Rys2 Na czerwono przebieg, na niebiesko aproksymacja wielomianem II stopnia.
|
|
- Ludwika Jankowska
- 9 lat temu
- Przeglądów:
Transkrypt
1 dr in. Artur Bernat, KMP, WM., PKos., wykład II (rodowisko Matlab), strona: 1 Wykład III<< zrealizowany w 2006, przedrostki-nazwy zretuszowane w Acrobat >> z Podstaw Przetwarzania Informacji (na danych obrazów 2D w rodowisku Matlab 6.x 7.x) W zadaniu prezentacji danych obrazów 2D, jak i wykresów 3D (a szczególnoci danych rekonstrukcji powierzchni 3D na podstawie obrazów płaskich 2D) tytułem wstpu bdzie omówiona funkcja dopasowania wielomianem do przebiegu funkcji zadanej tabelarycznie. Niech dany bdzie przebieg sinusoidalny, w okrelonym przez uytkownika zakresie ([0,Π/2]) z nałoonym addytywnie przebiegiem szumu Gauss owskiego. Wówczas wywołanie funkcji polyfit w skrypcie jak poniej, umoliwi nam dopasowanie do przebiegu wielomianem II stopnia: Rys1 Skrypt dopasuj.m zadaniu aproksymacji przebiegu. Rys2 Na czerwono przebieg, na niebiesko aproksymacja wielomianem II stopnia. Jednak, dla szerszego przedziału przebiegu zasadniczo periodycznego, aproksymacja wielomianem II stopnia jest nieefektywna:
2 mgr in. Artur Bernat, KMP, WM., PKos., wykład II (rodowisko Matlab), strona: 2 Rys3 Na czerwono przebieg, na niebiesko aproksymacja wielomianem II stopnia. Widoczny brak dopasowania dla przedziału przebiegu okresowego w rozcigłoci powyej długoci Π. Porzucajc temat aproksymacji przebiegów krzywymi wielomianowymi wyszych stopni, obecnie mona by si zastanowi, nad prost rekonstrukcj zarysu mikronierównoci na obrazie 2D. Mona by, na przykład zsumowywa sukcesywnie intensywnoci luminancji w liniach poziomo lub pionowo. Powstała w ten sposób pochylona powierzchnia 3D danych wynikowych, mogłaby by nastpnie niwelowana w swoim pochyleniu, albo globalnie dla całej powierzchni, albo indywidualnie dla kadej z linii z osobna. To drugie rozwizanie okazało si lepsze, a rezultaty cho nie s idealne, przypominaj wyniki tych bardziej profesjonalnych rekonstrukcji 3D, ju nie tylko dla mikronierównoci, lecz równie dla niektórych makroobiektów, typu twarz ludzka lub powierzchnia jabłka: Rys4 Naliczanie sum kumulacyjnych i niwelacja pochylenia aproksymowanym wielomianem I stopnia Rys5 Rysunek jabłka z peryferyjnymi obszarami bieli w 4 rogach
3 mgr in. Artur Bernat, KMP, WM., PKos., wykład II (rodowisko Matlab), strona: 3 Rys6 Obiekt z rys.4 w rekonstrukcji 3D, dwa róne widoki z uyciem funkcji surfl. W przypadku danych 3D, takich jak zrekonstruowane powierzchnie 3D, bardziej wskazane byłoby wykorzystanie mechanizmów generacji animacji z uyciem wywołania funkcji getframe, jak i moliwoci cyklicznej zmiany parametrów obserwatora (lub/oraz wirtualnego owietlenia) w prezentacji wyników z pomoc funkcji surfl. W tym celu moliwe jest wykorzystanie funkcji view, okrelajcej kt azymutu i elewacji dla punktu obserwatora: Rys7 Skrypt rekonstrukcji 3D i animacji z obrotem azymutalnym punktu obserwatora Alternatywnym sposobem prezentacji danych wynikowych 3D, moe by w niektórych sytuacjach scenariusz z nieruchomym punktem obserwacji, przy zmienianym kierunku rzutowanego wiatła. W skrypcie prezentowanym poniej, dodatkowo zdecydowano si na wprowadzenie własnych arbitralnie wybranych ustawie modelu odbiciowego powierzchni 3D. Powierzchnia 3D prezentowana, bdzie si wykazywa w strumieniu wiatła odbitego niewielkim stosunkowo współczynnikiem odbicia wiatła rozproszonego (k_a=0.1), do
4 mgr in. Artur Bernat, KMP, WM., PKos., wykład II (rodowisko Matlab), strona: 4 duym stosunkowo współczynnikiem odbicia matowego wiatła kierunkowego (k_d=0.5) oraz istotnym, lecz nieprzewaajcym w całoci generowanej animacji AVI, udziałem połyskliwoci (współczynniki modelu Phong a ks=0.1 oraz ksn=0.1). Po zadeklarowaniu tych czterech powyszych parametrów ustawienia własnoci odbiciowych powierzchni dokonuje si wywołaniem funkcji material. Natomiast wirtualne ródło wiatła moe by inicjowane(pierwsze ródło oraz kolejne jednoczenie nawietlajce powierzchni 3D) poprzez wywołanie funkcji light: Rys8 Skrypt rekonstrukcji 3D i animacji ze zmian cykliczn kierunku wiatła rzutowanego, z udziałem mieszanym odbicia matowego i połyskliwego Powyszy skrypt tworzy 12 klatek animacji z ktem azymutalnym kierunku rzutowanego wiatła zmienianym w ptli for co 30 stopni, a powstał animacj o nazwie powiedzmy M mona wtórnie rozłoy na 12 obrazów indeksowanych (tj. w wydzielan indywidualnie palet kolorów), co uczyniono w nastpujcej ptli: for i=1:12, [X,Map]=frame2im(Mx(i)); subplot(3,4,i);imshow(x); end;
5 mgr in. Artur Bernat, KMP, WM., PKos., wykład II (rodowisko Matlab), strona: 5 Jednake, dla prezentacji w tym dokumencie wyników generacji tej animacji przytoczono jedynie sze pierwszych klatek animacji w formie wykresu globalnego z wywołaniem funkcji subplot: Rys9 Pierwszych 6 klatek animacji AVI z ktem azymutu rzutowanego wiatła zmienianym, co 30 stopni Wracajc do wykładu wstpnego II w temacie omawianym zastosowa Image Processing Toolbox, tworzc animacj z kolejno coraz bardziej rozmywanych obiektów w polu fotografowanym, mona wykorzysta wywołanie funkcji blockproc: est4x4=blkproc(im,[4 4],'min(double(x(:)))'); est8x8=blkproc(im,[8 8],'min(double(x(:)))'); est16x16=blkproc(im,[16 16],'min(double(x(:)))'); est32x32=blkproc(im,[32 32],'min(double(x(:)))'); est64x64=blkproc(im,[64 64],'min(double(x(:)))'); Wywołanie funkcji blkproc razem z funkcj oceny poszukiwanej wartoci w podblokach o wielkoci [4 4] lub [8 8] itp, pozwala w szczególnoci na okrelenie redniej intensywnoci tła w podblokach obrazu o zadanej wielkoci (z wywołaniem min oraz porednio poprzez wyliczenie kolumnowe wszystkich elementów obrazu 2D). Problemem tylko pozostaje wielko map wynikowych estymat rednich wartoci tła(tj. rednich wartoci minimalnych w podblokach). Naley zatem przeskalowa mapy tych szacunkowych minimalnych intensywnoci do rozmiaru oryginalnego obrazu: >> imest4x4=imresize(est4x4,[ ],'bicubic'); >> imest8x8=imresize(est8x8,[ ],'bicubic'); >> imest16x16=imresize(est16x16,[ ],'bicubic'); >> imest32x32=imresize(est32x32,[ ],'bicubic'); >> imest64x64=imresize(est32x32,[ ],'bicubic');
6 mgr in. Artur Bernat, KMP, WM., PKos., wykład II (rodowisko Matlab), strona: 6 Z uyciem funkcji subtract mona nastpnie od treci oryginalnego obrazu 2D odj intensywnoci z map estymat intensywnoci minimalnych w podblokach, a z całoci złoy animacj: M=moviein(5); figure,imshow(imsubtract(im,uint8(imest4x4))); M(:,1)=getframe; imshow(imsubtract(im,uint8(imest8x8))); M(:,2)=getframe; imshow(imsubtract(im,uint8(imest16x16))); M(:,3)=getframe; imshow(imsubtract(im,uint8(imest32x32))); M(:,4)=getframe; imshow(imsubtract(im,uint8(imest64x64))); M(:,5)=getframe; movie(m); Na rysunku poniej przedstawiono wyniki w formie 5 klatek animacji na podwykresach: Rys10 Kolejne klatki animacji wyników oceny i niwelacji tła w podblokach na obrazie rice.png Oczywicie wywołanie funkcji blkproc mona zaimplementowa z wywołaniami innych prostych funkcji estymacji wartoci statystycznych w podblokach typu: max, std, mean, median: std_est4x4=blkproc(im,[4 4],'std(double(x(:)))'); >> std_est8x8=blkproc(im,[8 8],'std(double(x(:)))'); >> std_est16x16=blkproc(im,[16 16],'std(double(x(:)))'); >> std_est32x32=blkproc(im,[32 32],'std(double(x(:)))'); >> std_est64x64=blkproc(im,[64 64],'std(double(x(:)))'); >> std_est128x128=blkproc(im,[ ],'std(double(x(:)))');
7 mgr in. Artur Bernat, KMP, WM., PKos., wykład II (rodowisko Matlab), strona: 7 >> imstdest4x4=imresize(std_est4x4,[ ],'bicubic'); >> imstdest8x8=imresize(std_est8x8,[ ],'bicubic'); >> imstdest16x16=imresize(std_est16x16,[ ],'bicubic'); >> imstdest32x32=imresize(std_est32x32,[ ],'bicubic'); >> imstdest64x64=imresize(std_est64x64,[ ],'bicubic'); >> imstdest128x128=imresize(std_est128x128,[ ],'bicubic'); >> M=moviein(6); Poniej podano wyniku w formie 6 podwykresów: Rys11 Kolejne klatki animacji wyników z prób niwelacji informacji o odchyleniu standardowym intensywnoci luminancji w podblokach na obrazie rice.png Jak wynika z rysunku 11, by moe korzystniej byłoby zaprezentowa sam informacj o standardowym odchyleniu intensywnoci luminancji pikseli w podblokach, ni dokonywa jednoczesnej niwelacji poprzez odejmowanie tej estymaty od treci obrazu zasadniczego.
dr in. Artur Bernat, KMP, WM., PKos., wykład wstpny V (rodowisko Matlab), strona: 1
dr in. Artur Bernat, KMP, WM., PKos., wykład wstpny V (rodowisko Matlab), strona: 1 Wykład wstpny (V)> z Podstaw Przetwarzania Informacji
Rys 1 Skrypt redukcji stopniowej licznoci palety kolorów poprzez wartoci 127,64,...1.
dr in. rtur ernat, KMP, WM., PKos., wykład IV (rodowisko Matlab, strona: 1 Wykład wstpny (IV > z Podstaw Przetwarzania Informacji (na danych
plot(centroids(:,1), centroids(:,2), 'b*')
dr in. Artur Bernat, KMP, WM., PKos., wykład IVB (rodowisko Matlab), strona: 1 Wykład wstpny (IVB) > z Podstaw Przetwarzania Informacji
Wykład podstawowy z APD nr 1 (wprowadzenie obejmujące I tydzień zajęć), prowadzący: mgr inż. Artur Bernat.
Wykład z Algorytmów Przetwarzania Danych, kier: IZK, spec:tm, strona numer:1 Wykład podstawowy z APD nr 1 (wprowadzenie obejmujące I tydzień zajęć), prowadzący: mgr inż. Artur Bernat. Na wstępie należy
Izolacja Anteny szerokopasmowe i wskopasmowe
Izolacja Anteny szerokopasmowe i wskopasmowe W literaturze technicznej mona znale róne opinie, na temat okrelenia, kiedy antena moe zosta nazwana szerokopasmow. Niektórzy producenci nazywaj anten szerokopasmow
stopie szaro ci piksela ( x, y)
I. Wstp. Jednym z podstawowych zada analizy obrazu jest segmentacja. Jest to podział obrazu na obszary spełniajce pewne kryterium jednorodnoci. Jedn z najprostszych metod segmentacji obrazu jest progowanie.
Program Sprzeda wersja 2011 Korekty rabatowe
Autor: Jacek Bielecki Ostatnia zmiana: 14 marca 2011 Wersja: 2011 Spis treci Program Sprzeda wersja 2011 Korekty rabatowe PROGRAM SPRZEDA WERSJA 2011 KOREKTY RABATOWE... 1 Spis treci... 1 Aktywacja funkcjonalnoci...
Metody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1
Metody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1 Wyznaczy wektor sił i przemieszcze wzłowych dla układu elementów przedstawionego na rysunku poniej (rysunek nie jest w skali!).
Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury.
Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili
Planowanie adresacji IP dla przedsibiorstwa.
Planowanie adresacji IP dla przedsibiorstwa. Wstp Przy podejciu do planowania adresacji IP moemy spotka si z 2 głównymi przypadkami: planowanie za pomoc adresów sieci prywatnej przypadek, w którym jeeli
Poradnik korzystania z serwisu UNET: Konfiguracja programu pocztowego
Poradnik korzystania z serwisu UNET: Konfiguracja programu pocztowego Niniejszy opis dotyczy konfiguracji programu pocztowego Outlook Express z pakietu Internet Explorer, pracujcego pod kontrol systemu
Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU
Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU Przed przystpieniem do liczenia deklaracji PIT-36, PIT-37, PIT-O i zestawienia PIT-D naley zapozna si z objanieniami do powyszych deklaracji. Uwaga:
Poradnik korzystania z serwisu UNET: Dostp do poczty elektronicznej ze strony WWW
Poradnik korzystania z serwisu UNET: Dostp do poczty elektronicznej ze strony WWW W przypadku braku stosownego oprogramowania słucego do komunikacji z systemem pocztowym UNET uytkownik ma moliwo skorzystania
geometry a w przypadku istnienia notki na marginesie: 1 z 5
1 z 5 geometry Pakiet słuy do okrelenia parametrów strony, podobnie jak vmargin.sty, ale w sposób bardziej intuicyjny. Parametry moemy okrela na dwa sposoby: okrelc je w polu opcji przy wywołaniu pakiety:
>> inv(b)*a % operacja powyej to operacja mnoenia prawostronnego przez odwrotno B
dr in. Artur Bernat, KMP, WM., PKos., wykład wstpny I (rodowisko Matlab), strona: 1 Wykład wstpny (I) > z Podstaw Przetwarzania Informacji
Aproksymacja funkcji metod najmniejszych kwadratów
Aproksymacja funkcji metod najmniejszych kwadratów Teoria Interpolacja polega na znajdowaniu krzywej przechodz cej przez wszystkie w zªy. Zdarzaj si jednak sytuacje, w których dane te mog by obarczone
Statyczna próba skrcania
Laboratorium z Wytrzymałoci Materiałów Statyczna próba skrcania Instrukcja uzupełniajca Opracował: Łukasz Blacha Politechnika Opolska Katedra Mechaniki i PKM Opole, 2011 2 Wprowadzenie Do celów wiczenia
Rys1 Rys 2 1. metoda analityczna. Rys 3 Oznaczamy prdy i spadki napi jak na powyszym rysunku. Moemy zapisa: (dla wzłów A i B)
Zadanie Obliczy warto prdu I oraz napicie U na rezystancji nieliniowej R(I), której charakterystyka napiciowo-prdowa jest wyraona wzorem a) U=0.5I. Dane: E=0V R =Ω R =Ω Rys Rys. metoda analityczna Rys
Wstp. Warto przepływu to
177 Maksymalny przepływ Załoenia: sie przepływow (np. przepływ cieczy, prdu, danych w sieci itp.) bdziemy modelowa za pomoc grafów skierowanych łuki grafu odpowiadaj kanałom wierzchołki to miejsca połcze
Instrukcja obsługi programu CalcuLuX 4.0
Instrukcja obsługi programu CalcuLuX 4.0 Katarzyna Jach Marcin Kuliski Politechnika Wrocławska Program CalcuLuX jest narzdziem wspomagajcym proces projektowania owietlenia, opracowanym przez Philips Lighting.
Konspekt lekcji matematyki klasa 4e Liceum Ogólnokształcce
mgr Tomasz Grbski Konspekt lekcji matematyki klasa 4e Liceum Ogólnokształcce Temat: Dyskusja nad liczb rozwiza równania liniowego i kwadratowego z wartoci bezwzgldn i parametrem. Czas trwania: 45 minut.
Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego.
Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego. Jerzy Grobelny Politechnika Wrocławska Projektowanie zadaniowe jest jednym z podstawowych podej do racjonalnego kształtowania
Plan wykładu. Reguły asocjacyjne. Przykłady asocjacji. Reguły asocjacyjne. Jeli warunki to efekty. warunki efekty
Plan wykładu Reguły asocjacyjne Marcin S. Szczuka Wykład 6 Terminologia dla reguł asocjacyjnych. Ogólny algorytm znajdowania reguł. Wyszukiwanie czstych zbiorów. Konstruowanie reguł - APRIORI. Reguły asocjacyjne
Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.
WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla
Ćwiczenia 11 (12) (4 godziny). Wizualizacja i manipulacja w Matlabie
Ćwiczenia 11 (12) (4 godziny). Wizualizacja i manipulacja w Matlabie 1. Tworzenie animacji Wykres funkcji znajduje się poniżej: W środowisku Matlab, możemy tworzyć różnego rodzaju wykresy przy wykorzystaniu
Dynamika Uk adów Nieliniowych 2009 Wykład 11 1 Synchronizacja uk adów chaotycznych O synchronizacji mówiliśmy przy okazji języków Arnolda.
Dynamika Ukadów Nieliniowych 2009 Wykład 11 1 Synchronizacja ukadów chaotycznych O synchronizacji mówiliśmy przy okazji języków Arnolda. Wtedy była to synchronizacja stanów periodycznych. Wiecej na ten
Analiza wydajno±ci serwera openldap
Analiza wydajno±ci serwera openldap Autor: Tomasz Kowal 13 listopada 2003 Wst p Jako narz dzie testowe do pomiarów wydajno±ci i oceny konguracji serwera openldap wykorzystano pakiet DirectoryMark w wersji
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. 1. x y x y
Nr zadania Nr czynnoci Przykadowy zestaw zada nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Etapy rozwizania zadania. Podanie dziedziny funkcji f: 6, 8.. Podanie wszystkich
Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.
Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy
Program do konwersji obrazu na cig zero-jedynkowy
Łukasz Wany Program do konwersji obrazu na cig zero-jedynkowy Wstp Budujc sie neuronow do kompresji znaków, na samym pocztku zmierzylimy si z problemem przygotowywania danych do nauki sieci. Przyjlimy,
Algorytmy kodowania predykcyjnego
Algorytmy kodowania predykcyjnego 1. Zasada kodowania 2. Algorytm JPEG-LS 3. Algorytmy CALIC, LOCO-I 4. Algorytmy z wielokrotn rozdzielczoci. Progresywna transmisja obrazów Kompresja obrazów - zestawienie
Wykład z Algorytmów Przetwarzania Danych, kier: IZK, spec: TM, strona numer:1
Wykład z Algorytmów Przetwarzania Danych, kier: IZK, spec: TM, strona numer:1 Wykład podstawowy z APD nr 2 (obejmujący uwagi, dodatki i suplementy do zajęć z zakresu od 6 do 12 tygodnia zajęć) prowadzący
Laboratorium Ergonomii Politechniki Wrocławskiej (http://ergonomia.ioz.pwr.wroc.pl)
KLM - krótka instrukcja obsługi. Aby skorzysta z kalkulatora metody KLM trzeba najpierw przygotowa obrazy badanych ekranów (interfejsów) w formie map bitowych Windows (bmp). Wszystkie mapy zapamita w folderze,
Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika.
Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. 1. Pojcie struktury danych Nieformalnie Struktura danych (ang. data
Informacje pomocnicze
Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia
specjalistycznych odczynników chemicznych i sprztu laboratoryjnego zgodnie z załcznikiem 3a,3b z
Page 1 of 5 Wrocław: Sprawa NA-P/24/2010 Sukcesywna dostawa specjalistycznych odczynników chemicznych i sprztu laboratoryjnego zgodnie z załcznikiem 3a,3b z projektu Biotechnologiczna konwersja glicerolu
Cash flow projektu zakładajcego posiadanie własnego magazynu oraz posiłkowanie si magazynem obcym w przypadku sezonowych zwyek
Optymalizacja zaangaowania kapitałowego 4.01.2005 r. w decyzjach typu make or buy. Magazyn czy obcy cz. 2. Cash flow projektu zakładajcego posiadanie własnego magazynu oraz posiłkowanie si magazynem obcym
Rezonans szeregowy (E 4)
POLITECHNIKA LSKA WYDZIAŁINYNIERII RODOWISKA I ENERGETYKI INSTYTT MASZYN I RZDZE ENERGETYCZNYCH Rezonans szeregowy (E 4) Opracował: mgr in. Janusz MDRYCH Zatwierdził: W.O. . Cel wiczenia. Celem wiczenia
Zadania do wykonaj przed przyst!pieniem do pracy:
wiczenie 3 Tworzenie bazy danych Biblioteka tworzenie kwerend, formularzy Cel wiczenia: Zapoznanie si ze sposobami konstruowania formularzy operujcych na danych z tabel oraz metodami tworzenia kwerend
Operacje przetwarzania obrazów monochromatycznych
Operacje przetwarzania obrazów monochromatycznych Obraz pobrany z kamery lub aparatu często wymaga dalszej obróbki. Jej celem jest poprawienie jego jakości lub uzyskaniem na jego podstawie określonych
Szukanie najkrótszych dróg z jednym ródłem
Szukanie najkrótszych dróg z jednym ródłem Algorytm Dijkstry Załoenia: dany jest spójny graf prosty G z wagami na krawdziach waga w(e) dla kadej krawdzi e jest nieujemna dany jest wyróniony wierzchołek
Temat: Programowanie zdarzeniowe. Zdarzenia: delegacje, wykorzystywanie zdarze. Elementy Windows Application (WPF Windows Presentation Foundation).
Temat: Programowanie zdarzeniowe. Zdarzenia: delegacje, wykorzystywanie zdarze. Elementy Windows Application (WPF Windows Presentation Foundation). 1. Programowanie zdarzeniowe Programowanie zdarzeniowe
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Interpolacja funkcjami sklejanymi
Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak
Hartowno i odpuszczalno stali
Hartowno stali Podatno stali na hartowanie, zwana hartownoci, jest wyraana zalenoci przyrostu twardoci w wyniku hartowania od temperatury austenityzowania i szybkoci chłodzenia. O hartownoci stali współdecyduje:
Raport. V Porównania Midzylaboratoryjne z Akustyki NTL B2. Bronisławów r. Opracował: mgr Mikołaj Kirpluk. Warszawa, maj 2010
Raport V PMzA NTL-2010-1-B2 V Porównania Midzylaboratoryjne z Akustyki NTL-2010-1-B2 Bronisławów 23.04.2010r. Opracował: mgr Mikołaj Kirpluk Warszawa, maj 2010 Uwaga: niniejszy raport moe by kopiowany
Przetarg nieograniczony poniej kwoty okrelonej w art. 11 ust 8 zgodnie z ustaw Prawo zamówie publicznych
Radziejów: Zorganizowanie i przeprowadzenie szkolenia w kierunku: projektowanie ogrodów Numer ogłoszenia:151938 2010; data zamieszczenia: 01.06.2010 OGŁOSZENIE O ZAMÓWIENIU usługi Przetarg nieograniczony
Sposoby opisu i modelowania zakłóceń kanałowych
INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń
Proste metody przetwarzania obrazu
Operacje na pikselach obrazu (operacje punktowe, bezkontekstowe) Operacje arytmetyczne Dodanie (odjęcie) do obrazu stałej 1 Mnożenie (dzielenie) obrazu przez stałą Operacje dodawania i mnożenia są operacjami
6.3 Opłata za dostpno jako komponent wynagrodzenia partnera prywatnego
podmiotem publicznym i partnerem prywatnym, których celem z punktu widzenia podmiotu publicznego powinna by maksymalizacja wartoci dodanej ( value for money ) projektu. Ostatecznie za system klasyfikacji
Szkolenie i badania organizuje firma NTL-M.Kirpluk ( Warszawa, ul.belwederska 3 m.6,
Formularz - numer zlecenia: PMzA -2010-1 TEMAT: V Porównania Midzyoratoryjne z Akustyki -2010-1 DATA: 19-23.04.2010 r. MIEJSCE: ZAKRES: CKS Magellan (Bronisławów) badanie biegłoci (PT - ang. proficiency
Metodologia porównywania taryf telekomunikacyjnych. Koszyki PSTN (2010) Koszyki PSTN (2010) Koszyki PSTN przed Koszyki OECD
i PSTN przed 2010 Mieszkaniowy niski Residential Low Mieszkaniowy redni Residential Medium Mieszkaniowy wysoki Residential High Biznesowy mały Business Small Biznesowy dla małych i rednich przedsibiorstw
Laboratorium elektryczne. Falowniki i przekształtniki - I (E 14)
POLITECHNIKA LSKA WYDZIAŁINYNIERII RODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZDZE ENERGETYCZNYCH Laboratorium elektryczne Falowniki i przekształtniki - I (E 14) Opracował: mgr in. Janusz MDRYCH Zatwierdził:
Instrukcja obsługi programu DIALux 2.6
Instrukcja obsługi programu DIALux 2.6 Marcin Kuliski Politechnika Wrocławska Program DIALux słuy do projektowania sztucznego owietlenia pomieszcze zamknitych, terenów otwartych oraz dróg. Jego najnowsze,
Raport. V Porównania Midzylaboratoryjne z Akustyki NTL B1. Bronisławów r. Opracował: mgr Mikołaj Kirpluk. Warszawa, lipiec 2010
Raport V PMzA NTL-2010-1-B1 V Porównania Midzylaboratoryjne z Akustyki NTL-2010-1-B1 Bronisławów 23.04.2010r. Opracował: mgr Mikołaj Kirpluk Warszawa, lipiec 2010 Uwaga: niniejszy raport moe by kopiowany
Szkolenie i badania organizuje firma NTL-M.Kirpluk ( Warszawa, ul.belwederska 3 m.6,
numer zlecenia: PMzA NTL-2009-1 TEMAT: III Porównania Midzyoratoryjne z Akustyki NTL-2009-1 DATA: 25-30.05.2009 r. MIEJSCE: CKS Magellan (Bronisławów) ZAKRES: badanie (PT - ang. proficiency testing) porównanie
Instrukcja obsługi programu Pilot PS 5rc
Instrukcja obsługi programu Pilot PS 5rc Spis treci 1.Wprowadzenie....3 2. Wymagania....3 3. Instalacja oprogramowania...3 4. Uruchomienie Programu...5 4.1. Menu główne...5 4.2. Zakładki...6 5. Praca z
obsług dowolnego typu formularzy (np. formularzy ankietowych), pobieranie wzorców formularzy z serwera centralnego,
Wstp GeForms to program przeznaczony na telefony komórkowe (tzw. midlet) z obsług Javy (J2ME) umoliwiajcy wprowadzanie danych według rónorodnych wzorców. Wzory formularzy s pobierane z serwera centralnego
Zastosowanie programu Microsoft Excel do analizy wyników nauczania
Grayna Napieralska Zastosowanie programu Microsoft Excel do analizy wyników nauczania Koniecznym i bardzo wanym elementem pracy dydaktycznej nauczyciela jest badanie wyników nauczania. Prawidłow analiz
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem (Wpisuje zdajcy przed rozpoczciem pracy) KOD ZDAJCEGO MMA-PGP-0 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut ARKUSZ I MAJ ROK 00 Instrukcja dla zdajcego.
Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków.
Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. 1. Para najmniej odległych punktów WP: Dany jest n - elementowy zbiór punktów
Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz
Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia
REGULAMIN KONKURSU OFERT NA WYBÓR BROKERA UBEZPIECZENIOWEGO DLA MIASTA ZIELONA GÓRA, JEGO JEDNOSTEK ORGANIZACYJNYCH ORAZ SPÓŁEK KOMUNALNYCH.
REGULAMIN KONKURSU OFERT NA WYBÓR BROKERA UBEZPIECZENIOWEGO DLA MIASTA ZIELONA GÓRA, JEGO JEDNOSTEK ORGANIZACYJNYCH ORAZ SPÓŁEK KOMUNALNYCH. I. INFORMACJE PODSTAWOWE Prezydent Miasta Zielona góra ogłasza
SEKCJA I: ZAMAWIAJCY SEKCJA II: PRZEDMIOT ZAMÓWIENIA. file://c:\documents and Settings\zampub2\Ustawienia lokalne\temporary Internet Fil...
Strona 1 z 5 Wrocław: Dostawa i monta owietlenia elewacji w ramach inwestycji: Termomodernizacji obiektów uytecznoci publicznej pełnicych funkcje edukacyjne - budynek główny Uniwersytetu Przyrodniczego
c. Przesuwamy sześcian wzdłuż osi Z o wartość 5
Celem ćwiczenia będzie stworzenie i zaanimowanie kół zębatych. W przykładzie, posłużymy się metodami odejmowania określonych części obiektu, wykorzystamy funkcję Boolean, która działa na zasadzie algebry
APROKSYMACJA. Rys. 1. Funkcja aproksymująca zbiór punktów pomiarowych (1) (2) (3) (4) (5) (6) (7) ... Zmienna y
40 APROKSYMACJA Zmienna y 36 33 30 27 24 21 18 15 12 9 6 3 0 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 Zmienna x Rys. 1. Funkcja aproksymująca zbiór punktów pomiarowych (1) (2) (3) (4) (5) (6) (7)...
Tłumienie pól elektromagnetycznych przez ekrany warstwowe hybrydowe ze szkieł metalicznych na osnowie elaza i kobaltu
AMME 2002 11th Tłumienie pól elektromagnetycznych przez ekrany warstwowe hybrydowe ze szkieł metalicznych na osnowie elaza i kobaltu R. Nowosielski, S. Griner Zakład Materiałów Nanokrystalicznych i Funkcjonalnych
Program na zaliczenie: Odejmowanie widm
Piotr Chojnacki: MATLAB Program na zaliczenie: Odejmowanie widm {Poniższy program ma za zadanie odjęcie dwóch widm od siebie. Do poprawnego działania programu potrzebne są trzy funkcje: odejmowaniewidm.m
1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza
165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie
OGNIWO PALIWOWE W UKŁADACH ZASILANIA POTRZEB WŁASNYCH
Antoni DMOWSKI, Politechnika Warszawska, Instytut Elektroenergetyki Bartłomiej KRAS, APS Energia OGNIWO PALIWOWE W UKŁADACH ZASILANIA POTRZEB WŁASNYCH 1. Wstp Obecne rozwizania podtrzymania zasilania obwodów
CYKL ZAJ POZNAJEMY POWER POINT
CYKL ZAJ POZNAJEMY POWER POINT TEMAT: Pracujemy w programie Power Point. Czas (4 x 45 minut ) ZAKRES TRECI PROGRAMOWYCH: Bezpieczestwo, higiena i reguły pracy przy komputerze Sposoby porozumiewania si
Specyfikacja wymaga dla sklepu www.istyles.pl
Specyfikacja wymaga dla sklepu www.istyles.pl 1. Zleceniodawc jest firma FHU Divitex Arkadiusz Piotrowski, zajmujca si midzy innymi importem i sprzeda materiałów ochronnych na urzdzenia elektroniki uytkowej
Ustawienia materiałów i tekstur w programie KD Max. MTPARTNER S.C.
Ustawienia materiałów i tekstur w programie KD Max. 1. Dwa tryby własności materiału Materiał możemy ustawić w dwóch trybach: czysty kolor tekstura 2 2. Podstawowe parametry materiału 2.1 Większość właściwości
BUDOWA LUNETY CELOWNICZEJ
BUDOWA LUNETY CELOWNICZEJ Luneta celownicza składa si z nastpujcych sekcji (liczc od obiektywu): - soczewek obiektywu - układu regulacji paralaxy (dotyczy lunet sportowych) - mechanizmu regulacji krzya
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Multipro GbE. Testy RFC2544. Wszystko na jednej platformie
Multipro GbE Testy RFC2544 Wszystko na jednej platformie Interlab Sp z o.o, ul.kosiarzy 37 paw.20, 02-953 Warszawa tel: (022) 840-81-70; fax: 022 651 83 71; mail: interlab@interlab.pl www.interlab.pl Wprowadzenie
Diagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie drugie Podstawowe przekształcenia obrazu 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami obrazu wykonywanymi
Scena 3D. Cieniowanie (ang. Shading) Scena 3D - Materia" Obliczenie koloru powierzchni (ang. Lighting)
Zbiór trójwymiarowych danych wej$ciowych wykorzystywanych do wygenerowania obrazu wyj$ciowego 2D. Cieniowanie (ang. Shading) Rados"aw Mantiuk Wydzia" Informatyki Zachodniopomorski Uniwersytet Technologiczny
Testy zgodnoci w diagnozowaniu systemów alarmowych
Testy zgodnoci w diagnozowaniu systemów alarmowych Ryszard SOBCZAK Politechnika Gdaska,Wydział Elektroniki, Telekomunikacji i Informatyki ul.g.narutowicza 11/12, 80-952 Gdask, e-mail:rsob@pg.gda.pl. Streszczenie:
ubezpieczenie mienia oraz odpowiedzialnoci cywilnej (CPV: 66515400-7, 66515000-3, 66516000-0)
Strona 1 z 5 Chojnice: Ubezpieczenie mienia i odpowiedzialnoci cywilnej Urzdu Miejskiego w Chojnicach wraz z jednostkami organizacyjnymi Numer ogłoszenia: 194104-2012; data zamieszczenia: 08.06.2012 OGŁOSZENIE
1 Metody iteracyjne rozwi zywania równania f(x)=0
1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0
Podstawowe obiekty AutoCAD-a
LINIA Podstawowe obiekty AutoCAD-a Zad1: Narysowa lini o pocztku w punkcie o współrzdnych (100, 50) i kocu w punkcie (200, 150) 1. Wybierz polecenie rysowania linii, np. poprzez kilknicie ikony. W wierszu
Przetarg nieograniczony poniej kwoty okrelonej w art. 11 ust 8 zgodnie z ustaw Prawo zamówie publicznych
Radziejów: Zorganizowanie i przeprowadzenie kursu w kierunku: obsługi wózków widłowych napdzanych silnikami z uprawnieniami do wymiany butli propan butan. Numer ogłoszenia: 132270 2010; data zamieszczenia:
! "#$%&#%' ()*+,-./0, 12 33,/4 / 0*(+ 33,, 44 53, &1 261!! !" # "$% & ' " (!% % ) ' " (! * ' "% + ' ", ' " (%!-.- /0%12/-!1 3". 4 44 444 46 6 64 644 6444 49 9 94 5!$ 5!$ 5!!" 5!!% 5!!1 5!( 5!(71 5!8" 5!%1
OGŁOSZENIE O ZAMÓWIENIU
OGŁOSZENIE O ZAMÓWIENIU na wiadczenie usług przewozowych jednym statkiem pomidzy portem w Gdasku (Nabrzee Motławy), Sopotem (Molo) a Sobieszewem w roku 2009 I. Zamawiajcy: Zarzd Transportu Miejskiego w
Zmiany w Prospekcie Informacyjnym PZU Funduszu Inwestycyjnego Otwartego Akcji Małych i rednich Spółek
08.05.2009 Zmiany w Prospekcie Informacyjnym PZU Funduszu Inwestycyjnego Otwartego Akcji Małych i rednich Spółek 1. W Rozdziale II pkt 4 otrzymuje brzmienie: Wysoko kapitału własnego Towarzystwa na dzie
Sposoby przekazywania parametrów w metodach.
Temat: Definiowanie i wywoływanie metod. Zmienne lokalne w metodach. Sposoby przekazywania parametrów w metodach. Pojcia klasy i obiektu wprowadzenie. 1. Definiowanie i wywoływanie metod W dotychczas omawianych
komputerowego wraz z oprogramowaniem i licencjami dla potrzeb jednostek organizacyjnych Uniwersytetu
Page 1 of 5 Wrocław: Sprawa nr NA-P/17/2010 Dostawa sprztu komputerowego wraz z oprogramowaniem i licencjami dla potrzeb jednostek organizacyjnych Uniwersytetu Przyrodniczego we Wrocławiu z podziałem na
Wprowadzenie do algorytmów. START
1 / 15 ALGORYMIKA 2 / 15 ALGORYMIKA Wprowadzenie do algorytmów. SAR 1. Podstawowe okrelenia. Algorytmika dział informatyki, zajmujcy si rónymi aspektami tworzenia i analizowania algorytmów. we: a,b,c delta:=b
Przegldanie stron wymaga odpowiedniej mikroprzegldarki w urzdzeniu mobilnym lub stosownego emulatora.
I. Temat wiczenia Podstawy tworzenia stron WAP II. Wymagania Podstawowe wiadomoci z technologii Internetowych. III. wiczenie 1. Wprowadzenie WAP (ang. Wireless Application Protocol) - to protokół umoliwiajcy
Rasteryzacja (ang. rasterization or scan-conversion) Grafika rastrowa. Rysowanie linii (1) Rysowanie piksela. Rysowanie linii: Kod programu
Rasteryzacja (ang. rasterization or scan-conversion) Grafika rastrowa Rados!aw Mantiuk Wydzia! Informatyki Zachodniopomorski Uniwersytet Technologiczny Zamiana ci!g"ej funkcji 2D na funkcj# dyskretn! (np.
Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).
Plan Spis tre±ci 1 Granica 1 1.1 Po co?................................. 1 1.2 Denicje i twierdzenia........................ 4 1.3 Asymptotyka, granice niewªa±ciwe................. 7 2 Asymptoty 8 2.1
Poniszy rysunek przedstawia obraz ukoczonej powierzchni wykorzystywanej w wiczeniu.
Ten rozdział pokae jak tworzy powierzchnie prostoliniowe i trasowane oraz dostarczy niezbdnych informacji o rónych typach powierzchni, które moemy stosowa przy tworzeniu geometrii. Rozdział pokazuje równie
System TELE-Power (wersja STD) Instrukcja instalacji
System TELE-Power (wersja STD) Instrukcja instalacji 1) Zasilacz sieciowy naley dołczy do sieci 230 V. Słuy on do zasilania modułu sterujcego oraz cewek przekaników. 2) Przewód oznaczony jako P1 naley
Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.
Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy
RZDOWY PROGRAM WYRÓWNYWANIA WARUNKÓW STARTU SZKOLNEGO UCZNIÓW W 2006 r. WYPRAWKA SZKOLNA
Projekt z dnia 22.03.2006 Załcznik do uchwały Nr Rady Ministrów z dnia r. RZDOWY PROGRAM WYRÓWNYWANIA WARUNKÓW STARTU SZKOLNEGO UCZNIÓW W 2006 r. WYPRAWKA SZKOLNA 1 Wstp Rzdowy program wyrównywania warunków
IV Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 1 kwietnia 2016
IV Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 1 kwietnia 2016 (imi i nazwisko uczestnika) (nazwa szkoły) Arkusz zawiera 8 zada. Zadania 1 i 2 bd oceniane dla kadego uczestnika,
Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne.
Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne. 1. Definicja problemu Wejcie: Graf spójny niezorientowany G =
Listy i operacje pytania
Listy i operacje pytania Iwona Polak iwona.polak@us.edu.pl Uniwersytet l ski Instytut Informatyki pa¹dziernika 07 Który atrybut NIE wyst puje jako atrybut elementów listy? klucz elementu (key) wska¹nik