Analiza konstrukcji i cyklu pracy silnika turbinowego. Dr inż. Robert Jakubowski
|
|
- Łucja Nowicka
- 8 lat temu
- Przeglądów:
Transkrypt
1 Analiza konstrukcji i cyklu racy silnika turbinowego Dr inż. Robert Jakubowski
2 CO TO JEST CIĄG? Równanie ciągu: K m(c V) 5
3 Jak silnik wytwarza ciąg? Silnik śmigłowy silnik odrzutowy Silnik służy do wytworzenia mocy do naędu śmigła, które wytwarza ciąg owodując nieznaczny rzyrost rędkości dużej ilości strumienia owietrza Silnik służy do bezośredniego wytworzenia ciągu orzez znaczące zwiększenie rędkości salin wyływających z silnika 3
4 Silnik turbinowy jednorzeływowy RD 10
5 Silniki SO-3/schemat konstrukcyjny
6 Odrzutowy silnik jednorzeływowy 1. wlot,. srężarka niskiego ciśnienia, 3. srężarka wysokiego ciśnienia, 4. komora salania, 5. zesół turbin i dysza wylotowa, 6. część gorąca silnika, 7. turbina silnika, 8 dyfuzor wlotowy do komory salania, 9. część zimna silnika, 10. strumień owietrza na wlocie do silnika
7 Schematyczne rzedstawienie silnika wl 1 1a 3 3a 4 5 SPRĘŻARKA NC TURBINA WC SPRĘŻARKA WC TURBINA NC
8 Jednorzeływowy silnik odrzutowy c=f(t dyszy, dyszy_in/ ) WLOT SPRĘŻARKA DYSZA WYLOTOWA TURBINA KOMORA SPALANIA 8
9 Analiza arametrów termodynamicznych obiegu silnika jednorzeływowego PARAMETRY UZYTKOWE SILNIKA m al wl cv c 5 CIAG SILNIKA V rędkość lotu K m c mv m (1 ) c V gdzie: V Ma krt 5 5 al 5 CIAG JEDNOSTKOWY k (1 ) c V j al 5 ZUŻYCIE PALIWA m c al j m K al al m JEDNOSTKOWE ZUŻYCIE PALIWA k al j
10 Parametry charakteryzujące racę silnika Energetyczne Srawność cielna: c lob m 5 c m 5 V al Wu qdo m m Srawność naędowa: Srawność ogólna: k jv m c V k k jv lob m 5 5 k jv m al o k jv Wu qdo m m m c V q W e q m m al 5 5 do _ t u str _ wewn. odr
11 Obieg silnika turbinowego odrzutowego (obieg orównawczy Braytona)
12 Obliczenia i analiza silnika odrzutowego silnik idealny Procesy wewnętrzne są oisane rzemianami odwracalnymi, Model gazu jest oisany równaniami gazu doskonałego: c, c, k idem v Równanie Claeyrona v RT k c c v R c c R [J/(kgK)] indywidualna stała gazowa zależy od składu gazu Dla owietrza R=87 [J/(kgK)], c =1005 [J/(kgK)], c v =718 [J/(kgK)], k=1,4 v
13 Silnik turbinowy a obieg Braytona Prędkość lotu V = T 1 =1 WLOT DO SILNIKA Ciśnienie i temeratura całkowita na wejściu do wlotu jest równa ciśnieniu i temeraturze owietrza w otoczeniu. Wlot w silniku idealnym traktuje się jako urządzenie izentalowe i bez strat ciśnienia, stąd w rzekroju nr 1 (za wentylatorem) arametry strumienia są takie jak w otoczeniu.
14 Silnik turbinowy a obieg Braytona Prędkość lotu V = T 1 l S =1 SPRĘŻARKA Srężanie w srężarce idealnej traktuje się jako roces izentroowy, stąd omiędzy zmianami temeratury ciśnienia i gęstości dla rocesu srężania słuszne są zależności oisane równaniami izentroy. Pracę srężania ls wyznacza się jako różnicę entalii.
15 Silnik turbinowy a obieg Braytona Prędkość lotu V =0 3 q do T 1 l S =1 KOMORA SPALANIA Salanie w silniku idealnym utożsamiane jest z rocesem izobarycznego dorowadzenia cieła. Ilość cieła dorowadzonego do strumienia gazu w tym rocesie wyznaczana jest jako iloczyn względnego zużycia aliwa i jego wartości oałowej i jest równa zmianie entalii w komorze salania.
16 Silnik turbinowy a obieg Braytona Prędkość lotu V =0 3 q do 4=5 l T ~=l S T 1 l S =1 TURBINA W turbinie idealnej roces rozrężania traktowany jest jako rzemiana izentroowa. Praca turbiny, która jest różnicą entalii na wejściu i wyjściu musi równoważyć racę srężarki stąd zais l T =l S
17 Silnik turbinowy a obieg Braytona Prędkość lotu V =0 3 q do 4=5 l T ~=l S c 5 T 1 l S =1 ROZPRĘŻANIE W DYSZY WYLOTOWEJ Rozrężanie w dyszy wylotowej silnika zachodzi w skutek różnicy ciśnienia całkowitego na wejściu do dyszy i anującego w otoczeniu. Kosztem zamiany rodzaju energii w dyszy nastęuje rzyrost rędkości kosztem energii statycznej. Proces ten w silniku idealny m jest oisany równaniami izentroy
18 Silnik turbinowy a obieg Braytona Prędkość lotu V =0 3 q do 4=5 l T ~=l S c 5 T 1 l S =1 q od ODPROWADZENIE ROZPRĘŻANIE WLOT KOMORA SPRĘŻARKA DO TURBINA W SILNIKA CIEPŁA SPALANIA DYSZY Z WYLOTOWEJ SILNIKA ZE SPALINAMI
19 Charakterystyka obiegu Braytona Stoień odgrzania: T T 3 1 Sręż całkowity: Praca właściwa obiegu Braytona: 1 1 k k lob qdo qod ct 1 1 k 1 k Srawność obiegu Braytona: ob l q ob do 1 1 k 1 k 1 c c i 1 PRACA OBIEGU BRAYTONA zależy od srężu i stonia odgrzania obiegu SPRAWNOŚĆ OBIEGU zależy tylko od srężu i jest tym bliższa jedności im większy jest sręż obiegu
20 Parametry obiegu, a efektywność racy silnika odrzutowego Dla rędkości V =0 Dla rędkości V >0 l ob ob c5 1 k j c5 c5 1 A W c Wu c al u j j c V 1 l k c V Bk c5 V c5 V 1 ob C W c Wu c 5 ob j 5 j al u j j Ciąg jednostkowy zależy odobnie jak raca obiegu od arametrów racy silnika. Jednostkowe zużycie aliwa zmienia się odwrotnie niż srawność obiegu od arametrów racy silnika.
21 Charakterystyka obiegu Braytona i silnika odrzutowego l ob h ob h l ob(max) ob(max) ot. Ciąg jednostkowy max ot. Jednostk. zużycie aliwa Maksymalna raca obiegu k 1 l ob k 0 ct c idiem ot k k 1
22 Otymalizacja obiegu Braytona h OB l ob D < D < D < D Linia m aksymalnej racy obie gu 3 4 Stoień odgrzania Sręż otymalny Sręż maksymalny 4 11, ,7 79, c
23 Przykładowe obliczenia obiegu Braytona Ph [Pa] Th [K] T3 [K] D , ,1 18 q do l T c , ,1 386 l ob [kj/kg] h ob kj [Ns/kg] Cj [kg/danh] q od 385 0, l S i 475 0, , , , ,81 0 0
24 Obieg silnika z uwzględnieniem strat i 3 qdo qdo l t c5 l t c5 c const T3 i3 const T i l s l v s i qod qod s wl s s s do_ s KS s s t d c c 5 5 ideal qod qod ideal l l ob ob ideal ob ob ideal k j k j c j c j ideal ideal
25 Charakterystyka obiegu silnika ze stratami idem silnik idealny silnik ze stratami ot. max S _ ol R _ ol 0,89 0,9 ot S _ ol R _ ol k 1 k Stoień odgrzania Sręż otymalny silnik idealny Sręż otymalny silnik ze stratami 4 11,3 7,5 5 16,7 11, ,3 5
26 Srawność i jednostkowe zużycie aliwa silnika ze stratami idem c j h h ob(max) ob(max) Silnik idealny Silnik ze stratami Stoień odgrzania Sręż ekonomiczny silnik ze stratami ot. Sręż otymalny silnik ze stratami , , ,3 max ot.
27 Wływ stonia odgrzania na wartości srężu otymalnego i ekonomicznego cj kj k j( ) k j( ) k j( 1) cj( 1) c j( ) 13 cj_min ot( 1 ek( 1 ot( 3 c j( 3) Ze wzrostem stonia odgrzania silnika: wzrasta ciąg maksymalny silnika, który jest osiągany rzy większych wartościach srężu otymalnego obniża się wartość minimalnego jednostkowego zużycia aliwa, które jest osiągane rzy większych wartościach srężu ekonomicznego rozszerza się zakres sręży, rzy których raca obiegu jest dodatnia. zwiększa się rozbieżność omiędzy wartościami srężu otymalnego i ekonomicznego Charakterystyka ta tłumaczy dlaczego dąży się do odnoszenia maksymalnej temeratury obiegu silnika turbinowego oraz dlaczego musi towarzyszyć temu wzrost srężu silnika ekt( 3
28 Zależność omiędzy ciągiem jednostkowym i jednostkowym zużyciem aliwa
29 Zmiana arametrów roboczych silników lotniczych V 500 do samolotu Airbus A30 max rędkość Ma=0,85 T 3 [K] PW118 PW037 M85 RB199-3 F110 V500 CF6-50A F404 M88 PW110 F100JT10D RB M53-R TF RB11-56CFM56- TF39 M53- TF41 TF34 Abur58 RB11-18 Olim593 JT18D J RB11 JT9D-3 JT9-19 J5 RB163 J79-15 J73 JT4AJ73D1 J rok s JT4A J73 J33-35 F110 JT10D V500 CF6-50A PW037 RB RB11-56 CFM56- PW110 TF39 M88 F404 RB199-3 F401 F100 TF JT9D-3 TF34 TF30-1 RB163 JT9-19 Olim593 Mars45A J J5 J79-15 RB146R J73D rok M 88 do samolotu Desaault Rafale max rędkość Ma=
30 Wływ rędkości lotu na charakterystykę obiegu silnika i l sqdo V V q do =const const l dynv s S dyn ls S i l h l h ob l ob ob(max) ob(max) l t t Punkt racy ot. idem ek V l s i c5 c 5 =const qod s S dyn
31 Silniki do obiektów latających z dużymi naddźwiękowymi rędkościami WLOT SILNIKA NADDŹWIĘKOWEGO Ma<1 i 3 3 =4 Prędkość lotu Ma Sręż dynamiczny (idealny) 1 1,89 1,5 3,67 7,8,5 17, ,73 qdo 1 = c 5 SILNIK STRUMIENIOWY Wtryskiwacz Komora salania 5 V i qod Wlot Dysza wylotowa 31
32 Silnik ekonomiczny - do samolotów komunikacyjnych const c j ob q od h l ob h ob ob(max) Silnik o dużym srężu srężarki. Mały ciąg jednostkowy silnika musi komensować duża ilość rzeływającego owietrza, w celu osiągnięcia odowiedniej siły ciągu ek m m II CIĄG SILNIKA I - stoień dwurzeływowości K K K kan _ w kan _ z m c m c m V kan _ w 5 kan _ z 5 '. m I WENTYLATOR
33 Obniżanie zużycia aliwa rzez zastosowanie silnika dwurzeływowego wl 1 1a 5 V m wentylator zewnętrzna dysza wylotowa m II m I srężarka C5 m 3 3a 4 5 komora salania 5 TWC TNC wewnętrzna dysza wylotowa C5 m 5 ob q 1 q od _ II od _1 do Ze wzrostem stonia dwurzeływowości m rośnie srawność obiegu silnika, bowiem cieło odrowadzane rzez strumień owietrza wyływający z kanału zewnętrznego jest stosunkowo małe. Niekorzystnym zjawiskiem w tego tyu silnikach jest obniżanie ciągu jednostkowego dla silników o większym stoniu dwurzeływowości. q i qdo l s l w v 1a 1a 1 5 c 5 q od_ii 3 3a 4 3 3a lt_wc l t_nc c 5 5 q od_i =( 1+m)l w s 33
34 Wływ stonia dwurzeływowości na osiągi silnika Porównanie arametrów jednostkowych w funkcji rędkości lotu silnika o takim samym ciągu startowym dla różnych wartości stonia dwurzeływowości K cj 1 Ma 1 Ma
35 Chwilowe zwiększenie ciągu silnika rzez włączenie doalacza PRACA SILNIKA Z WYŁĄCZONYM WŁĄCZONYM DOPALACZEM K m c mv 5 5 i 3 q do_d D c 5 D c c T k 1 k q do_ks 5 4 l T 5 c 5D DOPALACZ q od D c T 5_ D D c5 T4 K K T z _ doal D bez _ doal T4, gdy V 0 l S 1 q od s q q q q do doks dod odd q od c c ob _ D ob jd j 35
36 Porównanie osiągów silnika odczas racy z włączonym i wyłączonym doalaczem Silnik K [kn] K [kn] c j [kg/(danh)] c j [kg/(danh)] (bez doalacza) (z doalaczem) (bez doalacza) (z doalaczem) J85-GE-13 1,16 18,14 1,05,64 J76-GE-19 5,8 79,6 0,857,004 GE4/J5P 9,08 305,15 1,060 1,897 J58-P-4 110,8 151,0 0,816 1,937 Olymus 01R 75,5 106,9 0,816 1,835 Olymus ,714 1,08 Włączenie doalacza ozwala na zwiększenie ciągu silnika o ok % rzy onad -u krotnym wzroście jednostkowego zużycia aliwa
37 Porównanie osiągów silnika racującego z włączonym i wyłączonym doalaczem M Z SILNIK PAL O A Z DO SILNIK BE P E D CZ ALACZA
38 Analiza wymagań konstrukcyjnych silnika w zależności od warunków racy S m Ma 38
39 Koncecja silnika o zmiennym obiegu termodynamicznym Silnik GE-3 Nastawy silnika dla racy w warunkach lotu z rędkością oddźwiękową Nastawy silnika dla racy w warunkach lotu z rędkością naddźwiękową 39
40 Silnik samolotu SR 71 Black Bird Prędkość maksymalna 3 Ma Naęd dwa silniki strumieniowo-odrzutowe JT11D-0B o ciągu 148 kn
41 K[kN] Obszary zastosowań silników i samolotów Ma
42
ANALIZA OBIEGU TERMODYNAMICZNEGO SILNIKA ODRZUTOWEGO
ANALIZA OBIEGU TERMODYNAMICZNEGO SILNIKA ODRZUTOWEGO Wykład nr Napęd stosowany we współczesnym lotnictwie cywilnym Siła ciągu Zasada działania silnika odrzutowego pb > p 0 Akcja Reakcja F Strumień gazu
Dwuprzepływowe silniki odrzutowe. dr inż. Robert JAKUBOWSKI
Dwurzeływowe silniki odrzutowe dr inż. Robert JAKUBOWSK Silnik z oddzielnymi dyszami wylotowymi kanałów V 2500 (Airbus A320, D90) Ciąg 98 147 kn Stoień dwurzeływowości 4,5 5,4 Pierwsze konstrukcje dwurzeływowe
SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO
SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO Dr inŝ. Robert JAKUBOWSKI Wydział Budowy Maszyn i Lotnictwa PRz Pok. 5 bud L 33 E-mail robert.jakubowski@prz.edu.pl WWW www.jakubowskirobert.sd.prz.edu.pl
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Opracował Dr inż. Robert Jakubowski Parametry otoczenia p H, T H Spręż sprężarki, Temperatura gazów
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Parametry otoczenia p H, T H Spręż sprężarki π S, Temperatura gazów przed turbiną T 3 Model obliczeń
Zespoły silnika lotniczego. Dr inż. Robert Jakubowski
Zesoły silnika lotniczego Dr inż. Robert Jakubowski DYSZA WYLOTOWA TURBINA KOMORA SPALANIA SPRĘŻARKA WLOT Procesy wewnętrzne w silniku Obieg silnika z uwzględnieniem strat i 3 π c = = idem H qdo = T3 i3
Wykład 2. Przemiany termodynamiczne
Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const
Turbinowy silnik odrzutowy. Dr inŝ. Robert JAKUBOWSKI
Turbinowy silnik odrzutowy Dr inŝ. Robert JAKUBOWSKI Turbinowy silnik jednorzeływowy Jest to najbardziej ierwotne rozwiązanie silnika odrzutowego turbinowego, które ojawiło się na oczątku lat trzydziestych
Zespoły silnika lotniczego. Dr inż. Robert Jakubowski
Zesoły silnika lotniczego Dr inż. Robert Jakubowski DYSZA WYLOTOWA TURBINA KOMORA SPALANIA SPRĘŻARKA WLOT WLOT Wlot Zadaniem wlotu jest dostarczenie do silnika owietrza w wymaganej ilości z zaewnieniem
Silniki tłokowe. Dr inż. Robert JAKUBOWSKI
Silniki tłokowe Dr inż. Robert JAKUBOWSKI Literatura rzedmiotu: Dzierżanowski P. i.in: Silniki Tłokowe z serii Naędy lotnicze, WKŁ. Warszawa 98 Borodzik F.: Budowa silnika z serii Aeroklub olski szkolenie
Komory spalania, turbiny i dysze wylotowe. Dr inż. Robert JAKUBOWSKI
Komory salania, turbiny i dysze wylotowe Dr inż. Robert JAKUBOWSKI KOMORY SPALNAIA TURBINOWYCH SILNIKÓW LOTNICZYCH BUDOWA KOMORY SPALANIA BUDOWA KOMORY SPALANIA ORGANIZACJA PROCESU WEWNĄTRZKOMOROWEGO 1
Komory spalania turbiny i dysze. Dr inż. Robert JAKUBOWSKI
Komory salania turbiny i dysze wylotowe Dr inż. Robert JAKUBOWSKI KOMORY SPALNAIA TURBINOWYCH SILNIKÓW LOTNICZYCH BUDOWA KOMORY SPALANIA ORGANIZACJA PROCESU WEWNĄTRZKOMOROWEGO BUDOWA KOMORY SPALANIA ORGANIZACJA
Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech
emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne
SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO
SILNIK URBINOWY ANALIZA ERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO Dr inŝ. Robert JAKUBOWSKI Wydział Budowy Maszyn i Lotnitwa PRz Po. L 34 a E-mail robersi@rz.edu.l WWW www.jaubowsirobert.sd.rz.edu.l
10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.
0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,
Silniki tłokowe. Dr inż. Robert JAKUBOWSKI
Silniki tłokowe Dr inż. Robert JAKUBOWSKI Literatura rzedmiotu: Dzierżanowski P. i.in: Silniki Tłokowe z serii Naędy lotnicze, WKŁ. Warszawa 98 Borodzik F.: Budowa silnika z serii Aeroklub olski szkolenie
Kalorymetria paliw gazowych
Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cielnych W9/K2 Miernictwo energetyczne laboratorium Kalorymetria aliw gazowych Instrukcja do ćwiczenia nr 7 Oracowała: dr inż. Elżbieta Wróblewska Wrocław,
Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie
Pierwsza zasada termodynamiki 2.2.1. Doświadczenie Joule a i jego konsekwencje 2.2.2. ieło, ojemność cielna sens i obliczanie 2.2.3. Praca sens i obliczanie 2.2.4. Energia wewnętrzna oraz entalia 2.2.5.
Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
ermodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Siik ciey siikach (maszynach) cieych cieło zamieniane jest na racę. Elementami siika są: źródło cieła
Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła
11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz.
ermodynamia Wybór i oracowanie zadań od do 5 - Bogusław Kusz W zamniętej butelce o objętości 5cm znajduje się owietrze o temeraturze t 7 C i ciśnieniu hpa Po ewnym czasie słońce ogrzało butelę do temeratury
WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH. Dr inż. Robert Jakubowski
WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH Dr inż. Robert Jakubowski Literatura Literatura: [] Balicki W. i in. Lotnicze siln9iki turbinowe, Konstrukcja eksploatacja diagnostyka, BNIL nr 30 n, 00 [] Dzierżanowski
Efektywność energetyczna systemu ciepłowniczego z perspektywy optymalizacji procesu pompowania
Efektywność energetyczna systemu ciełowniczego z ersektywy otymalizacji rocesu omowania Prof. zw. dr hab. Inż. Andrzej J. Osiadacz Prof. ndz. dr hab. inż. Maciej Chaczykowski Dr inż. Małgorzata Kwestarz
13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe:
) Ołowiana kula o masie kilograma sada swobodnie z wysokości metrów. Który wzór służy do obliczenia jej energii na wysokości metrów? ) E=m g h B) E=m / C) E=G M m/r D) Q=c w m Δ ) Oblicz energię kulki
= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.
ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,
Parametry charakteryzujące pracę silnika turbinowego. Dr inż. Robert JAKUBOWSKI
Parametry charateryzujące racę silnia turbinweg Dr inż. Rbert JAKUBOWSKI Parametry charateryzujące racę silnia Parametry wewnętrzne (biegu silnia): Sręż całwity silnia (sręż sręzari): Temeratura gazów
WLOTY I SPRĘŻARKI SILNIKÓW. Dr inż. Robert Jakubowski
WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH Dr inż. Robert Jakubowski Literatura Literatura: [] Balicki W. i in. Lotnicze siln9iki turbinowe, Konstrukcja eksploatacja diagnostyka, BNIL nr 30 n, 00 [] Dzierżanowski
Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23
Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy
TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III
Włodzimierz Wolczyński 44 POWÓRKA 6 ERMODYNAMKA Zadanie 1 Przedstaw cykl rzemian na wykresie oniższym w układach wsółrzędnych rzedstawionych oniżej Uzuełnij tabelkę wisując nazwę rzemian i symbole: >0,
Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :
I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej
Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Pomiar ciepła spalania paliw gazowych
Katedra Silników Salinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar cieła salania aliw gazowych Wstę teoretyczny. Salanie olega na gwałtownym chemicznym łączeniu się składników aliwa z tlenem, czemu
Wprowadzenie do przedmiotu Teoria silników lotniczych
Wprowadzenie do przedmiotu Teoria silników lotniczych Wykład nr 1 Rozwój i przegląd konstrukcji Literatura Dzierżanowski i in. Turbiniowe silniki odrzutowe Gajewski Lesikiewicz: Przepływowe silniki odrzutowe
WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH. Dr inż. Robert Jakubowski
WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH Dr inż. Robert Jakubowski Literatura Literatura: [] Balicki W. i in. Lotnicze siln9iki turbinowe, Konstrukcja eksploatacja diagnostyka, BNIL nr 30 n, 00 [] Dzierżanowski
CHARAKTERYSTYKI ZŁOŻONYCH UKŁADÓW Z TURBINAMI GAZOWYMI
CHARAERYSYI ZŁOŻOYCH UŁADÓW Z URBIAMI AZOWYMI Autor: rzysztof Badyda ( Rynek Energii nr 6/200) Słowa kluczowe: wytwarzanie energii elektrycznej, turbina gazowa, gaz ziemny Streszczenie. W artykule rzedstawiono
WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO
WARUNKI RÓWNOWAGI UKŁADU ERMODYNAMICZNEGO Proces termodynamiczny zachodzi doóty, doóki układ nie osiągnie stanu równowagi. W stanie równowagi odowiedni otencjał termodynamiczny układu osiąga minimum, odczas
9.1 Wstęp Analiza konstrukcji pomp i sprężarek odśrodkowych pozwala stwierdzić, że: Ciśnienie (wysokość) podnoszenia pomp wynosi zwykle ( ) stopnia
114 9.1 Wstę Analiza konstrukcji om i srężarek odśrodkowych ozwala stwierdzić, że: Stosunek ciśnień w srężarkach wynosi zwykle: (3-5):1 0, 3 10, ρuz Ciśnienie (wysokość) odnoszenia om wynosi zwykle ( )
5. Jednowymiarowy przepływ gazu przez dysze.
CZĘŚĆ II DYNAMIKA GAZÓW 9 rzeływ gazu rzez dysze. 5. Jednowymiarowy rzeływ gazu rzez dysze. Parametry krytyczne. 5.. Dysza zbieżna. T = c E - back ressure T c to exhauster Rys.5.. Dysza zbieżna. Równanie
prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość
5. Gazy, termochemia Doświadczalne rawa gazowe Model gazu doskonałego emeratura bezwzględna Układ i otoczenie Energia wewnętrzna, raca objęto tościowa i entalia Prawo Hessa i cykl kołowy owy Standardowe
Termodynamika. Część 5. Procesy cykliczne Maszyny cieplne. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 5 Procesy cykliczne Maszyny cieplne Janusz Brzychczyk, Instytut Fizyki UJ Z pierwszej zasady termodynamiki: Procesy cykliczne du = Q el W el =0 W cyklu odwracalnym (złożonym z procesów
Teoria silników lotniczych. Pok. 342A TEL Strona
Teoria silników lotniczych Robert JAKUBOWSKI Pok. 342A TEL 0178651466 e-mail: roberski@prz.edu.pl Strona http://jakubowskirobert.sd.prz.edu.pl Literatura DzierŜanowski i in. Turbiniowe silniki odrzutowe
Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji
Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Monika Litwińska Inżynieria Mechaniczno-Medyczna GDAŃSKA 2012 1. Obieg termodynamiczny
Entalpia swobodna (potencjał termodynamiczny)
Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:
Przemiany termodynamiczne
Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość
TERMODYNAMIKA PROCESOWA I TECHNICZNA
ERMODYNAMIKA PROCESOWA I ECHNICZNA Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste rzemiany termodynamiczne Prof. Antoni Kozioł, Wydział Chemiczny
ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Badania wpływu struktury elektrowni gazowo-parowych na charakterystyki sprawności
ISSN 1733-8670 ZESZT NAUOWE NR 10(82) AADEMII MORSIEJ W SZCZECINIE IV MIĘDZNARODOWA ONFERENCJA NAUOWO-TECHNICZNA EXPLO-SHIP 2006 Janusz otowicz, Tadeusz Chmielniak Badania wływu struktury elektrowni gazowo-arowych
Obiegi gazowe w maszynach cieplnych
OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost
Cieplne Maszyny Przepływowe. Temat 7 Turbiny. α 2. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. 7.1 Wstęp
87 7.1 Wstę Zmniejszenie ola rzekroju rzeływu rowadzi do: - wzrostu rędkości czynnika, - znacznego obciążenia łoatki o stronie odciśnieniowej, - większego odchylenia rzeływu rzez wieniec łoatek, n.: turbiny
A - przepływ laminarny, B - przepływ burzliwy.
PRZEPŁYW CZYNNIK ŚCIŚLIWEGO. Definicje odstaoe Rys... Profile rędkości rurze. - rzeły laminarny, B - rzeły burzliy. Liczba Reynoldsa Re D [m/s] średnia rędkość kanale D [m] średnica enętrzna kanału ν [m
Płytowe wymienniki ciepła. 1. Wstęp
Płytowe wymienniki cieła. Wstę Wymienniki łytowe zbudowane są z rostokątnych łyt o secjalnie wytłaczanej owierzchni, oddzielonych od siebie uszczelkami. Płyty są umieszczane w secjalnej ramie, gdzie są
Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Termodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Układ termodynamiczny Układ termodynamiczny to ciało lub zbiór rozważanych ciał, w którym obok innych
Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów
Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z
Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia II stopnia. Turbinowe silniki lotnicze Rodzaj przedmiotu: Język polski
Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia II stopnia Przedmiot: Turbinowe silniki lotnicze Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MBM 2 S 2 2 21-0_1 Rok: 1 Semestr: 2 Forma
M. Chorowski Podstawy Kriogeniki, wykład Metody uzyskiwania niskich temperatur - ciąg dalszy Dławienie izentalpowe
M. Corowski Podstawy Kriogeniki, wykład 4. 3. Metody uzyskiwania niskic temeratur - ciąg dalszy 3.. Dławienie izentalowe Jeżeli gaz rozręża się adiabatycznie w układzie otwartym, bez wykonania racy zewnętrznej
termodynamika fenomenologiczna
termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskoowych uogólnienie licznych badań doświadczalnych ois makro i mikro rezygnacja z rzyczynowości znaczenie raktyczne układ termodynamiczny
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 2
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki łynów ĆWICZENIE NR OKREŚLENIE WSPÓLCZYNNIKA STRAT MIEJSCOWYCH PRZEPŁYWU POWIETRZA W RUROCIĄGU ZAKRZYWIONYM 1.
II zasada termodynamiki.
II zasada termodynamiki. Według I zasady termodynamiki nie jest do omyślenia roces, w którym energia wewnętrzna układu doznałaby zmiany innej, niż wynosi suma algebraiczna energii wymienionych z otoczeniem.
MODELOWANIE POŻARÓW. Ćwiczenia laboratoryjne. Ćwiczenie nr 1. Obliczenia analityczne parametrów pożaru
MODELOWANIE POŻARÓW Ćwiczenia laboratoryjne Ćwiczenie nr Obliczenia analityczne arametrów ożaru Oracowali: rof. nadzw. dr hab. Marek Konecki st. kt. dr inż. Norbert uśnio Warszawa Sis zadań Nr zadania
Materiały pomocnicze do ćwiczeń z przedmiotu: Termodynamika techniczna
Materiały omocnicze do ćwiczeń z rzedmiotu: Termodynamika techniczna Materiały omocnicze do rzedmiotu Termodynamika techniczna. Sis treści Sis treści... 3 Gaz jako czynnik termodynamiczny... 5. Prawa
Wykład 7. Energia wewnętrzna jednoatomowego gazu doskonałego wynosi: 3 R . 2. Ciepło molowe przy stałym ciśnieniu obliczymy dzięki zależności: nrt
W. Dominik Wydział Fizyki UW ermodynamika 08/09 /7 Wykład 7 Zasada ekwiartycji energii Stonie swobody ruchu cząsteczek ieło właściwe ciał stałych ównanie adiabaty w modelu kinetyczno-molekularnym g.d.
Opis techniczny. Strona 1
Ois techniczny Strona 1 1. Założenia dla instalacji solarnej a) lokalizacja inwestycji: b) średnie dobowe zużycie ciełej wody na 1 osobę: 50 [l/d] c) ilość użytkowników: 4 osób d) temeratura z.w.u. z sieci
Śr Kin Ruchu Postępowego. V n R T R T. 3 3 R 3 E R T T k T, 2 N 2 B
Termodynamika Podstawowy wzór kinetyczno-molekularnej teorii budowy materii W oarciu o założenia dotyczące właściwości gazu doskonałego (molekuły to unkty materialne ozostające w ciągłym termicznym ruchu,
KASKADOWE UKŁADY OBIEGÓW CIEPLNYCH W MIKROKOGENERACJI
POZNAN UNIVE RSIY OF E CNOLOGY ACADE MIC JOURNALS No Electrical Engineering 0 Robert WRÓBLEWSKI* KASKADOWE UKŁADY OBIEGÓW CIEPLNYC W MIKROKOGENERACJI Obecnie w mikrogeneracji i małej generacji rozroszonej
P O L I T E C H N I K A W A R S Z A W S K A
P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ LABORATORIUM NAPĘDÓW I STEROWANIA HYDRAULICZNEGO I PNEUMATYCZNEGO Instrkcja do
Silniki tłokowe. Dr inŝ. Robert JAKUBOWSKI
Silniki tłokowe Dr inŝ. Robert JAKUBOWSKI Podstawowe typy silnika tłokowego ze względu na zasadę działania Silnik czterosuwowy Silnik dwusuwowy Silnik z wirującym tłokiem silnik Wankla Zasada pracy silnika
PORÓWNANIE WYKRESU INDYKATOROWEGO I TEORETYCZNEGO - PRZYKŁADOWY TOK OBLICZEŃ
1 PORÓWNANIE WYKRESU INDYKATOROWEGO I TEORETYCZNEGO - PRZYKŁADOWY TOK OBLICZEŃ Dane silnika: Perkins 1104C-44T Stopień sprężania : ε = 19,3 ε 19,3 Średnica cylindra : D = 105 mm D [m] 0,105 Skok tłoka
W Silniki spalinowe
W5 ermodynamika techniczna Silniki cieplne Obieg Carnota Obieg Otta Obieg Diesla Obieg Sabathego Obieg Joula Obieg Braytona Silnik strumieniowy Silnik pulsacyjny w5 ermodynamika techniczna w5 ermodynamika
Cieplne Maszyny Przepływowe. Temat 1 Wstęp. Część I Podstawy teorii Cieplnych Maszyn Przepływowych.
1 Wiadomości potrzebne do przyswojenia treści wykładu: Znajomość części maszyn Podstawy mechaniki płynów Prawa termodynamiki technicznej. Zagadnienia spalania, termodynamika par i gazów Literatura: 1.
J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe
Proagacja zaburzeń o skończonej (dużej) amlitudzie. W takim rzyadku nie jest możliwa linearyzacja równań zachowania. Rozwiązanie ich w ostaci nieliniowej jest skomlikowane i rowadzi do nastęujących zależności
PL B1. INSTYTUT MASZYN PRZEPŁYWOWYCH IM. ROBERTA SZEWALSKIEGO POLSKIEJ AKADEMII NAUK, Gdańsk, PL BUP 20/14
PL 221481 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 221481 (13) B1 (21) Numer zgłoszenia: 403188 (51) Int.Cl. F02C 1/04 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury -
ermoynamika Pojęcia i zaganienia ostawowe: Buowa materii stany skuienia: gazy, ciecze, ciała stale Ois statystyczny wielka liczba cząstek - N A 6.0*0 at.(cz)/mol Ois termoynamiczny Pojęcie temeratury -
Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej
Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski
Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Wyznaczanie ciepła właściwego c p dla powietrza
Katedra Silików Saliowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyzaczaie cieła właściweo c dla owietrza Wrowadzeie teoretycze Cieło ochłoięte rzez ciało o jedostkowej masie rzy ieskończeie małym rzyroście
Teoria silników lotniczych Wykład wprowadzający Studia podyplomowe
Teoria silników lotniczych Wykład wprowadzający Studia podyplomowe Robert JAKUBOWSKI Pok. 342A TEL 0178651466 e-mail: robert.jakubowski@prz.edu.pl Strona http://jakubowskirobert.sd.prz.edu.pl Literatura
ZEROWA ZASADA TERMODYNAMIKI
ERMODYNAMIKA Zerowa zasada termodynamiki Pomiar temeratury i skale temeratur Równanie stanu gazu doskonałego Cieło i temeratura Pojemność cielna i cieło właściwe Cieło rzemiany Przemiany termodynamiczne
Pomiar wilgotności względnej powietrza
Katedra Silników Salinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar wilgotności względnej owietrza - 1 - Wstę teoretyczny Skład gazu wilgotnego. Gazem wilgotnym nazywamy mieszaninę gazów, z których
Zasada działania maszyny przepływowej.
Zasada działania maszyny przepływowej. Przyrost ciśnienia statycznego. Rys. 1. Izotermiczny schemat wirnika maszyny przepływowej z kanałem miedzy łopatkowym. Na rys.1. pokazano schemat wirnika maszyny
Aerodynamika i mechanika lotu
Prędkość określana względem najbliższej ścianki nazywana jest prędkością względną (płynu) w. Jeśli najbliższa ścianka porusza się względem ciał bardziej oddalonych, to prędkość tego ruchu nazywana jest
Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika
Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram
ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco
ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos
TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami
TERMODYNAMIKA Termodynamika jest to dział nauk rzyrodniczych zajmujący się własnościami energetycznymi ciał. Przy badaniu i objaśnianiu własności układów fizycznych termodynamika osługuje się ojęciami
CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU
CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU CAŁOŚĆ/CZĘŚĆ BUDYNKU Mieszkalny Całość budynku ADRES BUDYNKU ----------------, ----------------NAZWA ROJEKTU Budynek mieszkalny 2 LICZBA
Termodynamika fenomenologiczna i statystyczna
Termodynamika fenomenologiczna i statystyczna Termodynamika fenomenologiczna zajmuje się zwykle badaniem makroskoowych układów termodynamicznych złożonych z bardzo dużej ilości obiektów mikroskoowych.
Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.
PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym
WYMAGANIA TECHNICZNE DLA PŁYTOWYCH WYMIENNIKÓW CIEPŁA DLA CIEPŁOWNICTWA
WYMAAA TECHCZE DLA PŁYTOWYCH WYMEKÓW CEPŁA DLA CEPŁOWCTWA iniejsza wersja obowiązuje od dnia 02.11.2011 Stołeczne Przedsiębiorstwo Energetyki Cielnej SA Ośrodek Badawczo Rozwojowy Ciełownictwa ul. Skorochód-Majewskiego
Ćw. 11 Wyznaczanie prędkości przepływu przy pomocy rurki spiętrzającej
Ćw. Wyznaczanie rędkości rzeływu rzy omocy rurki siętrzającej. Cel ćwiczenia Celem ćwiczenia jest zaoznanie się z metodą wyznaczania rędkości rzeływu za omocą rurek siętrzających oraz wykonanie charakterystyki
PL B1. GULAK JAN, Kielce, PL BUP 13/07. JAN GULAK, Kielce, PL WUP 12/10. rzecz. pat. Fietko-Basa Sylwia
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 207344 (13) B1 (21) Numer zgłoszenia: 378514 (51) Int.Cl. F02M 25/022 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 22.12.2005
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU
CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU mieszkalny CAŁOŚĆ/CZĘŚĆ BUDYNKU Całość budynku ADRES BUDYNKU Olsztyn, ul. Grabowa 7 NAZWA ROJEKTU Standard tradycyjny LICZBA LOKALI
POLEPSZANIE WŁASNOŚCI UKŁADU STIG POPRZEZ PRZEGRZEW I CHŁODZENIE MIĘDZYSTOPNIOWE
MODELOWAIE IśYIERSKIE ISS 1896-771X 34, s. 43-48, Gliwice 007 POLEPSZAIE WŁASOŚCI UKŁADU SIG POPRZEZ PRZEGRZEW I CHŁODZEIE MIĘDZYSOPIOWE KRZYSZOF J. JESIOEK, ADRZEJ CHRZCZOOWSKI Politechnika Wrocławska
Turbinowy silnik odrzutowy obieg rzeczywisty. opracował Dr inż. Robert Jakubowski
urbinowy ilni odrzutowy obieg rzezywity oraował Dr inż. Robert Jaubowi Obieg turbinowego ilnia jednorzeływowego -orównanie ilnia idealnego i ilnia rzezywitego (z uwzględnieniem trat) i 3 3 q do 4 S 4 4
MODELOWANiE TURBiNOWYCH SiLNiKÓW ODRZUTOWYCH W ŚRODOWiSKU GASTURB NA PRZYKŁADZiE SiLNiKA K-15
PRACE instytutu LOTNiCTWA 213, s. 204-211, Warszawa 2011 MODELOWANiE TURBiNOWYCH SiLNiKÓW ODRZUTOWYCH W ŚRODOWiSKU GASTURB NA PRZYKŁADZiE SiLNiKA K-15 RySzaRd ChaChuRSkI, MaRCIN GapSkI Wojskowa Akademia
[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy.
[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [2] ZAKRES TEMATYCZNY: I. Rejestracja zmienności ciśnienia w cylindrze sprężarki (wykres
Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę
SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie
DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje
WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA
WYKŁAD 4 PROSTOPADŁA FALA UDERZENIOWA PROSTOPADŁA FALA UDERZENIOWA. ADIABATA HUGONIOTA. S 0 normal shock wave S Gazodynamika doszcza istnienie silnych nieciągłości w rzeływach gaz. Najrostszym rzyadkiem
[ ] 1. Zabezpieczenia instalacji ogrzewań wodnych systemu zamkniętego. 1. 2. Przeponowe naczynie wzbiorcze. ν dm [1.4] 1. 1. Zawory bezpieczeństwa
. Zabezieczenia instalacji ogrzewań wodnych systemu zamkniętego Zabezieczenia te wykonuje się zgodnie z PN - B - 0244 Zabezieczenie instalacji ogrzewań wodnych systemu zamkniętego z naczyniami wzbiorczymi
Badania wentylatora. Politechnika Lubelska. Katedra Termodynamiki, Mechaniki Płynów. i Napędów Lotniczych. Instrukcja laboratoryjna
Politechnika Lubelska i Napędów Lotniczych Instrukcja laboratoryjna Badania wentylatora /. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z budową i metodami badań podstawowych typów wentylatorów. II. Wprowadzenie
CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU
CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU Mieszkalny ADRES BUDYNKU Celestynów, dz. nr ewid. 1046/2 Celestynów NAZWA ROJEKTU Budynek Mieszkalny Wielorodzinny Socjalny OWIERZCHNIA
CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU
CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU Mieszkalny ADRES BUDYNKU Ustka dz. nr 86/7, ul. Kosynierów 8 NAZWA ROJEKTU Budynek mieszkalny jednorodzinny OWIERZCHNIA CAŁKOWITA OWIERZCHNIA