWA ZAKŁAD MIKROBIOLOGII FARMACEUTYCZNEJ I DIAGNOSTYKI MIKROBIOLOGICZNEJ Katedra Biologii i Biotechnologii Farmaceutycznej Wydziału Farmaceutycznego ĆWICZENIA Z MIKROBIOLOGII DLA STUDENTÓW PIELĘGNIARSTWA POD

Bardziej szczegółowo

WYKRYWANIE OBECNOŚCI BAKTERII Z RODZAJU LISTERIA W ŻYWNOŚCI

WYKRYWANIE OBECNOŚCI BAKTERII Z RODZAJU LISTERIA W ŻYWNOŚCI ĆWICZENIE IV Autor i główny prowadzący dr Dorota Korsak WYKRYWANIE OBECNOŚCI BAKTERII Z RODZAJU LISTERIA W ŻYWNOŚCI Wstęp Rodzaj Listeria należy do typu Firmicutes wspólnie z rodzajem Staphylococcus, Streptococcus,

Bardziej szczegółowo

ĆWICZENIE 5 MECHANIZMY PROMUJĄCE WZROST ROŚLIN

ĆWICZENIE 5 MECHANIZMY PROMUJĄCE WZROST ROŚLIN ĆWICZENIE 5 MECHANIZMY PROMUJĄCE WZROST ROŚLIN CZĘŚĆ TEORETYCZNA Mechanizmy promujące wzrost rośli (PGP) Metody badań PGP CZĘŚĆ PRAKTYCZNA 1. Mechanizmy promujące wzrost roślin. Odczyt. a) Wytwarzanie

Bardziej szczegółowo

BIOLOGIA KOMÓRKI. Mikroskopia fluorescencyjna -2 Przyżyciowe barwienia organelli wewnątrzkomórkowych

BIOLOGIA KOMÓRKI. Mikroskopia fluorescencyjna -2 Przyżyciowe barwienia organelli wewnątrzkomórkowych BIOLOGIA KOMÓRKI Mikroskopia fluorescencyjna -2 Przyżyciowe barwienia organelli Wstęp Komórki eukariotyczne, w odróżnieniu od komórek prokariotycznych (bakterie, archeony) posiadają wysoce skomplikowaną

Bardziej szczegółowo

I. Biologia- nauka o życiu. Budowa komórki.

I. Biologia- nauka o życiu. Budowa komórki. I. Biologia- nauka o życiu. Budowa komórki. Zaznacz prawidłową definicję komórki. A. jednostka budulcowa tylko bakterii i pierwotniaków B. podstawowa jednostka budulcowa i funkcjonalna wszystkich organizmów

Bardziej szczegółowo

BIOLOGIA KOMÓRKI. Podstawy mikroskopii fluorescencyjnej -1 Barwienia przyżyciowe organelli komórkowych

BIOLOGIA KOMÓRKI. Podstawy mikroskopii fluorescencyjnej -1 Barwienia przyżyciowe organelli komórkowych BIOLOGIA KOMÓRKI Podstawy mikroskopii fluorescencyjnej -1 Barwienia przyżyciowe organelli komórkowych Wstęp Komórka eukariotyczna posiada zdolność przeprowadzenia bardzo dużej liczby procesów biochemicznych

Bardziej szczegółowo

Mikrobiologia SYLABUS A. Informacje ogólne

Mikrobiologia SYLABUS A. Informacje ogólne Mikrobiologia A. Informacje ogólne Elementy sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Rodzaj Rok studiów /semestr Wymagania wstępne

Bardziej szczegółowo

Ćwiczenie 1 Podstawy różnicowania bakterii. 1. Preparat przyżyciowy (mokry, tzw. świeży) w kropli wiszącej. Technika wykonania preparatu:

Ćwiczenie 1 Podstawy różnicowania bakterii. 1. Preparat przyżyciowy (mokry, tzw. świeży) w kropli wiszącej. Technika wykonania preparatu: Ćwiczenie 1 Podstawy różnicowania bakterii. 1. Preparat przyżyciowy (mokry, tzw. świeży) w kropli wiszącej Technika wykonania preparatu: - na rogi szkiełka nakrywkowego nanieś niewielką ilość wazeliny

Bardziej szczegółowo

szt op. 12 op. 6

szt op. 12 op. 6 ZAŁĄCZNIK NR 1A.11 DO SIWZ. Pieczęć nagłówkowa Data... OPIS PRZEDMIOTU ZAMÓWIENIA ARKUSZ KALKULACYJNY OKREŚLAJĄCY CENĘ OFERTY Część nr 11 Odczynniki chemiczne i materiały zużywalne do oznaczania ilości

Bardziej szczegółowo

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW Wstęp W przypadku trudno rozpuszczalnej soli, mimo osiągnięcia stanu nasycenia, jej stężenie w roztworze jest bardzo małe i przyjmuje się, że ta

Bardziej szczegółowo

SPRAWOZDANIE Z BADAŃ MIKROBIOLOGICZNYCH Nr 20005/11858/09

SPRAWOZDANIE Z BADAŃ MIKROBIOLOGICZNYCH Nr 20005/11858/09 SPRAWOZDANIE MOŻE BYĆ POWIELANE TYLKO W CAŁOŚCI. INNA FORMA KOPIOWANIA WYMAGA PISEMNEJ ZGODY LABORATORIUM. SPRAWOZDANIE Z BADAŃ MIKROBIOLOGICZNYCH Nr 20005/11858/09 BADANIA WŁASNOŚCI PRZECIWDROBNOUSTROJOWYCH

Bardziej szczegółowo

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW Wstęp Mianem rozpuszczalności określamy maksymalną ilość danej substancji (w gramach lub molach), jaką w danej temperaturze można rozpuścić w określonej

Bardziej szczegółowo

Barwienie złożone - metoda Grama

Barwienie złożone - metoda Grama ĆWICZENIE 1. 1.Wykonaj barwienie preparatów własnych ze wskazanych przez nauczyciela hodowli stałych ziarniaków Gram(+), ziarniaków Gram(-), pałeczek Gram+, pałeczek Gram(-), drożdżaków każdy student wykonuje

Bardziej szczegółowo

ĆWICZENIE 1. Aminokwasy

ĆWICZENIE 1. Aminokwasy ĆWICZENIE 1 Aminokwasy Przygotować 5 (lub więcej) 1% roztworów poszczególnych aminokwasów i białka jaja kurzego i dla każdego z nich wykonać wszystkie reakcje charakterystyczne. Reakcja ksantoproteinowa

Bardziej szczegółowo

E.coli Transformer Kit

E.coli Transformer Kit E.coli Transformer Kit zestaw do przygotowywania i transformacji komórek kompetentnych Escherichia coli. Metoda chemiczna. wersja 1117 6 x 40 transformacji Nr kat. 4020-240 Zestaw zawiera komplet odczynników

Bardziej szczegółowo

ALDEHYDY, KETONY. I. Wprowadzenie teoretyczne

ALDEHYDY, KETONY. I. Wprowadzenie teoretyczne ALDEYDY, KETNY I. Wprowadzenie teoretyczne Aldehydy i ketony są produktami utlenienia alkoholi. Aldehydy są produktami utlenienia alkoholi pierwszorzędowych, a ketony produktami utlenienia alkoholi drugorzędowych.

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 543

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 543 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 543 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 13, Data wydania: 24 września 2015 r. Nazwa i adres AB 543 POWIATOWA

Bardziej szczegółowo

SPRAWOZDANIE Z BADAŃ MIKROBIOLOGICZNYCH Nr 20006/11859/09

SPRAWOZDANIE Z BADAŃ MIKROBIOLOGICZNYCH Nr 20006/11859/09 SPRAWOZDANIE MOŻE BYĆ POWIELANE TYLKO W CAŁOŚCI. INNA FORMA KOPIOWANIA WYMAGA PISEMNEJ ZGODY LABORATORIUM. SPRAWOZDANIE Z BADAŃ MIKROBIOLOGICZNYCH Nr 20006/11859/09 BADANIA WŁASNOŚCI PRZECIWDROBNOUSTROJOWYCH

Bardziej szczegółowo

TEST Z CYTOLOGII GRUPA II

TEST Z CYTOLOGII GRUPA II TEST Z CYTOLOGII GRUPA II Zad. 1 (4p.) Rysunek przedstawia schemat budowy pewnej struktury komórkowej. a/ podaj jej nazwę i określ funkcję w komórce, b/ nazwij elementy oznaczone cyframi 2 i 5 oraz określ

Bardziej szczegółowo

ĆWICZENIA Z MECHANIZMÓW DZIAŁANIA WYBRANYCH GRUP LEKÓW

ĆWICZENIA Z MECHANIZMÓW DZIAŁANIA WYBRANYCH GRUP LEKÓW UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ WYDZIAŁ BIOLOGII I BIOTECHNOLOGII ZAKŁAD BIOLOGII MOLEKULARNEJ ĆWICZENIA Z MECHANIZMÓW DZIAŁANIA WYBRANYCH GRUP LEKÓW dla studentów I roku II 0 biotechnologii medycznej

Bardziej szczegółowo

Część pierwsza ( 16 punktów)

Część pierwsza ( 16 punktów) ... nazwisko i imię ucznia Test z mikrobiologii dla klasy 1 technikum dla dorosłych technik żywienia i gospodarstwa domowego za I i II semestr roku szkolnego 2002/2003 Test składa się z dwóch części Czas

Bardziej szczegółowo

ZAPYTANIE OFERTOWE ROCZNE nr 13/K z dnia r. NA ODCZYNNIKI CHEMICZNE I MATERIAŁY ZUŻYWALNE DLA FIRMY CELON PHARMA SA

ZAPYTANIE OFERTOWE ROCZNE nr 13/K z dnia r. NA ODCZYNNIKI CHEMICZNE I MATERIAŁY ZUŻYWALNE DLA FIRMY CELON PHARMA SA ZAPYTANIE OFERTOWE ROCZNE nr 13/K z dnia 15.12.2015 r. Miejscowość Kazuń Nowy NA ODCZYNNIKI CHEMICZNE I MATERIAŁY ZUŻYWALNE DLA FIRMY Z SIEDZIBĄ W Kazuniu Nowym Data zamieszczenia: 15.12.2015 Zamieszczanie

Bardziej szczegółowo

REAKCJE CHARAKTERYSTYCZNE WYBRANYCH KATIONÓW

REAKCJE CHARAKTERYSTYCZNE WYBRANYCH KATIONÓW REAKCJE CHARAKTERYSTYCZNE WYBRANYCH KATIONÓW Chemia analityczna jest działem chemii zajmującym się ustalaniem składu jakościowego i ilościowego badanych substancji chemicznych. Analiza jakościowa bada

Bardziej szczegółowo

Zagadnienia egzaminacyjne z przedmiotu Mikrobiologia kosmetologiczna dla studentów II roku kierunku Kosmetologia

Zagadnienia egzaminacyjne z przedmiotu Mikrobiologia kosmetologiczna dla studentów II roku kierunku Kosmetologia Zagadnienia egzaminacyjne z przedmiotu Mikrobiologia kosmetologiczna dla studentów II roku kierunku Kosmetologia I. Zagadnienia omawiane na wykładach. Uzupełnieniem zagadnień omawianych na wykładach są

Bardziej szczegółowo

ĆWICZENIE 3. Cukry mono i disacharydy

ĆWICZENIE 3. Cukry mono i disacharydy ĆWICZENIE 3 Cukry mono i disacharydy Reakcja ogólna na węglowodany (Reakcja Molischa) 1 ml 1% roztworu glukozy 1 ml 1% roztworu fruktozy 1 ml 1% roztworu sacharozy 1 ml 1% roztworu skrobi 1 ml wody destylowanej

Bardziej szczegółowo