Podsumowanie W9 - Oddz. atomów z promieniowaniem EM

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podsumowanie W9 - Oddz. atomów z promieniowaniem EM"

Transkrypt

1 Podsumowanie W9 - Oddz. atomów z promieniowaniem EM ala płaska propagująca wzdłuż 0y, spolaryzowana wzdłuż 0z działa na q : π a 0 << λ H = = m m H 0 [ p qa( r, t) ] p + qv q m + qv A p W(t) q m q m S B( r, t) q S B + A m W ( t ) gdy - przybliżenie dipolowe, iky q e ( t) = A p ' = D E W DE m W DE q m A p reguły wyboru Ψ(x, t ) stany niestacjonarne polaryzacja światła w eekcie Zeemana (normalny e. Zeemana, S=0) B 0z p β β s Ψ(x, t)=c (t)u 00 (x)+c (t)u 0 (x) B z D (t)= Ψ(t) D Ψ(t) Wojciech Gawlik - Wstęp do Fizyki Atomowej, 00/. wykład 0 /5 B D + (t) D 0 (t) D (t) z 0 B z

2 Absorpcja i emisja światła przejścia wymuszone przez zewn. pole EM, rach. zaburzeń zal. od czasu: H=H 0 +W(t) i W(t)= D E sin t = W sin t=0, Ψ(0) = ϕ i Ψ(t) = Σc n (t) ϕ n P () i ( t) = cn= ( t ) P i ( t) = W 4 e i( + ) t + e i( ) t A + A 0, E Ei < 0 > zależnie od tego, który stan jest początkowy > 0 i < 0 i t, P i- =P() ma max. Gdy, A + / <<A Gdy, A + >>A / absorpcja emisja (wymuszona) Em. spont. QED Wojciech Gawlik - Wstęp do Fizyki Atomowej, 00/. wykład 0 /5

3 rezonans optyczny P i ( t) W = A ± + A 4 = W 4 sin t związek z relacją nieokreśloności: 4π/t inne stany mniej ważne (przybliżenie dwupoziomowe, rezonansowe) Gdy 0 (stacjonarne zaburz.), mimo to A + A - mieszanie stanów przez stałe pole Gdy pole niemonochromatyczne trzeba wycałkować P() po rozkładzie prawdopodobieństwo przejścia na jednostkę czasu - współczynniki Einsteina Gdy poziomy nietrwałe trzeba uśrednić po czasie uwzględniając enomenologiczny opis emisji spontanicznej: P i ( t) t = t sin t e ( ) ( ) t τ + τ dt zagadnienie szerokości linii widmowych Wojciech Gawlik - Wstęp do Fizyki Atomowej, 00/. wykład 0 3/5 P i- t > t 4π/ t ( W /4 ħ ) t /τ linie widmowe to lorentzowskie krzywe rezonansowe o skończonej szerokości

4 Metody doświadczalne zyki atomowej Obiekt badań - atomy/cząsteczki Gaz, ew. ukierunkowane wiązki at/mol. (w azie ciekłej/stałej silne oddz. międzycząstkowe zmieniają strukturę poziomów i własności) Elementarne warunki prowadzenia doświadczeń: dostępność swobodnych atomów/molekuł możliwość ich obserwacji a) bezpośr. wizualizacja b) obserwacja emisji św. c) obserwacja absorpcji św. - bezpośrednio ubytek otonów - pośrednio wzbudzenie określonego stanu atomowego tylko wizualizacja tylko natężenie analiza spektralna wtórny proces (emisja otonu, ładunku jonizacja, reakcja chem.) kontrola stanu atomów za pomocą zewn. czynników a) modyk. struktury (e. Zeemana/Starka, opt. nieliniowa, atom ubrany ) b) manipulacja ruchem atomów w azie gazowej c) obserwacja emisji światła Interdyscyplinarność np. atomowa zyka c. stałego Wojciech Gawlik - Wstęp do Fizyki Atomowej, 00/. wykład 0 4/5

5 Cele:. struktura poziomów energetycznych (dla testów modeli teor., dla określenia własności materii, dla wzorców czasu i częstości (zegary atomowe) + metody analityczne. prawdopodobieństwa przejść (czasy życia) (dla określenia elem. macierzowych, dla badań linii widmowych, dla badań oddz. atomów z zewn. czynnikami,...) 3. oddz. atomów z zewn. czynnikami a) z polami (dokładniejsze pomiary ; badanie mechanizmu oddziaływania; badania i wytwarzanie pól EM o nowych własnościach (optyka kwant.); teoria pomiarów; inormatyka kwantowa) b) z innymi atomami (zderzenia) 4. nowe atomy, nowa zyka (atomy egzotyczne, rzadkie lub nietrwałe izotopy, atomy w stanie degeneracji kwantowej, etc.) Wojciech Gawlik - Wstęp do Fizyki Atomowej, 00/. wykład 0 5/5

6 Metody:. Spektroskopia (UV-VIS-IR, r), laserowa, jonizacyjna typowe energie -0 ev: IR-UV (VUV). Pomiary czasowych zmian emisji po impuls. wzbudzeniu, szerokości linii 3-4. Metody niestandardowe: ultraprecyzyjna spektroskopia, chłodzenie i pułapkowanie, pomiary pojedynczych atomów. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 00/. wykład 0 6/5

7 Problemy: a) techniczne: dostępność źródeł światła (odpow. λ, natęż., selektywność monochr.) możliwość trzymania atomów (pułapkowania) czuła detekcja, dokładne pomiary zdolność rozdzielcza... b) zyczne: oddz. promieniowania z materią werykacja teorii dośw. teoria - kwantowe superpozycje stanów atomowych/otonowych (np. stany splątane) - przeskoki kwantowe - otony w nowych środowiskach (otonika, nanostruktury) doświadczalna mech. kwant. Np. Balmer model Bohra, str. subt. spin,... QED dośw. Lamba-Retherorda, t. słabych oddz. niezachowanie parzystości,... -oddz. pojed. atomów z pojed. otonami - nowe stany materii - degeneracja kwantowa (BEC, zimne ermiony) globalny magnetometr Wojciech Gawlik - Wstęp do Fizyki Atomowej, 00/. wykład 0 7/5

8 Wielkie eksperymenty 665 Isaac Newton (rozszczepienie światła na 84 Joseph von Fraunhoer (linie absorpcyjne składowe) w widmie słonecznym) (spektroskop pryzmatyczny) 860 Robert Bunsen & Gustav Kirchho 885 Johan Jakob Balmer (widmo wodoru) 889 Johannes R. Rydberg zyki atomowej -prehistoria = R λ n Wojciech Gawlik - Wstęp do Fizyki Atomowej, 00/. wykład 0 8/5

9 Wielkie eksperymenty - historia Roentgen Nobel 90 Lorentz & Zeeman Nobel 90 Wien Nobel 9 Barkla Nobel 97 (związek z teorią) Stark Nobel 99 Planck Nobel 98 Raman Nobel 930 Franck & Hertz Nobel 95 Einstein Nobel 9 Bohr Nobel 9 Stern Nobel 943 de Brogllie Nobel 99 Rabi Nobel 944 Schrödinger & Dirac Nobel 933 Heisenberg Nobel 93 Pauli Nobel 945 Wojciech Gawlik - Wstęp do Fizyki Atomowej, 00/. wykład 0 9/5

10 Wielkie eksperymenty - N.Basow, A.Prochorow, Ch. Townes, Nobel 964 W.E. Lamb Nobel 955 Laser A. Kastler Nobel 966 R. Glauber, J. Hall, T. W. Hänsch Nobel 005 E. Cornell, W. Ketterle, C. Wieman Nobel 00 S. Chu, C. Cohen-Tannoudji, W. Phillips Nobel 997 N. Ramsey, H. Dehmelt & W. Paul Nobel 989 N. Bloembergen & A. Schawlow Nobel 98 przesunięcie Lamba era nowożytna spektroskopia laserowa pompowanie optyczne BEC chłodzenie laser. & pułapki atom. spektr. Ramsey a & pułapki jonowe Q.Opt. grzebień Wojciech Gawlik - Wstęp do Fizyki Atomowej, 00/. wykład 0 0/5

11 Dośw. Francka-Hertza James Franck & Gustav Hertz dośw. 93, 95 Gdy w bańce próżnia: -elektrony emitowane z K, przyspieszane przez V S -między S i A stały potencjał hamujący (ok. 0,5 V) -gdy V S, I A (wzrost energii kinetycznej elektronu) Gdy w bańce pary Hg: -przy określonym V S, spadek I A (V S =4,9 V) -również przy V S, 3V S,... spadek I A Z parami rtęci zachodzą zderzenia elektronów z atomami: - sprężyste, gdy atom nie przejmuje energii elektronu - niesprężyste, gdy en. kinetyczna elektronu en. wewnętrzna atomu (proces rezonansowy) Wojciech Gawlik - Wstęp do Fizyki Atomowej, 00/. wykład 0 /5

12 Dośw. F-H c.d. Interpretacja: niesprężyste zderzenia e-hg wzbudzenie atomu, strata en. elektronu, spadek I A (może być wielokrotny przekaz en. kinetycznej) po wzbudzeniu Hg, reemisja otonów (wzbudzone pary Hg świecą) i widmo emisji z bańki widmo lampy Hg 53,7 nm λ Wnioski: dowód kwantyzacji energii w atomie ( niespektroskopowy ), możliwość selektywnego wzbudzania określonych poziomów atomowych (inne reguły wyboru niż dla wzbudzania przez absorpcję światła) Wojciech Gawlik - Wstęp do Fizyki Atomowej, 00/. wykład 0 /5

13 Doświadczenie Sterna-Gerlacha (dośw. 90, Stern 943) skolimowana (szczelinami) wiązka at. Ag w próżni (st. podst.: 5s S /, l=0) obserwacja obrazu wiązki na okienku aparatury db w niejednor. polu mgt. oddz. z dipolem mgt.: V= µ B F z = µ cos( µ, B) dz µ = γl oczekiwanie klas. (dla l 0 ) B=0 tymczasem obserwowano: B=0 B z B B 0 B 0 Wnioski: kwantyzacja przestrzenna krętu, możliwy pomiar atomowego mom. mgt. dowód spinu (l=0, a jednak µ 0) µ=µ l +µ s Met. S-G pozwala na przygotowanie czystego stanu kwantowego, jego selekcję i analizę Wojciech Gawlik - Wstęp do Fizyki Atomowej, 00/. wykład 0 3/5

14 Dokładność pomiarów spektroskopowych rozwój technik pomiarowych poprawa dokładności Balmer Zeeman, Lorentz intererometry n (model Bohra) Spin, struktura subtelna struktura nsbt. aparaturowe ograniczenia zdolności rozdz. ν instr ogranicz. zyczne kwestia szerokości linii widmowych gaz eekt Dopplera k υ 0 8 kbt rozszerzenie dopplerowskie D = = 7, 6 0 c M undamentalne ograniczenie relacja Heisenberga: T M E t naturalna szerokość linii spektralnych nat /τ ponadto możliwe: rozszerzenie zderzeniowe, rozszerzenie przez skończony czas oddziaływania Wojciech Gawlik - Wstęp do Fizyki Atomowej, 00/. wykład 0 4/5 = τ

15 Przykład ograniczeń wynikających ze skończonej szerokości linii (ilustracja do zadania domowego na ćwiczenia) Przykład współczesnych zastosowań zjawiska Sterna-Gerlacha. W temp. ok.. 00 nk wytwarzany jest kondensat Bosego-Einsteina ( 87 Rb). W różnych warunkach dośw. może być on w różnych stanach m F, które dzięki e. Sterna-Gerlacha mogą być rozseparowane przestrzennie. m F = Wojciech Gawlik - Wstęp do Fizyki Atomowej, 00/. wykład 0 5/5

2/τ. ω fi Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2009/10. wykład 10 1/14 = 1. 2 fi 0.5

2/τ. ω fi Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2009/10. wykład 10 1/14 = 1. 2 fi 0.5 Streszczenie W9: stany niestacjonarne niestacjonarne superpozycje stanów elektronowych promieniują polaryzacja składowych zeemanowskich = wynik szczególnej ewolucji stanów niestacjonarnych w polu B przejścia

Bardziej szczegółowo

JZ wg W. Gawlik - PodstawyFizyki Atomowej, wykład 10 1/21. 2 fi 0.5

JZ wg W. Gawlik - PodstawyFizyki Atomowej, wykład 10 1/21. 2 fi 0.5 Streszczenie W9: stany niestacjonarne niestacjonarne superpozycje stanów elektronowych promieniują polaryzacja składowych zeemanowskich = wynik szczególnej ewolucji stanów niestacjonarnych w polu B przejścia

Bardziej szczegółowo

2/τ. ω fi = 1. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2008/09. wykład 10 1/21. 2 fi 0.5

2/τ. ω fi = 1. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2008/09. wykład 10 1/21. 2 fi 0.5 Streszczenie W9: stany niestacjonarne niestacjonarne superpozycje stanów elektronowych promieniują polaryzacja składowych zeemanowskich = wynik szczególnej ewolucji stanów niestacjonarnych w polu B przejścia

Bardziej szczegółowo

Streszczenie W8: Widma molekularne: Oddziaływanie atomów z polami EM:

Streszczenie W8: Widma molekularne: Oddziaływanie atomów z polami EM: Streszczenie W8: Widma molekularne: -str. rotacyjna, oscylacyjna, rotacyjno-oscylacyjna, wykresy Fortrata -str. elektronowa zasady Borna-Oppenheimera i Francka-Condona wyznaczanie parametrów cząsteczek

Bardziej szczegółowo

Podsumowanie W Spektroskopia dwufotonowa. 1. Spektroskopia nasyceniowa. selekcja prędkości. nasycenie. ω 0 ω Laser. ω 21 2ω.

Podsumowanie W Spektroskopia dwufotonowa. 1. Spektroskopia nasyceniowa. selekcja prędkości. nasycenie. ω 0 ω Laser. ω 21 2ω. Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa nasycenie selekcja prędkości - wiązki pompująca & próbkująca

Bardziej szczegółowo

Doświadczenie Sterna-Gerlacha

Doświadczenie Sterna-Gerlacha Doświadczenie Sterna-Gerlacha skolimowana (szczeliny) wiązka at. Ag w próżni (st. podst.: 5s S /, l=) obserwacja obrazu wiązki na okienku aparatury d!! w niejednor. polu mgt. oddz. z dipolem mgt.: V= µ

Bardziej szczegółowo

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa - wiązki pompująca & próbkująca oddziaływanie selektywne

Bardziej szczegółowo

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie. 0 k. z L 0 k. L 0 k

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie. 0 k. z L 0 k. L 0 k Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa nasycenie selekcja prędkości - wiązki pompująca & próbkująca

Bardziej szczegółowo

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1 Podsumowanie W9 Obserwacja przejść rezonansowych wymuszonych przez pole EM jest moŝliwa tylko, gdy istnieje róŝnica populacji. Tymczasem w zakresie fal radiowych poziomy są prawie jednakowo obsadzone.

Bardziej szczegółowo

Podsumowanie W11. Nierównowagowe rozkłady populacji pompowanie optyczne (zachowanie krętu atom-pole EM)

Podsumowanie W11. Nierównowagowe rozkłady populacji pompowanie optyczne (zachowanie krętu atom-pole EM) Podsumowanie W Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. ymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone. En. I det ħ m=+/ m=-/ B B A B h 8 3 Nierównowagowe

Bardziej szczegółowo

Streszczenie W13. chłodzenie i pułapkowanie neutralnych atomów. pułapki jonowe: siły Coulomba

Streszczenie W13. chłodzenie i pułapkowanie neutralnych atomów. pułapki jonowe: siły Coulomba Streszczenie W13 pułapki jonowe: siły Coulomba pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane kontrolowanie pojedynczych atomów zastosowanie w komputerach kwantowych? przeskoki

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Podsumowanie ostatniego wykładu

Podsumowanie ostatniego wykładu Podsumowanie ostatniego wykładu Obserwacja przejść rezonansowych wymuszonych przez pole EM jest możliwa tylko, gdy istnieje różnica populacji. Tymczasem w zakresie fal radiowych poziomy są prawie jednakowo

Bardziej szczegółowo

Streszczenie W13. pułapki jonowe: siły Kulomba. łodzenie i pułapkowanie neutralnych atomów. 9 pułapki Penninga, Paula

Streszczenie W13. pułapki jonowe: siły Kulomba. łodzenie i pułapkowanie neutralnych atomów. 9 pułapki Penninga, Paula Streszczenie W13 pułapki jonowe: siły Kulomba 9 pułapki Penninga, Paula G pojedyncze jony mogą być pułapkowane i oglądane 9 kontrolowanie pojedynczych atomów I zastosowanie w komputerach kwantowych? przeskoki

Bardziej szczegółowo

pułapki jonowe: siły Kulomba łodzenie i pułapkowanie neutralnych atomów pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane

pułapki jonowe: siły Kulomba łodzenie i pułapkowanie neutralnych atomów pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane Streszczenie W13 pułapki jonowe: siły Kulomba pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane kontrolowanie pojedynczych atomów I zastosowanie w komputerach kwantowych? przeskoki

Bardziej szczegółowo

zastosowanie w komputerach kwantowych? przeskoki kwantowe (obserw. na żywo emisji/abs. pojed. fotonów w pojed. atomach)

zastosowanie w komputerach kwantowych? przeskoki kwantowe (obserw. na żywo emisji/abs. pojed. fotonów w pojed. atomach) Streszczenie W13 pułapki jonowe: siły Coulomba pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane kontrolowanie pojedynczych atomów I zastosowanie w komputerach kwantowych? przeskoki

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Podsumowanie W10. Oparte o: Prof.W. Gawlik Wst p do Fizyki Atomowej, 2004/05 1/21

Podsumowanie W10. Oparte o: Prof.W. Gawlik Wst p do Fizyki Atomowej, 2004/05 1/21 ćś Ŝ Ŝ ą ą ą Ŝ ćś ą ą Ŝ Ŝ Ŝ ą ś Podsumowanie W10 Obserwacja przej rezonansowych wymuszonych przez pole EM jest mo liwa tylko, gdy istnieje ró nica populacji. Tymczasem w zakresie fal radiowych poziomy

Bardziej szczegółowo

(obserw. na Ŝywo emisji/abs. pojed. fotonów w pojed. atomach) a) spontaniczne ciśnienie światła (rozpraszają en. chłodzą)

(obserw. na Ŝywo emisji/abs. pojed. fotonów w pojed. atomach) a) spontaniczne ciśnienie światła (rozpraszają en. chłodzą) Streszczenie W11 pułapki jonowe: siły Kulomba pułapki Penninga, Paula pojedyncze jony mogą być pułapkowane i oglądane kontrolowanie pojedynczych atomów I zastosowanie w komputerach kwantowych? przeskoki

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

IV. TEORIA (MODEL) BOHRA ATOMU (1913)

IV. TEORIA (MODEL) BOHRA ATOMU (1913) IV. TEORIA (MODEL) BOHRA ATOMU (1913) Bohr zastanawiał się, jak wyjaśnić strukturę widm liniowych. Elektron musi krążyć, aby zrównoważyć siłę Coulomba (przyciągającą). Skoro krąży to doznaje przyspieszenia

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW

fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW wektory pojedyncze fotony paradoks EPR Wielkości wektorowe w fizyce punkt zaczepienia

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 9 5 grudnia 2016 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 3 Tomasz Kwiatkowski 2010-10-20 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 3 1/22 Plan wykładu Linie widmowe Linie Fraunhofera Prawa Kirchhoffa Analiza widmowa Zjawisko

Bardziej szczegółowo

II.6 Atomy w zewnętrznym polu magnetycznym

II.6 Atomy w zewnętrznym polu magnetycznym II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu

Bardziej szczegółowo

p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny)

p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) O atomie 460-370 p.n.e. Demokryt z Abdery Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) 1808 John Dalton teoria atomistyczna 1. Pierwiastki składają się z małych, niepodzielnych

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG

Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa Zakres materiału (wstępnie przewidywany) 1. Bezpieczeństwo pracy z laserem 2. Własności

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie

Bardziej szczegółowo

Wykład FIZYKA II. 13. Fizyka atomowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 13. Fizyka atomowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 13. Fizyka atomowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ZASADA PAULIEGO Układ okresowy pierwiastków lub jakiekolwiek

Bardziej szczegółowo

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące

Bardziej szczegółowo

Wzbudzony stan energetyczny atomu

Wzbudzony stan energetyczny atomu LASERY Wzbudzony stan energetyczny atomu Z III postulatu Bohra kj E k E h j Emisja spontaniczna Atom absorbuje tylko określone kwanty energii przechodząc ze stanu podstawowego do wzbudzonego. Zaabsorbowana

Bardziej szczegółowo

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS PROMIENIOWANIE ELEKTROMAGNETYCZNE Promieniowanie X Ultrafiolet Ultrafiolet

Bardziej szczegółowo

Atomy mają moment pędu

Atomy mają moment pędu Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. Tymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone.

Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. Tymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone. Podsumowani W Obsrw. przjść wymusz. przz pol EM tylko, gdy różnica populacji. Tymczasm w zakrsi fal radiowych poziomy są ~ jdnakowo obsadzon. Nirównowagow rozkłady populacji pompowani optyczn (zasada zachowania

Bardziej szczegółowo

Pomiar widm emisyjnych He, Na, Hg, Cd oraz Zn

Pomiar widm emisyjnych He, Na, Hg, Cd oraz Zn Ćwiczenie 33 Pomiar widm emisyjnych He, Na, Hg, Cd oraz Zn 33.1. Zasada ćwiczenia W ćwiczeniu mierzone są widma emisyjne atomów helu(he), sodu(na), rtęci (Hg), kadmu(cd) i cynku(zn). Pomiar widma helu

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 28, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 28, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 8, 5.01.018 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 6 - przypomnienie

Bardziej szczegółowo

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe

Bardziej szczegółowo

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest

Bardziej szczegółowo

Wykład 9. Źródła nauki współczesnej teoria atomu, mechanika relatywistyczna i teoria kwantów

Wykład 9. Źródła nauki współczesnej teoria atomu, mechanika relatywistyczna i teoria kwantów Wykład 9 Źródła nauki współczesnej teoria atomu, mechanika relatywistyczna i teoria kwantów 1 Przełom wieków i nauka skończona Kiedy rozpoczynałem studia fizyczne i u mego czcigodnego nauczyciela Philippa

Bardziej szczegółowo

Diagnostyka plazmy - spektroskopia molekularna. Ewa Pawelec wykład dla pracowni specjalistycznej

Diagnostyka plazmy - spektroskopia molekularna. Ewa Pawelec wykład dla pracowni specjalistycznej Diagnostyka plazmy - spektroskopia molekularna Ewa Pawelec wykład dla pracowni specjalistycznej Plazma Różne rodzaje plazmy: http://www.ipp.cas.cz/mi/index.html http://www.pro-fusiononline.com/welding/plasma.htm

Bardziej szczegółowo

Wczesne modele atomu

Wczesne modele atomu Wczesne modele atomu Wczesne modele atomu Demokryt (400 p.n.e.) Grecki filozof Demokryt rozpoczął poszukiwania opisu materii około 2400 lat temu. Postawił pytanie: Czy materia może być podzielona na mniejsze

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

W drugiej części przedstawiono podstawowe wiadomości z fizyki atomowej, fizyki ciała stałego oraz fizyki jądrowej.

W drugiej części przedstawiono podstawowe wiadomości z fizyki atomowej, fizyki ciała stałego oraz fizyki jądrowej. W drugiej części przedstawiono podstawowe wiadomości z fizyki atomowej, fizyki ciała stałego oraz fizyki jądrowej. Na całość pracy składają się dwie części (cz. I Fizyka klasyczna J. Massalski, M. Massalska).

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Model Bohra budowy atomu wodoru - opis matematyczny

Model Bohra budowy atomu wodoru - opis matematyczny Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI

ANALITYKA W KONTROLI JAKOŚCI ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII

Bardziej szczegółowo

Spis treści. Przedmowa redaktora do wydania czwartego 11

Spis treści. Przedmowa redaktora do wydania czwartego 11 Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania

Bardziej szczegółowo

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki

Bardziej szczegółowo

Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu.

Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. A. Opis zagadnienia I. Doświadczenie Franka-Hertza W 1914 roku James Franck i Gustav Hertz przeprowadzili doświadczenie,

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 27, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 27, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 7, 04.06.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 6 - przypomnienie doświadczenie

Bardziej szczegółowo

interpretacje mechaniki kwantowej fotony i splątanie

interpretacje mechaniki kwantowej fotony i splątanie mechaniki kwantowej fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Twierdzenie o nieklonowaniu Jak sklonować stan kwantowy? klonowanie

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Wykład 17: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 17: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 17: Atom Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Wczesne modele atomu Grecki filozof Demokryt rozpoczął poszukiwania

Bardziej szczegółowo

Spis treści. 1. Wstęp... 17. 2. Masa i rozmiary atomu... 21. 3. Izotopy... 45. Przedmowa do wydania szóstego... 13

Spis treści. 1. Wstęp... 17. 2. Masa i rozmiary atomu... 21. 3. Izotopy... 45. Przedmowa do wydania szóstego... 13 5 Spis treści Przedmowa do wydania szóstego........................................ 13 Przedmowa do wydania czwartego....................................... 14 Przedmowa do wydania pierwszego.......................................

Bardziej szczegółowo

Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego

Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego 3.5. Model Bohra-Sommerfelda Przeciw modelowi atomu zaproponowanego przez Ernesta Rutherforda przemawiały także wyniki badań spektroskopowych pierwiastków. Jeśli elektrony, jak wynika z teorii Maxwella,

Bardziej szczegółowo

Trzy rodzaje przejść elektronowych między poziomami energetycznymi

Trzy rodzaje przejść elektronowych między poziomami energetycznymi Trzy rodzaje przejść elektronowych między poziomami energetycznymi absorpcja elektron przechodzi na wyższy poziom energetyczny dzięki pochłonięciu kwantu o energii równej różnicy energetycznej poziomów

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Tomasz Dohnalik Przejścia wzbronione - 66 lat po ich odkryciu przez Henryka Niewodniczańskiego

Tomasz Dohnalik Przejścia wzbronione - 66 lat po ich odkryciu przez Henryka Niewodniczańskiego Tomasz Dohnalik Przejścia wzbronione - 66 lat po ich odkryciu przez Henryka Niewodniczańskiego Prace Komisji Historii Nauki Polskiej Akademii Umiejętności 3, 165-171 2001 Tom III POLSKA AKADEMIA UMIEJĘTNOŚCI

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ Za dzień narodzenia mechaniki kwantowej jest uważany 14 grudnia roku 1900. Tego dnia, na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Instytucie Fizyki Uniwersytetu Berlińskiego

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

2. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora

2. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora . Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora Gdy na ośrodek czynny, który nie znajduje się w rezonatorze optycznym, pada

Bardziej szczegółowo

Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 11. Optyka kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 12 9 stycznia 2017 A.F.Żarnecki Podstawy

Bardziej szczegółowo

obrotów. Funkcje falowe cząstki ze spinem - spinory. Wykład II.3 29 Pierwsza konwencja Condona-Shortley a

obrotów. Funkcje falowe cząstki ze spinem - spinory. Wykład II.3 29 Pierwsza konwencja Condona-Shortley a Wykład II.1 25 Obroty układu kwantowego Interpretacja aktywna i pasywna. Macierz obrotu w trzech wymiarach a operator obrotu w przestrzeni stanów. Reprezentacja obrotu w przestrzeni funkcji falowych. Transformacje

Bardziej szczegółowo

Podstawy informatyki kwantowej

Podstawy informatyki kwantowej Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie

Bardziej szczegółowo

Własności jąder w stanie podstawowym

Własności jąder w stanie podstawowym Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz

Bardziej szczegółowo

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania

Bardziej szczegółowo

Atom ze spinem i jądrem

Atom ze spinem i jądrem Atom ze spinem i jądrem Powtórzenie E 3s 2s 3p 2p 3d Ruch w polu ekranowym znosi degenracje ze wzgledu na l 1s Li l Powtórzenie 5 2 P 3/2 F=I+J 5P F= I-J 5 2 P 1/2 struktura subtelna struktura nadsubtelna

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

Wyznaczanie współczynnika rozpraszania zwrotnego. promieniowania β.

Wyznaczanie współczynnika rozpraszania zwrotnego. promieniowania β. Wyznaczanie współczynnika rozpraszania otnego. Zagadnienia promieniowania β. 1. Promieniotwórczość β.. Oddziaływanie cząstek β z materią (w tym rozproszenie otne w wyniku zderzeń sprężystych). 3. Znajomość

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo