Języki, automaty i obliczenia
|
|
- Edward Rybak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Języki, automaty i obliczenia Wykład 12: Gramatyki i inne modele równoważne maszynom Turinga. Wstęp do złożoności obliczeniowej Sławomir Lasota Uniwersytet Warszawski 20 maja 2015
2 Plan 1 Gramatyki 2 Języki kontekstowe 3 Automaty z licznikami 4 Złożoność czasowa i pamięciowa
3 Hierarchia Chomsky ego typ języki automaty gramatyki typ 0 rekurencyjnie maszyny? przeliczalne Turinga typ 1 kontekstowe?? typ 2 bezkontekstowe automaty bezkontekstowe ze stosem typ 3 regularne automaty regularne skończone
4 Gramatyka (typu 0) G = (A, N, S, α) A to skończony zbiór symboli końcowych (terminalnych) N to skończony zbiór symboli niekońcowych (nieterminalnych), A N = S N to symbol początkowy α (A N) + (A N) to skończony zbiór reguł przepisywania (produkcji) Notacja Reguły (v, v ) α będziemy zapisywać v G v albo v v. Reguły rozszerzamy do relacji G (A N) (A N) : w G w (v G v ) α, u, t (A N), w = u v t, v = u v t i domykamy zwrotno-tranzytywnie: w G w wtw. gdy istnieje ciąg w = v 0 G v 1 G... G v n = w, n 0 zwany wyprowadzeniem (wywodem) w z w (w gramatyce G).
5 Język generowany przez gramatykę Język generowany przez gramatykę: L(G) = {w A : S G w} Przykład Gramatyka G: A = {a, b, c} N = {S, X, B} S ε X abxc Ba ab S X X abc Bb bb L(G) =?
6 Maszyny Turinga a gramatyki Twierdzenie Języki częściowo rozstrzygalne to języki generowane przez gramatyki. Dowód: gramatyka G maszyna Turinga M: maszyna symuluje gramatykę wstecz v G w q w M q v, zaczyna w konfiguracji q w, akceptuje w konfiguracji qs. Więc L(G) = L(M). maszyna Turinga z taśmą jednostronnie nieograniczoną gramatyka: Faza 1: S G $ w [q f, a] v B w, v (T {B}), a T {B} Faza 2: b [q, c] [q, a] c jeśli (q, a, q, b, ) δ [q, c] b c [q, a] jeśli (q, a, q, b, ) δ b [q, B] [q, B] jeśli (q, B, q, b, ) δ [q, c] b B c [q, B] jeśli (q, B, q, b, ) δ $ [q 0, a] $ a a B a
7 Nierozstrzygalność gramatyk Problem słów Dane: gramatyk G i dwa słowa v, w Wynik: czy v G w? Wniosek Problem słów jest nierozstrzygalny. Dowód: Redukujemy problem stopu do problemu słów: funkcja obliczalna: maszyna M, słowo w G i słowa S, w poprawność: w L(M) S G w Pytanie Czy problem słów jest częściowo rozstrzygalny?
8 Plan 1 Gramatyki 2 Języki kontekstowe 3 Automaty z licznikami 4 Złożoność czasowa i pamięciowa
9 Hierarchia Chomsky ego typ języki automaty gramatyki typ 0 rekurencyjnie maszyny? przeliczalne Turinga typ 1 kontekstowe?? typ 2 bezkontekstowe automaty bezkontekstowe ze stosem typ 3 regularne automaty regularne skończone
10 Gramatyki i języki kontekstowe Gramatyka G = (A, N, S, α) jest kontekstowa jeśli produkcje są postaci: S ε u X v u w v X N, u, v, w (A N), w ε, S / w Pytanie Gramatyka G: A = {a, b, c} N = {S, X, B} S ε X abxc Ba ab S X X abc Bb bb L(G) = {a n b n c n : n N} Jak przerobić tę gramatykę na gramatykę kontekstową?
11 Gramatyki i języki kontekstowe Gramatyka G = (A, N, S, α) jest kontekstowa jeśli produkcje są postaci: S ε u X v u w v X N, u, v, w (A N), w ε, S / w Pytanie Gramatyka G: A = {a, b, c} N = {S, X, B} S ε X abxc Ba ab S X X abc Bb bb L(G) = {a n b n c n : n N} Jak przerobić tę gramatykę na gramatykę kontekstową? Odpowiedź Pomysł jest następujący: Ba Bā Bā Bā Bā BB BB ab
12 Gramatyki monotoniczne Gramatyka G = (A, N, S, α) jest kontekstowa jeśli produkcje są postaci: S ε u X v u w v X N, u, v, w (A N), w ε, S / w Gramatyka G = (A, N, S, α) jest monotoniczna jeśli produkcje są postaci: S ε v w v w, S / w Twierdzenie Gramatyki kontekstowe i monotoniczne rozpoznają te same języki. Dowód: j.w.
13 Maszyny liniowo ograniczone q... B B B a b a a b a b B B... Maszyna Turinga jest liniowo ograniczona jeśli nigdy nie pisze na pozycji taśmy zajętej przez symbol B. Czyli zabraniamy przejść postaci: (q, B, q, a, x) a B
14 Maszyny liniowo ograniczone a gramatyki monotoniczne Twierdzenie Języli kontekstowe to języki rozpoznawane przez niedet. maszyny liniowo ograniczone. Dowód: gramatyka G maszyna Turinga M: maszyna symuluje gramatykę wstecz v G w q w M q v, zaczyna w konfiguracji q w, akceptuje w konfiguracji qs. Więc L(G) = L(M). maszyna Turinga z taśmą jednostronnie nieograniczoną gramatyka: Faza 1: S G $ w [q f, a] v B w, v (T {B}), a T {B} Faza 2: b [q, c] [q, a] c jeśli (q, a, q, b, ) δ [q, c] b c [q, a] jeśli (q, a, q, b, ) δ b [q, B] [q, B] jeśli (q, B, q, b, ) δ [q, c] b B c [q, B] jeśli (q, B, q, b, ) δ $ [q 0, a] $ a a B a
15 (Nie)rozstrzygalność gramatyk monotonicznych Fakt Problem słów jest rozstrzygalny dla gramatyk monotonicznych. Więc problem stopu jest rozstrzygalny dla liniowo ograniczonych maszyn Turinga. Twierdzenie Problem (nie)pustości jest nierozstrzygalny dla języków kontekstowych. Dowód: Dla ustalonej instancji PCP, zbiór rozwiązań jest językiem kontekstowym. funkcja obliczalna: instancja PCP x G x poprawność: x ma rozwiązanie L(G x ) Pytanie Czy problem (nie)pustości jest częściowo rozstrzygalny?
16 Hierarchia Chomsky ego typ języki automaty gramatyki typ 0 rekurencyjnie maszyny typu 0 przeliczalne Turinga typ 1 kontekstowe maszyny liniowo ogr. kontekstowe/monotoniczne typ 2 bezkontekstowe automaty bezkontekstowe ze stosem typ 3 regularne automaty regularne skończone
17 Plan 1 Gramatyki 2 Języki kontekstowe 3 Automaty z licznikami 4 Złożoność czasowa i pamięciowa
18 Automaty z licznikami A = (A, Q, I, F, C, δ) A alfabet Q skończony zbiór stanów I Q stany początkowe F Q stany akceptujące C skończony zbiór liczników δ Q (A {ε}) {c++, c, c==0? : c C} Q relacja przejścia Przykład A = {(, ), [, ]} C = {c, d} (, c++ c==0?; d==0? [, d++ ], d L(A) =? ), c
19 Automaty z licznikami są równoważne maszynom Turinga Twierdzenie Języki częściowo rozstrzygalne to języki rozpoznawane przez automaty z licznikami. Dowód (idea): Maszyna Turinga automat z 3 licznikami:... B B B B B... q q = = 11
20 Automaty z licznikami są równoważne maszynom Turinga Twierdzenie Języki częściowo rozstrzygalne to języki rozpoznawane przez automaty z licznikami. Dowód (idea): Maszyna Turinga automat z 3 licznikami:... B B B B B... q q = = 11 Potrzebne operacje na licznikach: parz(c)? nparz(c)? c = c >> 1 c = c << 1
21 Maszyna Turinga automat z licznikami Potrzebne operacje na licznikach: parz(c)? nparz(c)? c = c >> 1 c = c << 1 parz(c) nparz(c) c==0? c c==0? c==0? start start c ; d++; d++ c ; d++
22 Automaty z 2 licznikami Twierdzenie Maszyny z 2 licznikami potrafią symulować maszyny z 3 licznikami. Dowód:? Najprostszy problem nierozstrzygalny Dane: A automat deterministyczny z 2 licznikami c 1, c 2 Wynik: czy A zatrzyma się, jeśli rozpocznie w konfiguracji (q 0, c 1 = 0, c 2 = 0)? Pytanie Kiedy automat z licznikami jest deterministyczny?
23 Automaty z 2 licznikami Twierdzenie Maszyny z 2 licznikami potrafią symulować maszyny z 3 licznikami. Dowód:? Najprostszy problem nierozstrzygalny Dane: A automat deterministyczny z 2 licznikami c 1, c 2 Wynik: czy A zatrzyma się, jeśli rozpocznie w konfiguracji (q 0, c 1 = 0, c 2 = 0)? Pytanie Kiedy automat z licznikami jest deterministyczny? c==0? c++ c
24 Plan 1 Gramatyki 2 Języki kontekstowe 3 Automaty z licznikami 4 Złożoność czasowa i pamięciowa
25 Czas i pamięć n długość słowa wejściowego. Rozważamy funkcje f : N N t.że f (n) log n. klasa języków DTIME(f (n)) NTIME(f (n)) DSPACE(f (n)) NSPACE(f (n)) języki rozpoznawane przez deterministyczną maszynę w czasie f (n) niedeterministyczną maszynę w czasie f (n) deterministyczną maszynę w pamięci f (n) niedeterministyczną maszynę w pamięci f (n) Pytanie Czy wystarczy ograniczyć się do obliczalnych funkcji f? Twierdzenie Wszystkie klasy są właściwymi podklasami języków rozstrzygalnych. Dowód: L p = {w : w L f (M(w))}
26 Hierarchia Twierdzenie DTIME(f (n)) NTIME(f (n)) DSPACE(f (n)) NSPACE(f (n)) NSPACE(f (n)) c DTIME(2c f (n) ) = DTIME(2 O(f (n)) ) zalożenie!... EXPSPACE = c DSPACE(2 nc ) = c NSPACE(2 nc ) NEXPTIME = c NTIME(2 nc ) EXPTIME = c DTIME(2 nc ) PSPACE = c DSPACE(n c ) = c NSPACE(n c ) NP = NPTIME = c NTIME(n c ) P = PTIME = c DTIME(n c ) NL = L = NLOGSPACE = NSPACE(log(n)) LOGSPACE = DSPACE(log(n))
27 Hierarchia Chomsky ego typ języki automaty gramatyki klasa złożoności typ 0 rekurencyjnie maszyny dowolne przeliczalne Turinga typ 1 kontekstowe maszyny liniowo kontekstowe/ NSPACE(n) ograniczone monotoniczne typ 2 bezkontekstowe automaty bezkontekstowe PTIME ze stosem typ 3 regularne automaty regularne NSPACE(1)/ skończone DSPACE(1)
28 W następnym odcinku: Czas wielomianowy i pamięć wielomianowa: PSPACE = c DSPACE(n c ) = c NSPACE(n c ) NP = NPTIME = c NTIME(n c ) P = PTIME = DTIME(n c ) c
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 11: Obliczalność i nieobliczalność Sławomir Lasota Uniwersytet Warszawski 6 maja 2015 Plan 1 Problemy częściowo rozstrzygalne 2 Problemy rozstrzygalne 3 Funkcje (częściowo)
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A
Hierarchia Chomsky ego Maszyna Turinga
Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór
2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego
2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną G = gdzie: N zbiór symboli nieterminalnych, T zbiór symboli terminalnych, P zbiór
Imię, nazwisko, nr indeksu
Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za
Hierarchia Chomsky ego
Hierarchia Chomsky ego Gramatyki nieograniczone Def. Gramatyką nieograniczoną (albo typu 0) nazywamy uporządkowaną czwórkę G= gdzie: % Σ - skończony alfabet symboli końcowych (alfabet, nad którym
Maszyna Turinga języki
Maszyna Turinga języki Teoria automatów i języków formalnych Dr inż. Janusz Majewski Katedra Informatyki Maszyna Turinga (1) b b b A B C B D A B C b b Q Zależnie od symbolu obserwowanego przez głowicę
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 9: Własności języków bezkontekstowych Sławomir Lasota Uniwersytet Warszawski 27 kwietnia 2016 Plan 1 Pompowanie języków bezkontekstowych 2 Własności domknięcia 3 Obrazy
Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka
Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =
Automat ze stosem. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki
Automat ze stosem Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Automat ze stosem (1) dno stosu Stos wierzchołek stosu Wejście # B B A B A B A B a b b a b a b $ q i Automat ze
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW RELACJE MIEDZY KLASAMI ZŁOŻONOŚCI Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 KLASY ZŁOŻONOŚCI KLASE ZŁOŻONOŚCI OPISUJE SIE PODAJAC: Model
Dopełnienie to można wyrazić w następujący sposób:
1. (6 punktów) Czy dla każdego regularnego L, język f(l) = {w : każdy prefiks w długości nieparzystej należy do L} też jest regularny? Odpowiedź. Tak, jęsli L jest regularny to też f(l). Niech A będzie
Złożoność obliczeniowa. wykład 1
Złożoność obliczeniowa wykład 1 Dwa wykłady: wtorek / środa różnice niewielkie Sprawy organizacyjne wtorek: trochę szybciej, parę dodatkowych rzeczy dedykowana grupa ćw. M. Pilipczuka - ale śmiało mogą
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Od maszyn Turinga do automatów komórkowych Jarosław Miszczak IITiS PAN Gliwice 03/03/2016 1 / 16 1 2 3 Krótka historia Znaczenie 2 / 16 Czego dowiedzieliśmy się
Jaki język zrozumie automat?
Jaki język zrozumie automat? Wojciech Dzik Instytut Matematyki Uniwersytet Śląski Katowice wojciech.dzik@us.edu.pl 7. Forum Matematyków Polskich, 12-17 września 2016, Olsztyn Prosty Automat do kawy Przemawiamy
Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech
Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech anagram(l) = {w : w jest anagaramem v dla pewnego v L}. (a) Czy jeśli L jest
(j, k) jeśli k j w przeciwnym przypadku.
Zadanie 1. (6 punktów) Rozważmy język słów nad alfabetem {1, 2, 3}, w których podciąg z pozycji parzystych i podciąg z pozycji nieparzystych są oba niemalejące. Na przykład 121333 należy do języka, a 2111
Języki formalne i automaty Ćwiczenia 1
Języki formalne i automaty Ćwiczenia Autor: Marcin Orchel Spis treści Spis treści... Wstęp teoretyczny... 2 Wprowadzenie do teorii języków formalnych... 2 Gramatyki... 5 Rodzaje gramatyk... 7 Zadania...
ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2
ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2 1. Twierdzenie Sipsera: Dla dowolnej maszyny M działającej w pamięci S(n) istnieje maszyna M taka, że: L(M) = L(M ), M działa w pamięci S(n), M ma własność stopu. Dowód:
JAO - Wprowadzenie do Gramatyk bezkontekstowych
JAO - Wprowadzenie do Gramatyk bezkontekstowych Definicja gramatyki bezkontekstowej Podstawowymi narzędziami abstrakcyjnymi do opisu języków formalnych są gramatyki i automaty. Gramatyka bezkontekstowa
Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu
Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady
10110 =
1. (6 punktów) Niedeterministyczny automat skończony nazwiemy jednoznacznym, jeśli dla każdego akceptowanego słowa istnieje dokładnie jeden bieg akceptujący. Napisać algorytm sprawdzający, czy niedeterministyczny
Wykład5,str.1. Maszyny ze stosem ... 1,0 λ r. λ,z λ
Wykład5,str1 p 0,Z 0Z 0,0 00 q λ,z λ r Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana Z p 0,Z 0Z 0,0 00 q λ,z λ r Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana 0 Z p 0,Z 0Z 0,0 00
Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne
Maszyny Turinga Maszyna Turinga jest automatem ta±mowym, skª da si z ta±my (tablicy symboli) potencjalnie niesko«czonej w prawo, zakªadamy,»e w prawie wszystkich (tzn. wszystkich poza sko«czon liczb )
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka
Wprowadzenie do programowania języki i gramatyki formalne. dr hab. inż. Mikołaj Morzy
Wprowadzenie do programowania języki i gramatyki formalne dr hab. inż. Mikołaj Morzy plan wykładu wprowadzenie gramatyki podstawowe definicje produkcje i drzewa wywodu niejednoznaczność gramatyk hierarchia
Języki formalne i automaty Ćwiczenia 9
Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej
Parsery LL(1) Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki
Parsery LL() Teoria kompilacji Dr inż. Janusz Majewski Katedra Informatyki Zadanie analizy generacyjnej (zstępującej, top-down) symbol początkowy już terminale wyprowadzenie lewostronne pierwszy od lewej
PROBLEMY NIEROZSTRZYGALNE
PROBLEMY NIEROZSTRZYGALNE Zestaw 1: T Przykład - problem domina T Czy podanym zestawem kafelków można pokryć dowolny płaski obszar zachowując odpowiedniość kolorów na styku kafelków? (dysponujemy nieograniczoną
Logika stosowana. Ćwiczenia Złożoność obliczeniowa problemu spełnialności. Marcin Szczuka. Instytut Informatyki, Uniwersytet Warszawski
Logika stosowana Ćwiczenia Złożoność obliczeniowa problemu spełnialności Marcin Szczuka Instytut Informatyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2015/2016 Marcin Szczuka (MIMUW)
Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski
Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /
Języki formalne i automaty Ćwiczenia 7
Języki formalne i automaty Ćwiczenia 7 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Automaty... 2 Cechy automatów... 4 Łączenie automatów... 4 Konwersja automatu do wyrażenia
GRAMATYKI BEZKONTEKSTOWE
GRAMATYKI BEZKONTEKSTOWE PODSTAWOWE POJĘCIE GRAMATYK Przez gramatykę rozumie się pewien układ reguł zadający zbiór słów utworzonych z symboli języka. Słowa te mogą być i interpretowane jako obiekty językowe
Języki formalne i automaty Ćwiczenia 3
Języki formalne i automaty Ćwiczenia 3 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Algorytm LL(1)... 2 Definicja zbiorów FIRST1 i FOLLOW1... 3 Konstrukcja tabeli parsowania
Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.
Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/
Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}
Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy
Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń
Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 4 kwietnia 2019 1 Dodajmy kontekst! Rozważaliśmy
3.4. Przekształcenia gramatyk bezkontekstowych
3.4. Przekształcenia gramatyk bezkontekstowych Definicje Niech będzie dana gramatyka bezkontekstowa G = G BK Symbol X (N T) nazywamy nieużytecznym w G G BK jeśli nie można w tej gramatyce
Teoria obliczeń czyli czego komputery zrobić nie mogą
Teoria obliczeń czyli czego komputery zrobić nie mogą Marek Zaionc Uniwersytet Jagielloński Materiały do wykładu: P. Odifreddi, Classical Recursion Theory, North Holland 1989. J.H. Hopcroft, J.D. Ullman
Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ)
Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też L = {vw : vuw L dla pewnego u A takiego, że u = v + w } Rozwiązanie. Niech A =
JIP. Analiza składni, gramatyki
JIP Analiza składni, gramatyki Książka o różnych językach i paradygmatach 2 Polecam jako obowiązkową lekturę do przeczytania dla wszystkich prawdziwych programistów! Podsumowanie wykładu 2 3 Analiza leksykalna
Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność
Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/
TEORIA ZŁOŻONOŚCI PROBLEMY I ALGORYTMY OGRANICZENIE DOLNE I GÓRNE PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI
PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI TEORIA ZŁOŻONOŚCI I MASZYNA TURINGA TEORIA ZŁOŻONOŚCI Teoria złożoności poszukuje rozwiązania dla problemów, które są algorytmicznie trudne do rozwiązania
Języki formalne i automaty Ćwiczenia 2
Języki formalne i automaty Ćwiczenia 2 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Metoda brute force... 2 Konwersja do postaci normalnej Chomskiego... 5 Algorytm Cocke a-youngera-kasamiego
Języki i gramatyki formalne
Języki i gramatyki formalne Języki naturalne i formalne Cechy języka naturalnego - duża swoboda konstruowania zdań (brak ścisłych reguł gramatycznych), duża ilość wyjątków. Języki formalne - ścisły i jednoznaczny
Efektywność Procedur Obliczeniowych. wykład 5
Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW NIEDETERMINISTYCZNE MASZYNY TURINGA Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 NIEDETERMINISTYCZNE MASZYNY TURINGA DEFINICJA: NIEDETERMINISTYCZNA
Złożoność obliczeniowa
Złożoność obliczeniowa Wykłady dla III roku bioinformatyki Paweł Urzyczyn urzy@mimuw.edu.pl 24 stycznia 2017, godzina 13: 27 1 Języki regularne Definicja 1.1 Słowo nad alfabetem A to dowolny skończony
Klasyczne i kwantowe podejście do teorii automatów i języków formalnych p.1/33
Klasyczne i kwantowe podejście do teorii automatów i języków formalnych mgr inż. Olga Siedlecka olga.siedlecka@icis.pcz.pl Zakład Informatyki Stosowanej i Inżynierii Oprogramowania Instytut Informatyki
złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa
Zadanie 1. Rozważmy jezyk złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa równe. Narysować diagram minimalnego automatu deterministycznego akceptujacego
JAO - Języki, Automaty i Obliczenia - Wykład 2. JAO - Języki, Automaty i Obliczenia - Wykład 2
Dowodzenie nieregularności języka [lemat o pompowaniu] Jeśli L regularny to istnieje stała c spełniająca : jeżeli z L, z c to istnieje dekompozycja w = u v x tak, że uv i x L dla każdego i 0 [lemat o skończonej
R O Z D Z I A Ł V I I I
R O Z D Z I A Ł V I I I 1. Definicja maszyny Turinga Najprostszym narzędziem do rozpoznawania języków jest automat skończony. Nie ma on pamięci zewnętrznej, a jedynie wewnętrzną. Informacją pamiętaną z
Gramatyki grafowe. Dla v V, ϕ(v) etykieta v. Klasa grafów nad Σ - G Σ.
Gramatyki grafowe Def. Nieskierowany NL-graf (etykietowane wierzchołki) jest czwórką g = (V, E, Σ, ϕ), gdzie: V niepusty zbiór wierzchołków, E V V zbiór krawędzi, Σ - skończony, niepusty alfabet etykiet
O ALGORYTMACH I MASZYNACH TURINGA
O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Gramatyki bezkontekstowe I Gramatyką bezkontekstową
Języki formalne i automaty Ćwiczenia 4
Języki formalne i automaty Ćwiczenia 4 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Sposób tworzenia deterministycznego automatu skończonego... 4 Intuicyjne rozumienie konstrukcji
Maszyna Turinga, ang. Turing Machine (TM)
Maszyna Turinga, ang. Turing Machine (TM) Alan Turing wybitny angielski matematyk, logik i kryptolog, jeden z najważniejszych twórców informatyki teoretycznej, któremu zawdzięczamy pojęcie maszyny Turinga
Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences. Matematyka Poziom kwalifikacji: II stopnia
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences
Grupy pytań na egzamin inżynierski na kierunku Informatyka
Grupy pytań na egzamin inżynierski na kierunku Informatyka Dla studentów studiów dziennych Należy wybrać dwie grupy pytań. Na egzaminie zadane zostaną 3 pytania, każde z innego przedmiotu, pochodzącego
1 Automaty niedeterministyczne
Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów
Struktury danych i złożoność obliczeniowa. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 2 godz., Projekt 1 godz.. Strona kursu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html Struktury
JAO - lematy o pompowaniu dla jezykow bezkontekstowy
JAO - lematy o pompowaniu dla jezykow bezkontekstowych Postać normalna Chomsky ego Gramatyka G ze zbiorem nieterminali N i zbiorem terminali T jest w postaci normalnej Chomsky ego wtw gdy każda produkcja
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 05 Biologia i gramatyka Jarosław Miszczak IITiS PAN Gliwice 07/04/2016 1 / 40 1 Nieformalne określenie fraktali. 2 Wymiar pudełkowy/fraktalny. 3 Definicja fraktali.
JĘZYKI FORMALNE I METODY KOMPILACJI
Stefan Sokołowski JĘZYKI FORMALNE I METODY KOMPILACJI Inst Informatyki Stosowanej, PWSZ Elbląg, 2015/2016 JĘZYKI FORMALNE reguły gry Wykład1,str1 Zasadnicze informacje: http://iispwszelblagpl/ stefan/dydaktyka/jezform
Opisy efektów kształcenia dla modułu
Nazwa modułu: Teoria automatów i języków Rok akademicki: 2013/2014 Kod: AMA-2-044-BS-s Punkty ECTS: 6 Wydział: Matematyki Stosowanej Kierunek: Matematyka Specjalność: (bez wyboru specjalności) Poziom studiów:
Efektywna analiza składniowa GBK
TEORETYCZNE PODSTAWY INFORMATYKI Efektywna analiza składniowa GBK Rozbiór zdań i struktur zdaniowych jest w wielu przypadkach procesem bardzo skomplikowanym. Jego złożoność zależy od rodzaju reguł produkcji
Lista 5 Gramatyki bezkontekstowe i automaty ze stosem
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Teoretyczne Podstawy Informatyki Lista 5 Gramatyki bezkontekstowe i automaty ze stosem 1 Wprowadzenie 1.1 Gramatyka bezkontekstowa
Algorytmy stochastyczne, wykład 05 Systemy Liendenmayera, modelowanie roślin
Algorytmy stochastyczne, wykład 5, modelowanie roślin Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 214-3-2 1 2 3 ze stosem Przypomnienie gramatyka to system (Σ, A, s,
Typy algorytmów losowych. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Typy algorytmów losowych ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Typy algorytmów losowych Las Vegas - zawsze daje prawidłowa odpowiedź (różny czas działania). Przykład: RandQuicksort ALP520
Struktura danych. Sposób uporządkowania informacji w komputerze.
Struktura danych Sposób uporządkowania informacji w komputerze. Algorytm Skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Al-Khwarizmi perski matematyk
Elementy Teorii Obliczeń
Wykład 2 Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie 10 stycznia 2009 Maszyna Turinga uwagi wstępne Maszyna Turinga (1936 r.) to jedno z najpiękniejszych i najbardziej intrygujacych
1. Maszyna Turinga, gramatyki formalne i ONP
1. Maszyna uringa, gramatyki formalne i OP 1.1.Maszyna uringa Automat skończony składa się ze skończonego zbioru stanów i zbioru przejść ze stanu do stanu, zachodzących przy różnych symbolach wejściowych
Wyrażenie nawiasowe. Wyrażenie puste jest poprawnym wyrażeniem nawiasowym.
Wyrażenie nawiasowe Wyrażeniem nawiasowym nazywamy dowolny skończony ciąg nawiasów. Każdemu nawiasowi otwierającemu odpowiada dokładnie jeden nawias zamykający. Poprawne wyrażenie nawiasowe definiujemy
Odmiany maszyny Turinga. dr hab. inż. Joanna Józefowska, prof. PP 1
Odmiany maszyny Turinga 1 Uniwersalna maszyna Turinga Uniwersalna maszyna U nad alfabetem A k jest to maszyna definiująca funkcje: f U, n+1 = {((w(i 1, I 2,..., I n )),y) w - opis maszyny T za pomocą słowa,
Jȩzyki, automaty, zlożoność obliczeniowa
Jȩzyki, automaty, zlożoność obliczeniowa Joanna Jȩdrzejowicz Andrzej Szepietowski 23 października 2007 Przedmowa Podręcznik niniejszy jest przeznaczony dla studentów drugiego roku kierunku informatyki
Lingwistyka Matematyczna Języki formalne i gramatyki Analiza zdań
Katedra Informatyki Stosowanej Politechnika Łódzka Lingwistyka Matematyczna Języki formalne i gramatyki Analiza zdań dr hab. inŝ. Lidia Jackowska-Strumiłło Historia rozwoju języków programowania 1955 1955
Wprowadzenie do złożoności obliczeniowej
problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów
Algorytmiczny model uczenia się języka Prezentacja
Nina Gierasimczuk& Jakub Szymanik Algorytmiczny model uczenia się języka Prezentacja Forum Filozoficzne, Lublin 15 maja 2004 Spis treści 1. Wprowadzenie... 2 1.1. Filozoficznyproblemuczeniasię... 2 1.2.
Obliczanie. dr hab. inż. Joanna Józefowska, prof. PP 1
Obliczanie 1 Obliczanie Co to jest obliczanie? Czy wszystko można obliczyć? Czy to, co intuicyjnie uznajemy za obliczalne można obliczyć za pomocą mechanicznej procedury? 2 Czym jest obliczanie? Dawid
Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia)
Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia) Kamil Matuszewski 20 lutego 2017 22 lutego 2017 Zadania, które
Zakładamy, że maszyna ma jeden stan akceptujacy.
Złożoność pamięciowa Rozważamy następujac a maszynę Turinga: 1 0 0 1 1 0 1 1 1 1 Taśma wejściowa (read only) 1 0 1 1 0 0 0 1 0 0 1 Taśma robocza (read/write) 0 1 1 0 0 1 0 0 1 Taśma wyjściowa (write only)
1 X-gramatyki, Hierarchia Chomsky ego
1 X-gramatyki, Hierarchia Chomsky ego 1.1 X-gramatyka i język przez nią wyznaczony Symbolem X dalej oznaczamy ustalony niepusty zbiór symboli terminalnych zwanych też tokenami. Definicja 1.1 X-gramatyką
Maszyna Turinga (Algorytmy Część III)
Maszyna Turinga (Algorytmy Część III) wer. 9 z drobnymi modyfikacjami! Wojciech Myszka 2018-12-18 08:22:34 +0100 Upraszczanie danych Komputery są coraz szybsze i sprawniejsze. Na potrzeby rozważań naukowych
Wyrażenia regularne.
Teoretyczne podstawy informatyki Wykład : Wyrażenia regularne. Prof. dr hab. Elżbieta Richter-Wąs.2.202 Wyrażenia regularne Wyrażenia regularne (ang. regular expressions) stanowią algebraiczny sposób definiowania
Wstęp do programowania
Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu
AUTOMATYKA INFORMATYKA
AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów
KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 204
Opracował: prof. dr hab. inż. Jan Kazimierczak KATEDA INFOMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 204 Temat: Hardware'owa implementacja automatu skończonego pełniącego
ZYKI BEZKONTEKSTOWE (KLASA
Spis treści 6. JĘZYKI BEZKONTEKSTOWE (KLASA "2")... 2 6.1. GRAMATYKI BEZKONTEKSTOWE... 2 6.2. AUTOMATY ZE STOSEM... 12 7. DETERMINISTYCZNE JĘZYKI BEZKONTEKSTOWE I ICH AKCEPTORY... 16 7.1. GRAMATYKI I JĘZYKI
Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie
Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej
Języki formalne i automaty Ćwiczenia 8
Języki formalne i automaty Ćwiczenia 8 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Konwersja NFA do DFA... 2 Minimalizacja liczby stanów DFA... 4 Konwersja automatu DFA do
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 04 Systemy Lindenmayera Jarosław Miszczak IITiS PAN Gliwice 19/10/2016 1 / 37 1 L-Systemy 2 GroIMP i XL ALife 2 / 37 L-Systemy L-systemy czyli systemy Lindenmayera.
Analizator syntaktyczny
Analizator syntaktyczny program źródłowy analizator leksykalny token daj nast. token analizator syntaktyczny drzewo rozbioru syntaktycznego analizator semantyczny kod pośredni tablica symboli Analizator
Minimalizacja automatów niedeterministycznych na słowach skończonych i nieskończonych
Szczepan Hummel Minimalizacja automatów niedeterministycznych na słowach skończonych i nieskończonych 24.11.2005 1. Minimalizacja automatów deterministycznych na słowach skończonych (DFA) [HU] relacja
Matematyczna wieża Babel. 3. Gramatyki o językach bezkontekstowych materiały do ćwiczeń
Matematyczna wieża Babel. 3. Gramatyki o językach bezkontekstowych materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 21 marca 2019 1 Gramatyki! Gramatyka to taki przepis
Technologie Informacyjne
POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 3: Wprowadzenie do algorytmów i ich
Wprowadzenie do złożoności obliczeniowej
Institute of Informatics Wrocław University of Technology Poland wersja 0.9 Obliczalność f : N R { sin(1/n) gdy n jest liczba pierwsza f (n) = cos(1/n) w przeciwnym przypadku Obliczalność f : N R { sin(1/n)
JĘZYKIFORMALNE IMETODYKOMPILACJI
Stefan Sokołowski JĘZYKIFORMALNE IMETODYKOMPILACJI Inst. Informatyki Stosowanej, PWSZ Elbląg, 2009/2010 JĘZYKI FORMALNE reguły gry Wykład1,2X2009,str.1 Zasadnicze informacje: http://iis.pwsz.elblag.pl/
Podstawy Informatyki Gramatyki formalne
Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Języki i gramatyki Analiza syntaktyczna Semantyka 2 Podstawowe pojęcia Gramatyki wg Chomsky ego Notacja Backusa-Naura
R O Z D Z I A Ł V I I
R O Z D Z I A Ł V I I 1. Podstawowe definicje RozwaŜane w poprzednim rozdziale automaty Rabina-Scotta były urządzeniami o bardzo ograniczonej zdolności przechowywania informacji. Rzeczywista pojemność