Pomiary ruchu w zjeŝdŝalniach wodnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pomiary ruchu w zjeŝdŝalniach wodnych"

Transkrypt

1 Pomiary ruchu w zjeŝdŝalniach wodnych Piotr Szczepaniak * Abstrakt Artykuł przedstawia technikę przeprowadzenia oraz wyniki wstępnych pomiarów ruchu osób korzystających z basenowych zjeŝdŝalni wodnych. Badania obejmują pomiar prędkości oraz toru jazdy i słuŝą kalibracji danych wejściowych oraz weryfikacji wyników otrzymywanych z numerycznego modelu ruchu, opracowanego na potrzeby oceny bezpieczeństwa tego typu obiektów. Wstęp ZjeŜdŜalnie wodne są to jedne z dodatkowych atrakcji, uprzyjemniających korzystanie z kąpielisk, zarówno krytych jak i otwartych. Ich obecność zwykle znacząco wpływa na popularność i wyniki finansowe pływalni, przy których zostały zainstalowane, co potrafi doprowadzić do swoistego wyścigu zbrojeń, czyli licytacji, który park wodny ma najdłuŝsze lub najszybsze zjeŝdŝalnie. Ta pogoń za długością i szybkością zjazdu niekiedy ma jednak negatywny wpływ na bezpieczeństwo ich uŝytkowników im większa prędkość i bardziej skomplikowany kształt zjeŝdŝalni, tym większe ryzyko, Ŝe osoba zjeŝdŝająca moŝe utracić kontrolę nad zjazdem i np. z duŝym impetem uderzyć o ściankę zjeŝdŝalni lub osobę ją poprzedzającą. Aby zapobiec tego typu wypadkom instaluje się np. sygnalizację świetlną, mającą zapewnić odpowiednie odstępy między kolejnymi uŝytkownikami, oraz, zgodnie z normą [PN-EN 1069, 2003], wykonuje się 10 próbnych zjazdów we wszystkich dopuszczalnych pozycjach. Ta procedura ma jednak zasadniczą wadę pozwala wykryć nieprawidłowości dopiero wtedy, gdy budowa zjeŝdŝalni jest juŝ całkowicie ukończona, a * Politechnika Śląska, Wydział Budownictwa, Katedra Teorii Konstrukcji Budowlanych, ul Akademicka 5, Gliwice, piotr.szczepaniak@polsl.pl, tel.: , fax:

2 wykonanie ewentualnych poprawek pociąga za sobą duŝe koszty i znacząco opóźnia oddanie obiektu do uŝytku. W celu uniknięcia takich sytuacji napisano program komputerowy, pozwalający przeprowadzić numeryczną analizę zjazdu i ocenić bezpieczeństwo zjeŝdŝalni juŝ na etapie prac projektowych. Program ten wymaga jednak odpowiedniego wykalibrowania danych wejściowych, takich jak np. prędkość początkowa oraz współczynniki tarcia, oraz doświadczalnej weryfikacji otrzymywanych wyników (toru ruchu, prędkości, przeciąŝenia). Do czasu powstania niniejszego artykułu zdąŝono wykonać tylko wstępne pomiary na fragmencie jednej zjeŝdŝalni, usytuowanej przy Krytej Pływalni Delfin w Gliwicach. Pozwoliły one jednak na sprawdzenie aparatury pomiarowej i opracowanie programu dalszych badań. Aparatura pomiarowa Do przeprowadzenia pomiarów ruchu uŝytkowników zjeŝdŝalni wodnych rozwaŝano zastosowanie róŝnych wariantów aparatury badawczej, np. wyposaŝenie osoby zjeŝdŝającej w precyzyjny odbiornik systemu GPS lub zestaw akcelerometrów, zamontowanie na zjeŝdŝalni fotokomórek itp. PoniewaŜ jednak taka aparatura byłaby zbyt kosztowna, zdecydowano się na prostsze rozwiązanie, na które składają się: mały wodoszczelny nadajnik radiowy, pracujący na częstotliwości 65,536 khz i mocy około 100mW, przymocowywany do osoby zjeŝdŝającej przy pomocy paska, 8 zestawów wykrywaczy elekromagnetycznych, kaŝdy złoŝony z 5 odbiorników radiowych o regulowanej czułości, przymocowanych do tekstylnej taśmy w odstępach równych 31,4 cm oraz modułu zbierania i transmisji danych współpracującego z magistralą standardu RS485 (Rys. 1), interfejsu USB/RS485 i przenośnego komputera do zapisywania danych pomiarowych. Rys. 1. Schemat i widok opaski z odbiornikami radiowymi 2

3 Tak skonstruowana aparatura pozwala na rejestrację czasu i przybliŝonej pozycji uŝytkownika podczas mijania przekrojów kontrolnych, po obwodzie których są zainstalowane ww. wykrywacze radiowe, przy czym moment minięcia detektora moŝe być wyznaczony z dokładnością do 0,005 s, a połoŝenie nadajnika w obrębie przekroju z dokładnością równą około połowie rozstawu odbiorników, czyli ±8 cm ( α = ± 9 ). Istnieje moŝliwość dodatkowego wzrostu dokładności pomiarów poprzez analizę stosunku czasu wzbudzenia dwóch lub więcej odbiorników, jednak wymagałoby to precyzyjnego dostrojenia ich czułości, co z uwagi na zastosowany do tego celu analogowy potencjometr byłoby dość trudne. Umiejscowienie czujników Jak juŝ wspomniano we wstępie, pomiary zostały przeprowadzone w dniu 15 maja 2007r. na zjeŝdŝalni wodnej usytuowanej przy Krytej Pływalni Delfin w Gliwicach, ul. Warszawska 35. PołoŜenie kolejnych zestawów czujników, mierzone wzdłuŝ osi zjeŝdŝalni zostało przedstawione w Tab. 1 i na Rys. 2. Z uwagi na to, Ŝe budowa aparatury pomiarowej pozwala na wykrycie przejazdu uŝytkownika jedynie na części przekroju kontrolnego, podczas montaŝu czujników wprowadzono korekty ich połoŝenia, polegające na obrocie zestawów o jeden czujnik w prawo lub w lewo, co zaznaczono w kolumnie Korekta połoŝenia (wartość dodatnia oznacza obrót w kierunku zgodnym z ruchem wskazówek zegara patrz Rys. 1). Wprowadzenie takich korekt zapobiegło wyjściu osób zjeŝdŝających poza obszar działania wykrywaczy. Niestety w trakcie montaŝu czujników okazało się, Ŝe zestaw nr 3 uległ awarii i w jego miejsce przełoŝono zestaw nr 1, co jest uwidocznione w poniŝszej tabeli. Umiejscowienie wszystkich czujników w końcowej części zjeŝdŝalni (całkowita długość wynosi 74,49 m) wynika natomiast z tego, iŝ były one instalowane jedynie przy uŝyciu przenośnej drabiny, co ograniczało zakres prac do wysokości około 4,5 m nad ziemią (początek zjeŝdŝalni znajduje się w wieŝy, na wysokości ok. 10 m nad poziomem terenu). Tabela 1. Umiejscowienie czujników Nr zestawu PołoŜenie na osi zjeŝdŝalni (mb) Korekta połoŝenia 1 55, ,6 º 2 50, ,6 º 3 awaria 4 59, ,6 º 5 62, ,6 º 6 66,10-34,6 º 7 69, , ,6 º 3

4 Rys. 2. Miejsca zamontowania czujników ruchu Wyniki badań wstępnych i porównawczych obliczeń numerycznych W trakcie pomiarów zarejestrowano łącznie 48 zjazdów, wykonanych przez 3 ochotników, o następujących masach i wzrostach: ochotnik nr 1 masa 40 kg, wzrost 155 cm, ochotnik nr 2 masa 80 kg, wzrost 185 cm, ochotnik nr 3 masa 82 kg, wzrost 190 cm. Wyniki pomiarów oraz obliczeń numerycznych przedstawiono poniŝej. Na Rys. 3 pokazano rozkład czasów przejazdu przez cały odcinek pomiarowy, pogrupowanych w przedziały o długości 0,01 s. Rozkład średnich prędkości na kolejnych fragmentach zjeŝdŝalni i procentowy rozkład aktywacji czujników podczas mierzonych zjazdów przedstawiono natomiast w Tab. 2 i 3. W obu tych tabelach zamieszczono takŝe wyniki obliczeń numerycznych dla 3 wariantów danych, które zostały dobrane tak, aby osiągnąć jak najlepszą zgodność czasu przejazdu przez cały badany fragment zjeŝdŝalni z minimalnym oraz średnim czasem uzyskanym w czasie pomiarów. Najistotniejsze dane charakteryzujące wyŝej wymienione warianty obliczeń numerycznych przedstawiono w Tab. 4. Tabela 2. Rozkład średnich prędkości osób zjeŝdŝających z podziałem na kolejne odcinki pomiarowe Odcinek pomiarowy Wartość minimalna Wyniki pomiarów prędkości (m/s) Wartość średnia Wartość maksymalna Odchylenie standardowe Wyniki modelowania (m/s) Wariant 1 Wariant 2 Wariant ,55 6,03 6,44 0,241 6,41 6,45 6, ,48 6,07 6,46 0,246 6,43 6,47 6, ,74 6,17 6,69 0,256 6,31 6,35 5, ,35 6,79 7,28 0,258 7,03 7,02 6, ,14 5,71 6,06 0,239 6,33 6,31 5, ,80 6,36 7,18 0,285 6,90 6,80 6, ,74 6,15 6,54 0,233 6,53 6,54 6,16 4

5 Rys. 3. Rozkład czasów przejazdu przez cały odcinek pomiarowy Tabela 3. Rozkład aktywacji czujników w trakcie pomiarów szacowanie toru zjazdu Rozkład aktywacji czujników w czasie pomiarów (%) Pozycja czujnika Numer przekroju kontrolnego α (º) , ,2 100,00 100,00 100,00 100, ,00 34,6 100,00 100,00 100,00 100, , , ,42-34, ,00 18, , , , Wyniki obliczeń numerycznych Wariant obliczeń PołoŜenie osoby zjeŝdŝającej w kolejnych przekrojach kontrolnych α (º) 1 53,0 62,3 50,4 47,2-27,5-85,4 17,5 2 53,2 62,9 50,4 47,9-28,0-84,9 19,7 3 48,6 57,4 49,5 40,1-25,8-71,6 32,7 Wariant obliczeń Masa m (kg) Tabela 4. Dane do obliczeń numerycznych Prędkość początkowa v 0 (m/s) Wsp. tarcia suchego µ s (-) Wsp. tarcia lepkiego µ v (kg/s) 1 82,0 3,0 0,049 0,0 2 82,0 3,0 0,000 10,4 3 82,0 3,0 0,055 0,0 5

6 Dane do obliczeń numerycznych, zamieszczone w Tab. 4, dotyczą wykorzystywanego w aplikacji komputerowej modelu ruchu [Szczepaniak i Walentyński, 2007], którego główne równania przedstawiają się następująco: gdzie: m m a = mg + F N + F T (1) F F masa osoby zjeŝdŝającej, N 2 v m ( no g) n + m n (2) ρ v = µ s FN vv (3) v T µ a wektor przyspieszenia środka cięŝkości osoby zjeŝdŝającej, g przyspieszenie ziemskie, F N n normalna do powierzchni zjeŝdŝalni składowa siły reakcji na nacisk, wektor jednostkowy, normalny do powierzchni zjeŝdŝalni w miejscu styku z osobą zjeŝdŝającą, v wektor prędkości, ρ promień krzywizny powierzchni zjeŝdŝalni w przecięciu z płaszczyzną ściśle F T styczną do toru ruchu, siła tarcia, styczna do powierzchni zjeŝdŝalni, µ s współczynnik tarcia suchego, µ v współczynnik tarcia lepkiego. Wyniki modelowania ruchu przy przyjęciu pierwszego wariantu danych przedstawiono takŝe w formie graficznej na Rys. 4. Znajdują się na nim wykresy przeciąŝenia ( G = mg ), prędkości, połoŝenia w przekroju (czyli rozwinięcia toru ruchu) oraz całkowitej energii mechanicznej jako funkcji zaleŝnych od połoŝenia osoby zjeŝdŝającej na długości zjeŝdŝalni. FN Rys. 4. Wyniki modelowania numerycznego wariant 1 6

7 Wnioski PoniewaŜ dysponowano dwoma nadajnikami radiowymi, to zjazdy były wykonywane naprzemiennie, najpierw przez ochotników 1 i 2, a następnie przez 2 i 3, ale problemy z obsługą oprogramowania sprawiły, Ŝe nie wszystkie pomiary zostały zapisane, co uniemoŝliwia jednoznaczne przypisanie wyniku pomiaru do konkretnej zjeŝdŝającej osoby. Jednak analizując pomyślnie zapisane wyniki i ich kolejność oraz porównując je z rezultatami obliczeń numerycznych moŝna wysnuć następujące wnioski: czasy przejazdu przez cały badany fragment zjeŝdŝalni dzielą się na 2 grupy: - czasy dłuŝsze niŝ 3,50 s, występujące naprzemiennie ze znacznie krótszymi i pojawiające się głównie w początkowej części wyników, naleŝące więc prawdopodobnie do ochotnika nr 1, - czasy krótsze niŝ 3,50 s, występujące najpierw na zmianę z dłuŝszymi, ale zdecydowanie dominujące w dalszej części badań, naleŝące do ochotników nr 2 i 3; róŝnice w czasie przejazdu są zaleŝne głównie od masy i doświadczenia osoby zjeŝdŝającej - im większa masa i mniejsza powierzchnia styku z powierzchnią zjeŝdŝalni, tym wyŝsze osiąga się prędkości; prawdopodobną przyczyną tego zjawiska jest odwrotnie proporcjonalny do masy wpływ tarcia wiskotycznego na sumaryczne przyspieszenie (wszystkie pozostałe siły są praktycznie wprost proporcjonalne do masy poruszającej się osoby); prędkości osiągane na kolejnych odcinkach pomiarowych w ramach pojedynczego zjazdu są do siebie bardzo zbliŝone i na ogół nie przekraczają 7 m/s, co jest zgodne z normowym określeniem zjeŝdŝalni typu 3, do którego zalicza się badany obiekt (pojedyncza zjeŝdŝalnia o średnim nachyleniu wynoszącym najwyŝej 13%, na której uŝytkownik osiąga średnią prędkość 5 m/s i maksymalną 7 m/s); stabilizacja prędkości pojawia się takŝe w obliczeniach numerycznych i jest ona efektem osiągnięcia równowagi pomiędzy siłą tarcia, zaleŝną wprost (tarcie lepkie) lub pośrednio (poprzez wartość siły dośrodkowej) od prędkości, a styczną do osi zjeŝdŝalni składową siły grawitacji; występuje wystarczająca zbieŝność wyników obliczeń toru ruchu z wynikami pomiarów (wartości uzyskane z modelowania mieszczą się w zakresie wskazywanym przez uaktywniające się czujniki ruchu); pewne rozbieŝności pojawiają się przy obliczaniu prędkości na poszczególnych fragmentach zjeŝdŝalni rezultaty pomiarów prędkości na odcinkach pomiędzy 4, 5 i 6 oraz 7 i 8 zestawem czujników są wyŝsze od wyników uzyskiwanych z programu komputerowego, przyczyną tego mogą być jednak błędy we wprowadzanych do obliczeń odległościach między czujnikami (zjeŝdŝalnia jest zakrzywiona, co znacząco utrudnia precyzyjne umiejscowienie zestawów pomiarowych); 7

8 trudności sprawia ustalenie właściwych wartości współczynników tarcia suchego i lepkiego, gdyŝ bardzo podobne obwiednie prędkości osiąga się praktycznie dla wszystkich dodatnich wartości spełniających warunek (4); µ,049 + µ 10,4 1 (4) s 0 v = na podstawie posiadanych danych pomiarowych nie da się ocenić początkowej prędkości osób zjeŝdŝających, gdyŝ ma ona znikomy wpływ na czas przejazdu przez badany, końcowy odcinek zjeŝdŝalni; aby precyzyjnie ustalić wartości charakterystycznych danych uŝywanych do modelowania ruchu i dających górną obwiednię osiąganych prędkości, naleŝy przeprowadzić dodatkowe pomiary na obiekcie o osi prostoliniowej, na którym zmiany przyspieszenia osób zjeŝdŝających powinny być zaleŝne jedynie od zmieniającej się wraz z prędkością siły tarcia lepkiego (wektory pozostałych sił będą stałe); podczas tego pomiaru czujniki powinny być załoŝone w początkowej części zjeŝdŝalni, gdyŝ tam zmiany prędkości będą największe; następnie dla uzyskanych w wyŝej opisany sposób danych naleŝy przeprowadzić obliczenia i pomiary na innym obiekcie, których wzajemna zgodność ostatecznie potwierdzi poprawność modelu komputerowego i jego przydatność do sprawdzania bezpieczeństwa nowoprojektowanych zjeŝdŝalni wodnych. Podsumowując moŝna stwierdzić, iŝ pomimo tego, Ŝe wykonane dotychczas pomiary nie pozwoliły na jednoznaczne określenie danych do obliczeń numerycznych (v 0, µ s, µ v ), to były one przydatne do opracowania wytycznych do dalszych badań, które zostaną przeprowadzone w najbliŝszej przyszłości. Podziękowania Niniejsza praca finansowana jest ze środków na naukę w latach jako projekt badawczy, grant nr 0416/T02/2006/31. Bibliografia PN-EN :2003, ZjeŜdŜalnie wodne o wysokości 2 m i większej. Część 1: Wymagania bezpieczeństwa i metody badań, PKN, Warszawa Szczepaniak P., Walentyński R., Safety of Recreational Water Slides: Numerical Estimation of the Trajectory, Velocities and Accelerations of Motion of the Users, Lecture Notes in Computer Science, vol. 4488, pp ,

SPRAWDZANIE GEOMETRII TORÓW ZJEśDśALNI WODNYCH ZE WZGLĘDU NA BEZPIECZEŃTWO UśYTKOWANIA

SPRAWDZANIE GEOMETRII TORÓW ZJEśDśALNI WODNYCH ZE WZGLĘDU NA BEZPIECZEŃTWO UśYTKOWANIA dr inŝ. Ryszard Walentyński mgr inŝ. Piotr Szczepaniak Politechnika Śląska SPRAWDZANIE GEOMETRII TORÓW ZJEśDśALNI WODNYCH ZE WZGLĘDU NA BEZPIECZEŃTWO UśYTKOWANIA W ostatniej dekadzie zmontowano w Polsce

Bardziej szczegółowo

MEASUREMENTS OF TRAJECTORY AND VELOCITY OF A RIDE INSIDE A WATER SLIDE

MEASUREMENTS OF TRAJECTORY AND VELOCITY OF A RIDE INSIDE A WATER SLIDE TRANSPORT PROBLEMS 2009 PROBLEMY TRANSPORTU Tom 3 Zeszyt 2 Zbigniew JURA, Piotr SZCZEPANIAK*, Ryszard WALENTYŃSKI Silesian University of Technology, Faculty of Civil Engineering Akademicka 5, 44-100 Gliwice,

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary przemieszczeń metodami elektrycznymi Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elektrycznymi metodami pomiarowymi wykorzystywanymi

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

PRZYRZĄD DO BADANIA RUCHU JEDNOSTAJNEGO l JEDNOSTANIE ZMIENNEGO V 5-143

PRZYRZĄD DO BADANIA RUCHU JEDNOSTAJNEGO l JEDNOSTANIE ZMIENNEGO V 5-143 Przyrząd do badania ruchu jednostajnego i jednostajnie zmiennego V 5-43 PRZYRZĄD DO BADANIA RUCHU JEDNOSTAJNEGO l JEDNOSTANIE ZMIENNEGO V 5-43 Oprac. FzA, IF US, 2007 Rys. Przyrząd stanowi równia pochyła,

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Ćwiczenie nr 25: Interferencja fal akustycznych

Ćwiczenie nr 25: Interferencja fal akustycznych Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 25: Interferencja

Bardziej szczegółowo

Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy

Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 2: ZaleŜność okresu

Bardziej szczegółowo

OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ

OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ Jerzy Niebrzydowski, Grzegorz Hołdyński Politechnika Białostocka Streszczenie W referacie przedstawiono

Bardziej szczegółowo

USTALANIE WARTOŚCI NOMINALNYCH W POMIARACH TOROMIERZAMI ELEKTRONICZNYMI

USTALANIE WARTOŚCI NOMINALNYCH W POMIARACH TOROMIERZAMI ELEKTRONICZNYMI Dr inŝ. Zbigniew Kędra Politechnika Gdańska USTALANIE WARTOŚCI NOMINALNYCH W POMIARACH TOROMIERZAMI ELEKTRONICZNYMI SPIS TREŚCI 1. Wstęp. Podstawy teoretyczne metody 3. Przykład zastosowania proponowanej

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

Aplikacje Systemów. Nawigacja inercyjna. Gdańsk, 2016

Aplikacje Systemów. Nawigacja inercyjna. Gdańsk, 2016 Aplikacje Systemów Wbudowanych Nawigacja inercyjna Gdańsk, 2016 Klasyfikacja systemów inercyjnych 2 Nawigacja inercyjna Podstawowymi blokami, wchodzącymi w skład systemów nawigacji inercyjnej (INS ang.

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

PL B BUP 26/ WUP 04/07 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11) (13) B1

PL B BUP 26/ WUP 04/07 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)194002 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 340855 (22) Data zgłoszenia: 16.06.2000 (51) Int.Cl. G01B 7/14 (2006.01)

Bardziej szczegółowo

Wskaźnik szybkości płynięcia termoplastów

Wskaźnik szybkości płynięcia termoplastów Katedra Technologii Polimerów Przedmiot: Inżynieria polimerów Ćwiczenie laboratoryjne: Wskaźnik szybkości płynięcia termoplastów Wskaźnik szybkości płynięcia Wielkością która charakteryzuje prędkości płynięcia

Bardziej szczegółowo

Ruch Demonstracje z kinematyki i dynamiki przeprowadzane przy wykorzystanie ultradźwiękowego czujnika połoŝenia i linii powietrznej.

Ruch Demonstracje z kinematyki i dynamiki przeprowadzane przy wykorzystanie ultradźwiękowego czujnika połoŝenia i linii powietrznej. COACH 08 Ruch Demonstracje z kinematyki i dynamiki przeprowadzane przy wykorzystanie ultradźwiękowego czujnika połoŝenia i linii powietrznej. Program: Coach 6 Projekt: PTSN Coach6\PTSN - Ruch Ćwiczenia:

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie Cel ćwiczenia: Obserwacja swobodnego spadania z wykorzystaniem elektronicznej rejestracji czasu przelotu kuli przez punkty pomiarowe. Wyznaczenie

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ I. Cel ćwiczenia: wyznaczanie metodą kompensacji siły elektromotorycznej i oporu wewnętrznego kilku źródeł napięcia stałego. II. Przyrządy: zasilacz

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

Interpretacja krzywych sondowania elektrooporowego; zagadnienie niejednoznaczności interpretacji (program IX1D Interpex) Etapy wykonania:

Interpretacja krzywych sondowania elektrooporowego; zagadnienie niejednoznaczności interpretacji (program IX1D Interpex) Etapy wykonania: Interpretacja krzywych sondowania elektrooporowego; zagadnienie niejednoznaczności interpretacji (program IX1D Interpex) Etapy wykonania: 1. Opisać problem geologiczny, który naleŝy rozwiązać (rozpoznanie

Bardziej szczegółowo

S ODTWORZENIE PUNKTÓW WYSOKOŚCIOWYCH TRASY I INWENTARYZACJA POWYKONAWCZA

S ODTWORZENIE PUNKTÓW WYSOKOŚCIOWYCH TRASY I INWENTARYZACJA POWYKONAWCZA S-01.01 ODTWORZENIE PUNKTÓW WYSOKOŚCIOWYCH TRASY I INWENTARYZACJA POWYKONAWCZA SPIS TREŚCI 1. WSTĘP... 23 1.1. PRZEDMIOT ST... 23 1.2. ZAKRES STOSOWANIA ST... 23 1.3. ZAKRES ROBÓT OBJĘTYCH ST... 23 1.4.

Bardziej szczegółowo

Uwaga: Linie wpływu w trzech prętach.

Uwaga: Linie wpływu w trzech prętach. Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać

Bardziej szczegółowo

Doświadczalne badanie drugiej zasady dynamiki Newtona

Doświadczalne badanie drugiej zasady dynamiki Newtona Doświadczalne badanie drugiej zasady dynamiki Newtona (na torze powietrznym) Wprowadzenie Badane będzie ciało (nazwane umownie wózkiem) poruszające się na torze powietrznym, który umożliwia prawie całkowite

Bardziej szczegółowo

Doświadczenia w eksploatacji gazomierzy ultradźwiękowych

Doświadczenia w eksploatacji gazomierzy ultradźwiękowych Doświadczenia w eksploatacji gazomierzy ultradźwiękowych Daniel Wysokiński Mateusz Turkowski Rogów 18-20 września 2013 Doświadczenia w eksploatacji gazomierzy ultradźwiękowych 1 Gazomierze ultradźwiękowe

Bardziej szczegółowo

Równia pochyła. Model M-09. do Dydaktycznego Systemu Mikroprocesorowego DSM-51. Instrukcja uŝytkowania

Równia pochyła. Model M-09. do Dydaktycznego Systemu Mikroprocesorowego DSM-51. Instrukcja uŝytkowania Równia pochyła Model M-09 do Dydaktycznego Systemu Mikroprocesorowego DSM-51 Instrukcja uŝytkowania Copyright 2007 by MicroMade All rights reserved Wszelkie prawa zastrzeŝone MicroMade Gałka i Drożdż sp.

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY

WZMACNIACZ OPERACYJNY 1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.

Bardziej szczegółowo

Pomiar siły parcie na powierzchnie płaską

Pomiar siły parcie na powierzchnie płaską Pomiar siły parcie na powierzchnie płaską Wydawać by się mogło, że pomiar wartości parcia na powierzchnie płaską jest technicznie trudne. Tak jest jeżeli wyobrazimy sobie pomiar na ściankę boczną naczynia

Bardziej szczegółowo

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik awionik 314[06]

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik awionik 314[06] Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik awionik 314[06] 1 2 3 4 5 6 7 8 Ocenie rozwiązania zadania egzaminacyjnego podlegały następujące elementy pracy: I. Tytuł pracy

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

Ćwiczenie: "Kinematyka"

Ćwiczenie: Kinematyka Ćwiczenie: "Kinematyka" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Ruch punktu

Bardziej szczegółowo

Ćwiczenie nr 41: Busola stycznych

Ćwiczenie nr 41: Busola stycznych Wydział PRACOWNA FZYCZNA WFiS AGH mię i nazwisko 1.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 41: usola stycznych

Bardziej szczegółowo

BŁĘDY W POMIARACH BEZPOŚREDNICH

BŁĘDY W POMIARACH BEZPOŚREDNICH Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie

Bardziej szczegółowo

02. WYZNACZANIE WARTOŚCI PRZYSPIESZENIA W RUCHU JEDNOSTAJNIE PRZYSPIESZONYM ORAZ PRZYSPIESZENIA ZIEMSKIEGO Z WYKORZYSTANIEM RÓWNI POCHYŁEJ

02. WYZNACZANIE WARTOŚCI PRZYSPIESZENIA W RUCHU JEDNOSTAJNIE PRZYSPIESZONYM ORAZ PRZYSPIESZENIA ZIEMSKIEGO Z WYKORZYSTANIEM RÓWNI POCHYŁEJ TABELA INFORMACYJNA Imię i nazwisko autora opracowania wyników: Klasa: Ocena: Numery w dzienniku Imiona i nazwiska pozostałych członków grupy: Data: PRZYGOTOWANIE I UMIEJĘTNOŚCI WEJŚCIOWE: Należy posiadać

Bardziej szczegółowo

Teoria błędów pomiarów geodezyjnych

Teoria błędów pomiarów geodezyjnych PodstawyGeodezji Teoria błędów pomiarów geodezyjnych mgr inŝ. Geodeta Tomasz Miszczak e-mail: tomasz@miszczak.waw.pl Wyniki pomiarów geodezyjnych będące obserwacjami (L1, L2,, Ln) nigdy nie są bezbłędne.

Bardziej szczegółowo

Warsztat nauczyciela: Badanie rzutu ukośnego

Warsztat nauczyciela: Badanie rzutu ukośnego Warsztat nauczyciela: Badanie rzutu ukośnego Patryk Wolny Dydaktyk Medialny W nauczaniu nic nie zastąpi prawdziwego doświadczenia wykonywanego przez uczniów. Nie zawsze jednak jest to możliwe. Chcielibyśmy

Bardziej szczegółowo

CAR BRAKE DECELERATION MEASUREMENT - PRECISION AND INCORRECTNESS

CAR BRAKE DECELERATION MEASUREMENT - PRECISION AND INCORRECTNESS Wojciech SZCZYPIŃSKI-SALA Piotr STRZĘPEK 1 Diagnostyka, hamulce, pomiary drogowe DOKŁADNOŚĆ I BŁEDY W DROGOWYCH POMIARACH OPÓŹNIENIA HAMOWANIA W artykule przedstawiono analizę dokładności pomiaru opóźnienia

Bardziej szczegółowo

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium Cel ćwiczenia: Celem ćwiczenia jest uzyskanie wykresów charakterystyk skokowych członów róŝniczkujących mechanicznych i hydraulicznych oraz wyznaczenie w sposób teoretyczny i graficzny ich stałych czasowych.

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

III zasada dynamiki Newtona

III zasada dynamiki Newtona 6COACH 34 III zasada dynamiki Newtona Program: Coach 6 Projekt: na ZMN060c CMA Coach Projects\PTSN Coach 6\ III_zasada_dynamiki\Zestaw.cma Przykład wyników: Zestaw-wyniki.cmr Cel ćwiczenia - Doświadczalna

Bardziej szczegółowo

Źródła danych: Wyniki pomiarów. Dane technologiczne

Źródła danych: Wyniki pomiarów. Dane technologiczne Przygotowanie danych dotyczących wielkości emisji do modelowania rozprzestrzenia się zanieczyszczeń w atmosferze przy uŝyciu pakietu oprogramowania Operat-2000 Przystępując do modelowania emisji naleŝy

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 17 III 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła

Bardziej szczegółowo

Temat ćwiczenia. Pomiary otworów na przykładzie tulei cylindrowej

Temat ćwiczenia. Pomiary otworów na przykładzie tulei cylindrowej POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary otworów na przykładzie tulei cylindrowej I Cel ćwiczenia Zapoznanie się z metodami pomiaru otworów na przykładzie pomiaru zuŝycia gładzi

Bardziej szczegółowo

Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział 2. Składanie ruchów Rozdział 3. Modelowanie zjawisk fizycznych...43 Numeryczne całkowanie,

Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział 2. Składanie ruchów Rozdział 3. Modelowanie zjawisk fizycznych...43 Numeryczne całkowanie, Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział. Składanie ruchów... 11 Rozdział 3. Modelowanie zjawisk fizycznych...43 Rozdział 4. Numeryczne całkowanie, czyli obliczanie pracy w polu grawitacyjnym

Bardziej szczegółowo

BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO

BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO Ćwiczenie 3 BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO 3.. Cel ćwiczenia Celem ćwiczenia jest teoretyczne i doświadczalne wyznaczenie położeń równowagi i określenie stanu równowagi prostego układu mechanicznego

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

WZORCE I PODSTAWOWE PRZYRZĄDY POMIAROWE

WZORCE I PODSTAWOWE PRZYRZĄDY POMIAROWE WZORCE I PODSTAWOWE PRZYRZĄDY POMIAROWE 1. Cel ćwiczenia Celem ćwiczenia jest: 1. Poznanie podstawowych pojęć z zakresu metrologii: wartość działki elementarnej, długość działki elementarnej, wzorzec,

Bardziej szczegółowo

14th Czech Polish Workshop ON RECENT GEODYNAMICS OF THE SUDETY MTS. AND ADJACENT AREAS Jarnołtówek, October 21-23, 2013

14th Czech Polish Workshop ON RECENT GEODYNAMICS OF THE SUDETY MTS. AND ADJACENT AREAS Jarnołtówek, October 21-23, 2013 14th Czech Polish Workshop ON RECENT GEODYNAMICS OF THE SUDETY MTS. AND ADJACENT AREAS Jarnołtówek, October 21-23, 2013 Zastosowanie zestawu optoelektronicznego do pomiarów przemieszczeń względnych bloków

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

Badanie przebiegów falowych w liniach długich

Badanie przebiegów falowych w liniach długich Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja

Bardziej szczegółowo

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3 ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań

Bardziej szczegółowo

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa

Bardziej szczegółowo

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych METODY DOBORU NASTAW 7.3.. Metody analityczne 7.3.. Metoda linii pierwiastkowych 7.3.2 Metody doświadczalne 7.3.2.. Metoda Zieglera- Nicholsa 7.3.2.2. Wzmocnienie krytyczne 7.3.. Metoda linii pierwiastkowych

Bardziej szczegółowo

nastawa temperatury Sprawd zany miernik Miernik wzorcowy

nastawa temperatury Sprawd zany miernik Miernik wzorcowy ELEKTRONICZNY SYMLATOR REZYSTANCJI II Konferencja Naukowa KNWS'5 "Informatyka-sztukaczyrzemios o" 15-18czerwca25, Z otnikiluba skie Jan Szmytkiewicz Instytut Informatyki i Elektroniki, niwersytet Zielonogórski

Bardziej szczegółowo

Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi

Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi Ć w i c z e n i e 5a Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi 1. Wprowadzenie Celem ćwiczenia jest zapoznanie się z przyrządami stosowanymi do pomiarów prędkości w przepływie

Bardziej szczegółowo

Temat ćwiczenia. Wyznaczanie mocy akustycznej

Temat ćwiczenia. Wyznaczanie mocy akustycznej POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Wyznaczanie mocy akustycznej Cel ćwiczenia Pomiary poziomu natęŝenia dźwięku źródła hałasu. Wyznaczanie mocy akustycznej źródła hałasu. Wyznaczanie

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1

Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1 Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1 Joanna Janik-Kokoszka Zagadnienia kontrolne 1. Definicja współczynnika lepkości. 2. Zależność współczynnika lepkości

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Dokumentowanie wyników pomiarów protokół pomiarowy Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik

Bardziej szczegółowo

Ćwiczenie nr 31: Modelowanie pola elektrycznego

Ćwiczenie nr 31: Modelowanie pola elektrycznego Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr : Modelowanie pola

Bardziej szczegółowo

SPECYFIKACJA TECHNICZNA ST-S WYTYCZENIE TRASY I PUNKTÓW WYSOKOŚCIOWYCH

SPECYFIKACJA TECHNICZNA ST-S WYTYCZENIE TRASY I PUNKTÓW WYSOKOŚCIOWYCH SPECYFIKACJA TECHNICZNA ST-S.01.01.01. WYTYCZENIE TRASY I PUNKTÓW WYSOKOŚCIOWYCH 43 1. WSTĘP 1.1. Przedmiot ST Specyfikacja Techniczna - ST- S.01.01.01 Przedmiotem niniejszej specyfikacji technicznej (ST)

Bardziej szczegółowo

Tarcie statyczne i kinetyczne

Tarcie statyczne i kinetyczne 6COACH35 Tarcie statyczne i kinetyczne Program: Coach 6 Projekt: na ZMN060c 1. CMA Coach Projects\PTSN Coach 6\ Tarcie\ZestawI.cma Przykład wyników: Zestaw-wynikiI.cmr 2. CMA Coach Projects\PTSN Coach

Bardziej szczegółowo

Wydział Elektryczny Katedra Elektroenergetyki, Fotoniki i Techniki Świetlnej

Wydział Elektryczny Katedra Elektroenergetyki, Fotoniki i Techniki Świetlnej Wydział Elektryczny Katedra Elektroenergetyki, Fotoniki i Techniki Świetlnej Instrukcja do zajęć laboratoryjnych z przedmiotu: Budowa oraz eksploatacja instalacji i urządzeń elektrycznych KOD: ES1C 710

Bardziej szczegółowo

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia mechaniczna Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

NOWOCZESNE TECHNOLOGIE ENERGETYCZNE Rola modelowania fizycznego i numerycznego

NOWOCZESNE TECHNOLOGIE ENERGETYCZNE Rola modelowania fizycznego i numerycznego Politechnika Częstochowska Katedra Inżynierii Energii NOWOCZESNE TECHNOLOGIE ENERGETYCZNE Rola modelowania fizycznego i numerycznego dr hab. inż. Zbigniew BIS, prof P.Cz. dr inż. Robert ZARZYCKI Wstęp

Bardziej szczegółowo

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 2019/02/14 13:21 1/5 Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 1. Cel ćwiczenia Wyznaczenie przyspieszenia

Bardziej szczegółowo

Politechnika Gdańska

Politechnika Gdańska Politechnika Gdańska Wydział Mechaniczny Katedra Energetyki i Aparatury Przemysłowej Automatyka chłodnicza i klimatyzacyjna TEMAT: Systemy sterowania i monitoringu obiektów chłodniczych na przykładzie

Bardziej szczegółowo

POMIAR HAŁASU ZEWNĘTRZNEGO SAMOLOTÓW ŚMIGŁOWYCH WG PRZEPISÓW FAR 36 APPENDIX G I ROZDZ. 10 ZAŁ. 16 KONWENCJI ICAO

POMIAR HAŁASU ZEWNĘTRZNEGO SAMOLOTÓW ŚMIGŁOWYCH WG PRZEPISÓW FAR 36 APPENDIX G I ROZDZ. 10 ZAŁ. 16 KONWENCJI ICAO POMIAR HAŁASU ZEWNĘTRZNEGO SAMOLOTÓW ŚMIGŁOWYCH WG PRZEPISÓW FAR 36 APPENDIX G I ROZDZ. 10 ZAŁ. 16 KONWENCJI ICAO Piotr Kalina Instytut Lotnictwa Streszczenie W referacie przedstawiono wymagania oraz zasady

Bardziej szczegółowo

PROJEKTOWANIE I BUDOWA

PROJEKTOWANIE I BUDOWA ObciąŜenia usterzenia PROJEKTOWANIE I BUDOWA OBIEKTÓW LATAJĄCYCH I ObciąŜenia usterzenia W. BłaŜewicz Budowa samolotów, obciąŝenia St. Danilecki Konstruowanie samolotów, wyznaczanie ociąŝeń R. Cymerkiewicz

Bardziej szczegółowo

FIZYKA LABORATORIUM prawo Ohma

FIZYKA LABORATORIUM prawo Ohma FIZYKA LABORATORIUM prawo Ohma dr hab. inż. Michał K. Urbański, Wydział Fizyki Politechniki Warszawskiej, pok 18 Gmach Fizyki, murba@if.pw.edu.pl www.if.pw.edu.pl/ murba strona Wydziału Fizyki www.fizyka.pw.edu.pl

Bardziej szczegółowo

Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ

Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ 60-965 Poznań Grupa: Elektrotechnika, sem 3., Podstawy Techniki Świetlnej Laboratorium wersja z dn. 03.11.2015 Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ Opracowanie wykonano na podstawie

Bardziej szczegółowo

DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności

DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM Procedura szacowania niepewności Szacowanie niepewności oznaczania / pomiaru zawartości... metodą... Data Imię i Nazwisko Podpis Opracował Sprawdził Zatwierdził

Bardziej szczegółowo

WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH M.20.02.01. Próbne obciążenie obiektu mostowego

WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH M.20.02.01. Próbne obciążenie obiektu mostowego WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH Próbne obciążenie obiektu mostowego 1. WSTĘP 1.1. Przedmiot Warunków wykonania i odbioru robót budowlanych Przedmiotem niniejszych Warunków wykonania i odbioru

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć

Bardziej szczegółowo

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wejściowych Paweł Fotowicz * Przedstawiono ścisłą metodę obliczania niepewności rozszerzonej, polegającą na wyznaczeniu

Bardziej szczegółowo

Laboratorium z Systemów Wytwarzania. Instrukcja do ćw. nr 5

Laboratorium z Systemów Wytwarzania. Instrukcja do ćw. nr 5 Interpolacja Termin ten wszedł juŝ na stałe do naszego codziennego uŝytku. Spotykamy się z nim w wielu dziedzinach przetwarzania informacji. Bez interpolacji, mielibyśmy problem z zapisem informacji o

Bardziej szczegółowo

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły

Bardziej szczegółowo

BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO

BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO 1. Cel ćwiczenia Celem ćwiczenia jest poznanie kinematyki i dynamiki ruchu w procesie przemieszczania wstrząsowego oraz wyznaczenie charakterystyki użytkowej

Bardziej szczegółowo

Politechnika Wrocławska, Katedra Inżynierii Biomedycznej Systemy Pomiarowo-Diagnostyczne, laboratorium

Politechnika Wrocławska, Katedra Inżynierii Biomedycznej Systemy Pomiarowo-Diagnostyczne, laboratorium Politechnika Wrocławska, Katedra Inżynierii Biomedycznej Systemy Pomiarowo-Diagnostyczne, laboratorium Ćwiczenie 5 Detektor upadku pacjenta wykorzystujący akcelerometr z interfejsem I 2 C 1. Cel ćwiczenia

Bardziej szczegółowo

PODSTAWY PROJEKTOWANIA LINII I STACJI KOLEJOWYCH

PODSTAWY PROJEKTOWANIA LINII I STACJI KOLEJOWYCH Zakład InŜynierii Komunikacyjnej Wydział InŜynierii Lądowej Politechnika Warszawska DROGI SZYNOWE PODSTAWY PROJEKTOWANIA LINII I STACJI KOLEJOWYCH CZĘŚĆ III PRZYKŁADOWE ROZWIĄZANIE MAŁEJ STACJI KOLEJOWEJ

Bardziej szczegółowo

METODYKA POSTĘPOWANIA W ZAKRESIE WYZNACZANIA KLASY MLC DLA NOWOBUDOWANYCH I PRZEBUDOWYWANYCH OBIEKTÓW MOSTOWYCH NA DROGACH PUBLICZNYCH

METODYKA POSTĘPOWANIA W ZAKRESIE WYZNACZANIA KLASY MLC DLA NOWOBUDOWANYCH I PRZEBUDOWYWANYCH OBIEKTÓW MOSTOWYCH NA DROGACH PUBLICZNYCH Załącznik Nr 2 do Zarządzenia Nr 38 Ministra Infrastruktury z dnia 26 października 2010 r. METODYKA POSTĘPOWANIA W ZAKRESIE WYZNACZANIA KLASY MLC DLA NOWOBUDOWANYCH I PRZEBUDOWYWANYCH OBIEKTÓW MOSTOWYCH

Bardziej szczegółowo

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia Pomiar napięć stałych 1 POMIA NAPIĘCIA STAŁEGO PZYZĄDAMI ANALOGOWYMI I CYFOWYMI Cel ćwiczenia Celem ćwiczenia jest poznanie: - parametrów typowych woltomierzy prądu stałego oraz z warunków poprawnej ich

Bardziej szczegółowo

WPŁYW METODY DOPASOWANIA NA WYNIKI POMIARÓW PIÓRA ŁOPATKI INFLUENCE OF BEST-FIT METHOD ON RESULTS OF COORDINATE MEASUREMENTS OF TURBINE BLADE

WPŁYW METODY DOPASOWANIA NA WYNIKI POMIARÓW PIÓRA ŁOPATKI INFLUENCE OF BEST-FIT METHOD ON RESULTS OF COORDINATE MEASUREMENTS OF TURBINE BLADE Dr hab. inż. Andrzej Kawalec, e-mail: ak@prz.edu.pl Dr inż. Marek Magdziak, e-mail: marekm@prz.edu.pl Politechnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Katedra Technik Wytwarzania i Automatyzacji

Bardziej szczegółowo

Destylacja z parą wodną

Destylacja z parą wodną Destylacja z parą wodną 1. prowadzenie iele związków chemicznych podczas destylacji przy ciśnieniu normalnym ulega rozkładowi lub polimeryzacji. by możliwe było ich oddestylowanie należy wykonywać ten

Bardziej szczegółowo

Katedra Techniki Cieplnej

Katedra Techniki Cieplnej Katedra Techniki Cieplnej Systemy i Urządzenia Chłodnicze i Klimatyzacyjne AUTOMATYKA CHŁODNICZA I KLIMATYZACYJNA Temat: Budowa i działanie nowej konstrukcji termostatycznego zaworu rozpręŝnego. Gliński

Bardziej szczegółowo

Sposób wykorzystywania świadectw wzorcowania do ustalania okresów między wzorcowaniami

Sposób wykorzystywania świadectw wzorcowania do ustalania okresów między wzorcowaniami EuroLab 2010 Warszawa 3.03.2010 r. Sposób wykorzystywania świadectw wzorcowania do ustalania okresów między wzorcowaniami Ryszard Malesa Polskie Centrum Akredytacji Kierownik Działu Akredytacji Laboratoriów

Bardziej szczegółowo

Technika analogowa. Problematyka ćwiczenia: Temat ćwiczenia:

Technika analogowa. Problematyka ćwiczenia: Temat ćwiczenia: Technika analogowa Problematyka ćwiczenia: Pomiędzy urządzeniem nadawczym oraz odbiorczym przesyłany jest sygnał użyteczny w paśmie 10Hz 50kHz. W trakcie odbioru sygnału po stronie odbiorczej stwierdzono

Bardziej szczegółowo

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem

Bardziej szczegółowo

Instrukcja obsługi Neuron Cyfrowy (2-2 P) Data publikacji luty 2010 Nr katalogowy DIQx-22P-00

Instrukcja obsługi Neuron Cyfrowy (2-2 P) Data publikacji luty 2010 Nr katalogowy DIQx-22P-00 Strona 2 z 10 Spis treści 1 Charakterystyka ogólna... 3 2 Zastosowanie... 4 3 Schemat podłączenia... 4 4 Parametry techniczne... 6 5 Przykładowe zastosowania... 7 6 Prawidłowe zachowanie ze zuŝytym sprzętem

Bardziej szczegółowo

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej

Bardziej szczegółowo