Teoria Chaosu. Proste modele ze złożonym zachowaniem: o teorii chaosu w ekologii.
|
|
- Antoni Kubiak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Teoria Chaosu Proste modele ze złożonym zachowaniem: o teorii chaosu w ekologii.
2 Zanim zaczniemy... Komputer - symulacja wizualizacja w fizyce.
3 Zanim zaczniemy Prowadzimy pilotażowe warsztaty w szkołach, chętnych prosimy o kontakt.
4 Robert May, Oxford 1976 W latach siedemdziesiątych XX wieku, na Uniwersytecie w Oxford, australijski uczony Robert May zajmował się teoretycznymi aspektami ekologii.
5 Robert May, Oxford 1976 Ekologia Teoretyczna dyscyplina naukowa poświęcona badaniu układów ekologicznych z wykorzystaniem metod teoretycznych, takich jak: modeli matematycznych symulacji komputerowych zaawansowanej analizy danych.
6 Co badał Robert May w 1976? Rozważmy populację owadów. Niech Ni oznacza liczebność w i-tym roku. Równanie ewolucji może wyglądać tak:
7 Co badał Robert May w 1976? a = 0.5 x = 142 for i in range(10): x = a*x print x link
8 Co badał Robert May w 1976? a = 1.5 x = 142 for i in range(10): x = a*x print x link
9 Co badał Robert May w 1976? Niech pożywienie będzie ograniczone: mało osobników - rozmnażają się bez ograniczenia dużo osobników - brakuje pożywienia i rozmnażają się wolniej za dużo osobników, wszystkie giną z głodu!
10 Mapa logistyczna
11 Własności mapy logistycznej a = 0.5 x = 0.45 for i in range(10): x = a*x*(1-x) print x Permalink
12 Punkt stacjonarny f(x)=x a = 2.0 x = 0.1 for i in range(10): x = a*x*(1-x) print x
13 Punkt stacjonarny o okresie 2 a = 3.2 x = 0.45 for i in range(10): x = a*x*(1-x) print x
14 Bifurkacje
15 Pajęczyna w służbie matematyka f(x1) f(x2) f(x0) x0 x1 x2
16 Wykres pajęczynowy
17 Wykres pajęczynowy
18 Wykres pajęczynowy
19 Wykres pajęczynowy
20 Wykres pajęczynowy
21 Wykres pajęczynowy
22 Wykres pajęczynowy Jednocześnie symulowaliśmy dwie trajektorie Punkt startowe różną sie o
23 Wykres pajęczynowy Jednocześnie symulowaliśmy dwie trajektorie Punkt startowe różną sie o
24 Samodzielna zabawa w Sage def cobweb(r=slider(0,4.001,0.001,default=2),x0=slider(0,1,0.1,default=0.4)): f(x)=r*x*(1-x) p = plot(f(x)==0,(x,0,1),ymin=-0.1,ymax=1.5,xmin=0,xmax=1.5,color='black') p += plot(x,(x,0,1),color='green',figsize=7) for n in range(50): th = 1 if n>45: th = 1.5 color='red' elif n < 5: color='blue' th=1.5 else: color='grey' th =0.5 l1 = line([(x0,x0),(x0,f(x0))],color=color,thickness=th) l2 = line([(x0,f(x0)),(f(x0),f(x0))],\ color=color,thickness=th,xmin=0,xmax=1,ymin=0,ymax=1) p = p+l1+l2 x0 = f(x0) p.axes_labels(["$x_n$","$x_{n+1}$"]) p.show(aspect_ratio=1) Permalink
25 Punkty stałe mapy logistycznej Mapa ma punkt stały jeżeli odwzorowanie f go nie zmienia:
26 Diagram bifurkacyjny
27 Punkty stałe mapy logistycznej Punkt o okresie 2 var('a x') f(x) = a*x*(1-x) show( expand( f(f(x))==x) ) s = solve(f(f(x))==x,x) show(s) Permalink
28 Diagram bifurkacyjny
29 Diagram bifurkacyjny
30 a= Diagram bifurkacyjny
31 Diagram bifurkacyjny
32 Diagram bifurkacyjny
33 Diagram bifurkacyjny
34 Diagram bifurkacyjny
35 Generacja diagramu bifurkacyjnego Permalink import numpy as np Nx = 100 Na = 400 x = np.linspace(0,1,nx) x = x + np.zeros((na,nx)) x = np.transpose(x) a=np.linspace(1,4,na) a=a+np.zeros((nx,na)) for i in range(1000): x=a*x*(1-x) pt = [[a_,x_] for a_,x_ in zip(a.flatten(),x.flatten())] point(pt,size=1,figsize=(7,5))
36 Benoît Mandelbrot, 1967 Pytanie: Jaka jest długość linii brzegowej Anglii? przyczyniło się do odkrycia Fraktali: obiekty o ułamkowym wymiarze i własnościa samopodobieństwa.
37 Jaka jest długość linii brzegowej Anglii? jednostka: 200km, wynik: 2400km jednostka: 50km, wynik: 3400km
38 Jaka jest długość linii brzegowej Anglii? Źle postawione zagadnienie: długość brzegu zdaje się rosnąć do nieskończoności!!! Okazuje się, że brzeg Anglii ma wymiar ok 1.25!
39 Co to jest wymiar? punkt, d=0 odcinek, d=1 koło, d=2 cylinder, d=3
40 Co to jest wymiar? Wymiar korelacyjny: Z jaką potęgą rośnie liczba punktów w otoczeniu punktu ze zbioru?
41 Fraktal: objekt z ułamkowym wymiarem Zbiór Cantora, wymiar:
42 Fraktal: objekt z ułamkowym wymiarem Krzywa Kocha, wymiar d=
43 Diagram bifurkacyjny a = 3.
44 Chaos deterministyczny w a=4
45 Nasi i nienasi Pionierzy Chaotyczni Andrzej Lasota James Alan Yorke
46 Układ chaotyczny Posiada czułość na warunki startowe. Nieregularność rozwiązań. Niezwykle często występuje w fizyce. Proste układy posiadają niezwykle skomplikowane zachowanie. Majac deterministycze reguły, praktycznie nie znamy przyszłości.
47 dziekuję za uwagę!
Podręcznik. Przykład 1: Wyborcy
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
Bardziej szczegółowoFRAKTALE I SAMOPODOBIEŃSTWO
FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)
Bardziej szczegółowoDynamika nieliniowa i chaos deterministyczny. Fizyka układów złożonych
Dynamika nieliniowa i chaos deterministyczny Fizyka układów złożonych Wahadło matematyczne F θ = mgsinθ Druga zasada dynamiki: ma = mgsinθ a = d2 x dt 2 = gsinθ Długość łuku: x = Lθ Równanie ruchu: θ ሷ
Bardziej szczegółowoStała w przedsionku chaosu
36 Stała w przedsionku chaosu Mateusz Denys Student V roku fizyki na Uniwersytecie Warszawskim Liczba π, pierwiastek z dwóch, podstawa logarytmów naturalnych to stałe matematyczne znane od wieków. Każda
Bardziej szczegółowoUkłady dynamiczne Chaos deterministyczny
Układy dynamiczne Chaos deterministyczny Proste iteracje odwzorowań: Funkcja liniowa Funkcja logistyczna chaos deterministyczny automaty komórkowe Ewolucja układu dynamicznego Rozwój w czasie układu dynamicznego
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Bardziej szczegółowoWykresy i interfejsy użytkownika
Wrocław, 07.11.2017 Wstęp do informatyki i programowania: Wykresy i interfejsy użytkownika Wydział Matematyki Politechniki Wrocławskiej Andrzej Giniewicz Dzisiaj na zajęciach... Instrukcje sterujące Biblioteka
Bardziej szczegółowosamopodobnym nieskończenie subtelny
Fraktale Co to jest fraktal? Według definicji potocznej fraktal jest obiektem samopodobnym tzn. takim, którego części są podobne do całości lub nieskończenie subtelny czyli taki, który ukazuje subtelne
Bardziej szczegółowoFraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej
Fraktale deterministyczne i stochastyczne Katarzyna Weron Katedra Fizyki Teoretycznej Szare i Zielone Scena z Fausta Goethego (1749-1832), Mefistofeles do doktora (2038-2039): Wszelka, mój bracie, teoria
Bardziej szczegółowoTEORIA CHAOSU. Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska
TEORIA CHAOSU Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska Wydział MiNI Politechnika Warszawska Rok akademicki 2015/2016 Semestr letni Krótki kurs historii matematyki DEFINICJA
Bardziej szczegółowoPROJEKT Nowoczesne komputerowe metody kształcenia dla regionalnych kadr innowacyjnej gospodarki: icse
PROJEKT Nowoczesne komputerowe metody kształcenia dla regionalnych kadr innowacyjnej gospodarki: icse Projekt współfinansowany z Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Kreatywna
Bardziej szczegółowoUniwersalność wykresu bifurkacyjnego w uogólnionym odwzorowaniu logistycznym
Uniwersalność wykresu bifurkacyjnego w uogólnionym odwzorowaniu logistycznym Oskar Amadeusz Prośniak pod opieką prof. dr hab. Karola Życzkowskiego 29 września 2015 Instytut Fizyki UJ 1 Wstęp Celem tej
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Bardziej szczegółowoSYMULACJA WYBRANYCH PROCESÓW
Romuald Mosdorf Joanicjusz Nazarko Nina Siemieniuk SYMULACJA WYBRANYCH PROCESÓW EKONOMICZNYCH Z ZASTOSOWANIEM TEORII CHAOSU DETERMINISTYCZNEGO Gospodarka rynkowa oparta jest na mechanizmach i instytucjach
Bardziej szczegółowoFraktale wokół nas. Leszek Rudak Uniwersytet Warszawski. informatyka +
Fraktale wokół nas Leszek Rudak Uniwersytet Warszawski informatyka + 1 Podobieństwo figur informatyka + 2 Figury podobne Figury są podobne gdy proporcjonalnie zwiększając lub zmniejszając jedną z nich
Bardziej szczegółowoEfekt motyla i dziwne atraktory
O układzie Lorenza Wydział Matematyki i Informatyki Uniwersytet Mikołaja kopernika Toruń, 3 grudnia 2009 Spis treści 1 Wprowadzenie Wyjaśnienie pojęć 2 O dziwnych atraktorach 3 Wyjaśnienie pojęć Dowolny
Bardziej szczegółowoFraktale. i Rachunek Prawdopodobieństwa
Fraktale i Rachunek Prawdopodobieństwa Przyjrzyjmy się poniższemu rysunkowi, przedstawiającemu coś,, co kształtem tem przypomina drzewo o bardzo regularnej strukturze W jaki sposób b najłatwiej atwiej
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Bardziej szczegółowoZadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL
Zadania domowe Ćwiczenie 2 Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadanie 2.1 Fraktal plazmowy (Plasma fractal) Kwadrat należy pokryć prostokątną siatką 2 n
Bardziej szczegółowoFilip Piękniewski 10:50:29 1 /56. Fraktale i Chaos Filip Piękniewski 2004
FRAKTALE i CHAOS czyli czemu nie można zmierzyć powierzchni trawnika? Filip Piękniewski 1 /56 10:50:29 Mierzymy trawnik Traktujemy trawnik jako gładką powierzchnię. Mierzymy wzdłuż jednego i drugiego boku.
Bardziej szczegółowoTwierdzenie Li-Yorke a Twierdzenie Szarkowskiego
Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Autor: Kamil Jaworski 11 marca 2012 Spis treści 1 Wstęp 2 1.1 Podstawowe pojęcia........................
Bardziej szczegółowoEGZAMIN MAGISTERSKI, 18 września 2013 Biomatematyka
Biomatematyka Liczebność populacji pewnego gatunku jest modelowana przez równanie różnicowe w którym N k stałymi. rn 2 n N n+1 =, A+Nn 2 oznacza liczebność populacji w k tej generacji, a r i A są dodatnimi
Bardziej szczegółowoODWZOROWANIE RZECZYWISTOŚCI
ODWZOROWANIE RZECZYWISTOŚCI RZECZYWISTOŚĆ RZECZYWISTOŚĆ OBIEKTYWNA Ocena subiektywna OPIS RZECZYWISTOŚCI Odwzorowanie rzeczywistości zależy w dużej mierze od możliwości i nastawienia człowieka do otoczenia
Bardziej szczegółowoRys.1. Obraz Pollocka. Eyes heat.
Co wspólnego ze sztuką ma reaktor chemiczny? W lutowym numerze Świata Nauki z 2003 roku ukazał się ciekawy artykułu Richarda P. Taylora, profesora fizyki Uniwersytetu Stanu Oregon [1], dotyczący matematyczno
Bardziej szczegółowoRys. 1. Kalafior podzielony na coraz mniejsze bardzo podobne do siebie fragmenty
18 FOTON 111, Zima 2010 Fraktale Studenci: Marcin Figiel, Tomasz Sabała Pod opieką prof. dr. hab. Macieja A. Nowaka Instytut Fizyki UJ 1. Abstrakt i motywacja Fraktale to obiekty matematyczne spotykane
Bardziej szczegółowoMetody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Bardziej szczegółowoEGZAMIN MAGISTERSKI, Biomatematyka
Biomatematyka 91...... Zadanie 1. (8 punktów) Liczebność pewnej populacji jest opisana równaniem różniczkowym: dn = r N(α N)(N β), (1) dt w którym, N(t) oznacza liczebność populacji w chwili t, a r > 0
Bardziej szczegółowoCHAOS DETERMINISTYCZNY W BADANIU DYNAMIKI ZMIAN ORGANIZACJI
ROCZNIKI NAUK SPOŁECZNYCH Tom XXXIII, zeszyt 3 2005 HENRYK PONIKOWSKI CHAOS DETERMINISTYCZNY W BADANIU DYNAMIKI ZMIAN ORGANIZACJI 1. WPROWADZENIE W latach osiemdziesiątych XX wieku w badaniu zjawisk ekonomicznych
Bardziej szczegółowoChaos w układach dynamicznych: miary i kryteria chaosu
: miary i kryteria chaosu Uniwersytet Śląski w Katowicach, Wydział Matematyki, Fizyki i Chemii 27.08.14 : miary i kryteria chaosu Temat tego referatu jest związany z teorią układów dynamicznych która ma
Bardziej szczegółowoRównania różniczkowe zwyczajne
Równania różniczkowe zwyczajne Zajmiemy się teraz problemem numerycznego rozwiązywania równań różniczkowych zwyczajnych o postaci: z warunkeim początkowym. Zauważmy że przykładowe równanie różniczkowe
Bardziej szczegółowoPodręcznik. Wzór Shannona
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
Bardziej szczegółowoO geometrii semialgebraicznej
Inauguracja roku akademickiego 2018/2019 na Wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego O geometrii semialgebraicznej Stanisław Spodzieja Łódź, 28 września 2018 Wstęp Rozwiązywanie równań
Bardziej szczegółowoDyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
Bardziej szczegółowoProste modele o zªo»onej dynamice
Proste modele o zªo»onej dynamice czyli krótki wst p do teorii chaosu Tomasz Rodak Festiwal Nauki, Techniki i Sztuki 2018 April 17, 2018 Dyskretny model pojedynczej populacji Rozwa»my pojedyncz populacj
Bardziej szczegółowoEGZAMIN MAGISTERSKI, Biomatematyka
Biomatematyka 90...... Zadanie 1. (8 punktów) Załóżmy, że w diploidalnej populacji, dla której zachodzi prawo Hardy ego- Weinberga dla loci o dwóch allelach A i a proporcja osobników o genotypie AA wynosi
Bardziej szczegółowoWYKAZ PRZEDMIOTÓW OBOWIĄZKOWYCH ZAWARTYCH W STANDARDACH KSZTAŁCENIA
STANDARDACH KSZTAŁCENIA (Rozporządzenie MNiSzW z dnia 12.07.2007 r. Dz.U.Nr 164) Studia stacjonarne i niestacjonarne I stopnia X) EKONOMIA Matematyka, statystyka opisowa, ekonometria, mikroekonomia, podstawy
Bardziej szczegółowoRodzinę odwzorowań {f i : X X} k i=1 nazywamy iterowanym układem funkcyjnym (ang. IFS iterated function system).
Iterowane układy funkcyjne Fraktale i chaos K. Leśniak X przestrzeń metryczna (w szczególności X R lub X C R 2 ). Rodzinę odwzorowań {f i : X X} k i= nazywamy iterowanym układem funkcyjnym (ang. IFS iterated
Bardziej szczegółowoMODELE WIELOPOPULACYJNE. Biomatematyka Dr Wioleta Drobik
MODELE WIELOPOPULACYJNE Biomatematyka Dr Wioleta Drobik UKŁADY RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH Warunek początkowy: x(t 0 )=x 0, y(t 0 )=y 0 Funkcje f i g to zadane funkcje ciągłe trzech zmiennych: t,
Bardziej szczegółowoWłasności multifraktalne serii czasowych
Własności multifraktalne serii czasowych D. Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet Gdański Luty/Marzec 2009 nieformalnie... Skalowanie: rozumie się jako brak charakterystycznej skali czasowej
Bardziej szczegółowoZbiór Cantora. Diabelskie schody.
Zbiór Cantora. Diabelskie schody. Autor: Norbert Miękina Zespół Szkół nr 3 im. ks. prof. Józefa Tischnera ul. Krakowska 20 32-700 Bochnia tel. 14 612-27-79 Opiekun: mgr Barbara Góra 1 W matematyce sztuka
Bardziej szczegółowoMODELE ROZWOJU POPULACJI Z UWZGLĘDNIENIEM WIEKU
MODELE ROZWOJU POPULACJI Z UWZGLĘDNIENIEM WIEKU Dr Wioleta Drobik-Czwarno CIĄG FIBONACCIEGO Schemat: http://blogiceo.nq.pl/matematycznyblog/2013/02/06/kroliki-fibonacciego/ JAK MOŻEMY ULEPSZYĆ DOTYCHCZASOWE
Bardziej szczegółowoCo wspólnego ze sztuką ma reaktor chemiczny?
28 Co wspólnego ze sztuką ma reaktor chemiczny? Marek Berezowski Politechnika Śląska, Wydział Matematyczno-Fizyczny Instytut Matematyki, Gliwice W lutowym numerze Świata Nauki 2003 roku ukazał się ciekawy
Bardziej szczegółowoInformatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki
Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Zadanie (matura z informatyki, 2009) Dane: dodatnia liczba całkowita R.
Bardziej szczegółowoElementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Bardziej szczegółowoAtaki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1
Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie
Bardziej szczegółowoDyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
Bardziej szczegółowoSierpiński Carpet Project. W ZSTiL Zespół Szkół Technicznych i Licealnych
Sierpiński Carpet Project W ZSTiL Zespół Szkół Technicznych i Licealnych Co to jest fraktal? Fraktale są obiektami matematycznymi, których podstawowa struktura powtarza się przy różnych powiększeniach.
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 12: Krzywe eliptyczne Gniewomir Sarbicki Rozważać będziemy przestrzeń K n Definicja: x y λ K x = λy. Relację nazywamy różnieniem się o skalar Przykład: [4, 10, 6, 14] [6, 15,
Bardziej szczegółowoElementy logiki. Zdania proste i złożone
Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie
Bardziej szczegółowoWprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl tel. 022
Bardziej szczegółowoModele i symulacje - Scratch i Excel
Instytut Matematyki Uniwersytet Gdański Literatura P. Szlagowski, Programowanie wizualne scratch 2.0 SCRATCH jest językiem programowania, w którym możesz stworzyć własne interaktywne historyjki, animacje,
Bardziej szczegółowoWykład 1 BIOMATEMATYKA DR WIOLETA DROBIK
Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK SPRAWY ORGANIZACYJNE Konsultacje: czwartek 12-14, pokój 33 Email: wioleta.drobik@gmail.com, wioleta_drobik@sggw.pl Wykład 30 h (10 x 3 h w tygodniu) Ćwiczenia 15
Bardziej szczegółowoĆwiczenia z przetwarzania tablic 2D
Ćwiczenia z przetwarzania tablic 2D Wyświetlanie tablic 2D Jako wstęp do przetwarzania obrazów w pythonie przećwiczmy podstawowe operacje na dwuwymiarowych tablicach numpy w postaci których będziemy takie
Bardziej szczegółowoSymulacje komputerowe w fizyce Fraktale
Symulacje komputerowe w fizyce Fraktale Jakub Tworzydło Katedra Teorii Materii Skondensowanej Instytut Fizyki Teoretycznej telefon: (022)5532-919, pokój 5.19 Jakub.Tworzydlo@fuw.edu.pl 13 i 15/11/2017
Bardziej szczegółowoN(t) = N 0 e rt MODELE WZROSTU POPULACJI Z CZASEM CIĄGŁYM. Dr Wioleta Drobik-Czwarno
N(t) = N 0 e rt MODELE WZROSTU POPULACJI Z CZASEM CIĄGŁYM Dr Wioleta Drobik-Czwarno PODSTAWY MATEMATYCZNE Procesy biologiczne, chemiczne i fizyczne można zapisać równaniami różniczkowymi. Potrzebne narzędzia:
Bardziej szczegółowoZasady krytycznego myślenia (1)
Zasady krytycznego myślenia (1) Andrzej Kisielewicz Wydział Matematyki i Informatyki 2017 Przedmiot wykładu krytyczne myślenie vs logika praktyczna (vs logika formalna) myślenie jasne, bezstronne, oparte
Bardziej szczegółowo14 Modele z czasem dyskretnym
14 Modele z czasem dyskretnym Przykłady i zadania z tego rozdziału ilustrują materiał zawarty w rozdziałach 12 i 15 książki 141 Metoda pajęczynowa PRZYŁAD 141 Na poniższych rysunkach zilustrowano metodę
Bardziej szczegółowoINTERAKTYWNA KOMUNIKACJA WIZUALNA. Systemy Lindenmayera (L-systemy)
INTERAKTYWNA KOMUNIKACJA WIZUALNA Systemy Lindenmayera () Zastosowania: Generowanie fraktali Modelowanie roślin Fraktale (łac. fractus złamany, cząstkowy) cechy samopodobieństwa Krzywa Kocha (płatek śniegu)
Bardziej szczegółowoEkologia wyk. 1. wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych
Ekologia wyk. 1 wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych Ochrona środowiska Ekologia jako dziedzina nauki jest nauką o zależnościach decydujących
Bardziej szczegółowoSystemy Lindenmayera (L-systemy)
Systemy Lindenmayera (L-systemy) L-systemy Zastosowania: Generowanie fraktali Modelowanie roślin L-systemy Fraktale (łac. fractus złamany, cząstkowy) cechy samopodobieństwa Krzywa Kocha (płatek śniegu)
Bardziej szczegółowoFRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą
Małgorzata Mielniczuk FRAKTALE Poniższy referat będzie traktować o fraktalach, majestatycznych wzorach, których kręte linie nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę,
Bardziej szczegółowoUkłady dynamiczne i całkowanie równań różniczkowych zwyczajnych, układy nieliniowe i chaotyczne
Układy dynamiczne i całkowanie równań różniczkowych zwyczajnych, układy nieliniowe i chaotyczne Zagadnienia: Układy dynamiczne przykłady Całkowanie równań ruchu (Euler, Runge-Kutta) Wykładniki Lyapunowa,
Bardziej szczegółowoSuperdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska
VI Matematyczne Warsztaty KaeNeMów p. 1/2 Superdyfuzja Maria Knorps maria.knorps@gmail.com Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p.
Bardziej szczegółowoModelowanie komputerowe układów złożonych
Modelowanie komputerowe układów złożonych Prowadzący: Adam Lipowski Zakład Fizyki Kwantowej, Segment G-III, p. 205 e-mail: lipowski@amu.edu.pl tel. 5062/5156 Plan 1) Wstęp 2) Dynamika układów nieliniowych
Bardziej szczegółowoWYKŁAD 3. DYNAMIKA ROZWOJU
WYKŁAD 3. DYNAMIKA ROZWOJU POPULACJI DR WIOLETA DROBIK WSTĘP Podstawy matematyczne Ciąg Granica funkcji Ciągłość funkcji Pochodna i całka CIĄG Lista ponumerowanych elementów pewnego zbioru Ciąg to dowolna
Bardziej szczegółowoObliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 06 Geometria fraktalna Jarosław Miszczak IITiS PAN Gliwice 20/10/2016 1 / 43 1 Określenie nieformalne 2 Zbiór Mandelbrota 3 Określenie nieformalne pudełkowy Inne definicje
Bardziej szczegółowoEGZAMIN MAGISTERSKI, Biomatematyka
Biomatematyka 80...... Zadanie 1. (8 punktów) Załóżmy, że w diploidalnej populacji kojarzącej się w sposób losowy, w loci o dwóch allelach A i a 36% osobników tej populacji ma genotyp aa. (a) Jaka cześć
Bardziej szczegółowoAlgebra WYKŁAD 3 ALGEBRA 1
Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę
Bardziej szczegółowoW wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku.
W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku. Nie wolno dzielić przez zero i należy sprawdzić, czy dzielna nie jest równa zeru. W dziedzinie liczb
Bardziej szczegółowoTeoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska
Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia
Bardziej szczegółowoChaos, fraktale i statystyka
Bogumiła Koprowska Elżbieta Kukla 1 Przykłady Odwzorowanie logistyczne Odwzorowanie trójkątne 2 Historia 3 Fraktale Zbiór Mandelbrota i zbiór Julii Przykłady fraktali 4 Podstawowe pojęcia Układy dynamiczne
Bardziej szczegółowoOptymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Bardziej szczegółowoXV FESTIWAL NAUKI 2011 WPROWADZENIE DO BIOCYBERNETYKI
XV FESTIWAL NAUKI 2011 WPROWADZENIE DO BIOCYBERNETYKI ZESPÓŁ APARATURY BIOCYBERNETYCZNEJ (http://www.ise.pw.edu.pl/index.php?id=138) STUDENCKIE KOŁO NAUKOWE CYBERNETYKI (http://cyber.ise.pw.edu.pl) INSTYTUT
Bardziej szczegółowoChaos, fraktale oraz euroatraktor
4 FOTON 80, Wiosna 2003 Chaos, fraktale oraz euroatraktor Karol Życzkowski i Artur Łoziński Instytut Fizyki UJ Obserwując poruszający się przedmiot, stawiamy pytanie, jak wyglądać będzie jego ruch w przyszłości.
Bardziej szczegółowoSpecjalistyczna Pracownia Komputerowa Obliczanie widma Lapunowa
Arkadiusz Neubauer IV rok, Fizyka z Informatyką. Specjalistyczna Pracownia Komputerowa Obliczanie widma Lapunowa 1 Problem fizyczny W poniższej pracy przedstawiono numeryczną metodę obliczania widma Lapunowa
Bardziej szczegółowoPochodna funkcji a styczna do wykresu funkcji. Autorzy: Tomasz Zabawa
Pochodna funkcji a do wykresu funkcji Autorzy: Tomasz Zabawa 2018 Pochodna funkcji a do wykresu funkcji Autor: Tomasz Zabawa Pojęcie stycznej do wykresu funkcji f w danym punkcie wykresu P( x 0, f( x 0
Bardziej szczegółowoPlan prezentacji. Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D. Iteracyjny system funkcji (IFS)
Fraktale Plan prezentacji Wprowadzenie Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D Klasyczne fraktale Iteracyjny system funkcji (IFS) L-system Zbiory Julii i Mandelbrota Ruchy
Bardziej szczegółowoPochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8
Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu sem. zimowy, r. akad. 2016/2017 Funkcja logistyczna 40 Rozważmy
Bardziej szczegółowoKryptoanaliza algorytmu chaotycznego szyfrowania obrazu
Kryptoanaliza algorytmu chaotycznego szyfrowania obrazu Karol Jastrzębski Praca magisterska Opiekun: dr hab. inż. Zbigniew Kotulski Plan prezentacji Teoria chaosu: Wprowadzenie, cechy układów chaotycznych,
Bardziej szczegółowodr hab. Andrzej Krawiecki rezonans fal spinowych, rezonans stochastyczny, sieci ewoluujące, sieci złożone
Dynamika Uk adów Nieliniowych 24 Wykład Wprowadzenie Pokaz: wahadło matematyczne liniowe i nieliniowe symulacja wahadła matematycznego Nazwa dziedziny: teoria chaosu dynamika układów nieliniowych Jest
Bardziej szczegółowoAfiniczne krzywe algebraiczne
Afiniczne krzywe algebraiczne Obrona pracy doktorskiej Maciej Borodzik Instytut Matematyki, Uniwersytet Warszawski Zagadnienie Badanie krzywych algebraicznych na płaszczyźnie zespolonej C 2. Zagadnienie
Bardziej szczegółowoEGZAMIN MAGISTERSKI, Biomatematyka
Biomatematyka 90...... Zadanie 1. (8 punktów) Liczebność pewnej populacji ryb jest opisana następującym równaniem Rickera: N n+1 = α N n exp( βn n ), (1) w którym N n oznacza liczebność populacji w n tej
Bardziej szczegółowoZ52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Bardziej szczegółowoK_U13, K_U14 5 MAT2002 K_W01, K_W02, K_U07 K_W01, K_W02, K_W03, K_U01, K_U03, K_U08, K_U09, K_U13, K_U14 K_W01, K_W02, K_W03, K_U01,
II. PROGRAM STUDIÓW. FORMA STUDIÓW: stacjonarne. LICZBA SEMESTRÓW: 3. LICZBA PUNKTÓW : 0. MODUŁY KSZTAŁCENIA (zajęcia lub grupy zajęć) wraz z przypisaniem zakładanych efektów kształcenia i liczby punktów
Bardziej szczegółowoZagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Bardziej szczegółowo01, 02, 03 i kolejne numer efektu kształcenia. Załącznik 1 i 2
Efekty kształcenia dla kierunku studiów Studia Przyrodnicze i Technologiczne (z językiem wykładowym angielskim) - studia I stopnia, stacjonarne, profil ogólnoakademicki - i ich odniesienia do efektów kształcenia
Bardziej szczegółowoKomputerowa analiza zagadnień różniczkowych 2. O tym, co można rozwiazać analitycznie. P. F. Góra
Komputerowa analiza zagadnień różniczkowych 2. O tym, co można rozwiazać analitycznie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Jeszcze o równaniach liniowych Rozważmy skalarne, jednorodne równanie
Bardziej szczegółowoMATEMATYKA PLAN STUDIÓW STACJONARNYCH DRUGIEGO STOPNIA
MATEMATYKA PLAN STUDIÓ STACJONARNYCH DRUGIEGO STOPNIA semestr: 1 05.1- -810 Pracownia dydaktyki matematyki * 30 30 3 S-D 11.1- -810 Analiza matematyczna 1 30 30 60 4 P1 11.1- -810 Równania różniczkowe
Bardziej szczegółowoLp. SYMBOL NAZWA ZAJĘĆ EFEKTY KSZTAŁCENIA (P/K/PW)** ECTS K_K ŁĄCZNIE 50
II. PROAM STUDIÓW FORMA STUDIÓW: stacjonarne LICZBA SEMESTRÓW: LICZBA PUNKTÓW : 10 MODUŁY KSZTAŁCENIA (zajęcia lub grupy zajęć) wraz z przypisaniem zakładanych efektów kształcenia i liczby punktów : A.
Bardziej szczegółowoVoter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Krzysztof Suchecki Janusz A. Hołyst Wydział Fizyki Politechniki Warszawskiej Plan Model głosujący : definicja i własności
Bardziej szczegółowoGeneratory takie mają niestety okres, po którym sekwencja liczb powtarza się.
1 Wstęp Będziemyrozważaćgeneratorytypux n+1 =f(x n,x n 1,...,x n k )(modm). Zakładamy,żeargumentamifunkcjifsąliczbycałkowitezezbioru0,1,...,M 1. Dla ustalenia uwagi mogą to być generatory liniowe typu:
Bardziej szczegółowoAlgorytmy sztucznej inteligencji
www.math.uni.lodz.pl/ radmat Przeszukiwanie z ograniczeniami Zagadnienie przeszukiwania z ograniczeniami stanowi grupę problemów przeszukiwania w przestrzeni stanów, które składa się ze: 1 skończonego
Bardziej szczegółowoFizyka komputerowa(ii)
Instytut Fizyki Fizyka komputerowa(ii) Studia magisterskie Prowadzący kurs: Dr hab. inż. Włodzimierz Salejda, prof. PWr Godziny konsultacji: Poniedziałki i wtorki w godzinach 13.00 15.00 pokój 223 lub
Bardziej szczegółowoFraktale i Chaos czyli czemu nie można zmierzyć powierzchni trawnika?
Fraktale i Chaos czyli czemu nie można zmierzyć powierzchni trawnika? Filip Piękniewski Mierzymy trawnik Traktujemy trawnik jako gładką powierzchnię. Mierzymy wzdłuż jednej i drugiej współrzędnej. Wyniki
Bardziej szczegółowoFRAKTALE WOKÓŁ NAS I KILKA SŁÓW O CHAOSIE
ZESZYTY NAUKOWE 169-184 Ireneusz WINNICKI 1 FRAKTALE WOKÓŁ NAS I KILKA SŁÓW O CHAOSIE Streszczenie W artykule zawarte są podstawowe informacje na temat geometrii fraktalnej oraz chaosu pojawiającego się
Bardziej szczegółowoĆwiczenie 3. Python 3: Python 3: Funkcje, moduły i operacje na plikach
Wizualizacja danych Ćwiczenie 3 Python 3: Python 3: Funkcje, moduły i operacje na plikach Python Comprehension Jest to mechanizm służący do generowania kolekcji (lista, słownik, zbiór) na podstawie jednowierszowej
Bardziej szczegółowoKrzywe Freya i Wielkie Twierdzenie Fermata
Krzywe Freya i Wielkie Twierdzenie Fermata Michał Krzemiński 29 listopad 2006 Naukowe Koło Matematyki Politechnika Gdańska 1 1 Krzywe algebraiczne Definicja 1.1 Krzywą algebraiczną C nad ciałem K nazywamy
Bardziej szczegółowoPojęcie funkcji. Funkcja liniowa
Pojęcie funkcji. Funkcja liniowa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Wykład 2; rok akademicki 2016/2017 Zależności funkcyjne w naukach przyrodniczych Rozwój algebry
Bardziej szczegółowoObliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 02 Jarosław Miszczak IITiS PAN Gliwice 06/10/2016 1 / 31 Czego dowiedzieliśmy się na poprzednim wykładzie? 1... 2... 3... 2 / 31 1 2 3 3 / 31 to jeden z pierwszych
Bardziej szczegółowoFraktale. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM
Fraktale Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Fraktale Funkcje rekurencyjne 1 / 56 Wprowadzenie Plan na dziś:
Bardziej szczegółowo