Zespoły silnika lotniczego. Dr inż. Robert Jakubowski

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zespoły silnika lotniczego. Dr inż. Robert Jakubowski"

Transkrypt

1 Zesoły silnika lotniczego Dr inż. Robert Jakubowski

2 DYSZA WYLOTOWA TURBINA KOMORA SPALANIA SPRĘŻARKA WLOT

3 Procesy wewnętrzne w silniku

4 Obieg silnika z uwzględnieniem strat i 3 π c = = idem H qdo = T3 i3 idem T i = H H l s v H i H

5 WLOT Literatura: [] Dzierżanowski P. i in., Turbinowe silniki odrzutowe, WKŁ 983 [rozd. ] [] Gajewski, Lesikiewicz, Szymanik, Przeływowe silniki odrzutowe, WNT 973 [3] Mattingly J.D., Elementrs of Proulsions, Gas Turbines and Rockets

6 i H Zagadnienie oracowano na odstawie [] Wlot -raca w warunkach statycznych DLA PRĘDKOŚCI LOTU 0 H=H # s c # Zmiana entalii we wlocie i = i = c T H H T = T H Proces we wlocie jest IZENTALPOWY s Wsółczynnik strat ciśnienia we wlocie wl H σ = = = + Przyrost entroii s = s s = R ln H lin lok lin - suma strat liniowych lok - suma strat lokalnych H σ wl

7 # i H H # # s c H c DLA WARUNKÓW PRZELOTOWYCH Wlot - raca w warunkach rzelotowych # s H H H c Sręż dynamiczny k k H dyn H k Ma π = = +

8 Praca wlotu rzy dużej rędkości WLOT SILNIKA NADDŹWIĘKOWEGO naddźwiękowej Ma< Sręż dynamiczny idealny π dyn H = = + H k Ma k k Przyrost ciśnienia we wlocie = σ π = σ σ π H WL dyn KAN _ WL fal dyn Prędkość lotu Ma Sręż dynamiczny (idealny),89,5 3,67 7,8,5 7, ,73

9 Wływ rędkości lotu na starty we wlocie Zależność wsółczynnika strat falowych od rędkości lotu i liczby fal uderzeniowych i rędkości lotu []

10 Podział wlotów ze względu na rędkość rzelotową silników WLOTY PODDŹWIĘKOWE

11 Wloty naddźwiękowe W zakresie niedużych rędkości naddźwiękowych O srężaniu zewnętrznym O srężaniu mieszanym O srężaniu wewnętrznym

12 Parametry charakteryzujące racę wlotu Wsółczynnik siły ooru dodatkowego wlotu: C X wl _ d X _ wl _ d = ρh AwlV H A wl ( ) X = da wl _ d H A H Siła oorów tarcia gondoli: X T Ciąg efektywny: K = K X X e wl _ d T X = X wl _ d > 0 wl _ d 0 Stoień rzewężenia strumienia we wlocie: φ = A A wl _ d wl H φ C = 0 wl _ d X _ wl _ d φ > C > 0 wl _ d X _ wl _ d Sręż dynamiczny wlotu: π = wl _ dyn H

13 SPRĘŻARKA

14 Podział srężarek srężarka osiowa Zalety: Wady: -możliwość uzyskania wysokiego srężu sumarycznego -duże rzeływy owietrza -niski sręż na ojedynczym stoniu - mała srawność krótkich łoatek

15 Zmiany ciśnienia i rędkości w sręŝarce osiowej Łoatki wirnika Łoatki statora

16 Srężarka osiowa I IW Ist C U C C U W W -szy stoień srężarki U C U N-ty stoień srężarki Praca stonia srężarki: CHARAKTERYSTYKA PRACY STOPNIA SPRĘŻARKI i l st_iz,04" st iz sręŝanie w dyfuzorze W wirniku sręŝanie w w w stoniu sręŝanie w st,9" st l wir =l st Srawność stonia srężarki: s lst = c ( ) T3 T = U ( C C ) U U η s l i i = = l i i st _ iz st _ iz st st

17 Przeływ rzez srężarkę osiową

18 Srężarka osiowa CHARAKTERYSTYKA PRACY SPRĘŻARKI l s l st_iz,89" iz Politroa sręŝania w sręŝarce sręŝanie w n tym stoniu sręŝanie w szym stoniu -szy stoień srężarki Praca srężarki: n s = st = i= l l c ( T T ) N-ty stoień srężarki Sręż srężarki: π n s = π st i= Srawność izentroowa srężarki: l i i η = = s s _ iz _ iz ls i i k n k π st _ i i= ηs = k k n i k k π st _ j π st _ i + i= j= η st _ j ηst _ i

19 Procesy termo-gazodynamiczne w srężarce s # i iz Przyrost entalii w srężarce: i = i + l s Srawność srężarki: l s_iz,0 04" di +d di iz,9" l s s izentroowa olitroowa Zależność zmiany temeratury od srężu srężarki: T π = T + η k k s s _ iz T k k η = T π s s _ ol l i i η = = s η s _ iz _ iz l s i i k dh ln iz s _ ol = = ( k ) ( ) dh ln T T Zależność srawności izentroowej srężania od srężu dla stałej srawności olitroowej

20 Podział srężarek srężarka romieniowa, odśrodkowa Zalety: Wady: -wysoki sręż na ojedynczym stoniu -możliwość stosowania dla małych wydatków rzeływu owietrza - ograniczona ilość rzeływającego owietrza -niższe wartości rędkości obrotowej niż w srężarce osiowej

21 Przeływ rzez srężarkę odśrodkową

22 Srężarka romieniowa CHARAKTERYSTYKA PRACY STOPNIA SPRĘŻARKI i l st_iz,04" st iz sręŝanie w dyfuzorze W w wirniku sręŝanie w w sręŝanie w stoniu st st 9" l wir =l st,9 s Praca stonia srężarki: l = u c u c st u u Srawność stonia srężarki: l i i ηs = = l i i st _ iz st _ iz st st

23 Charakterystyka srężarki

24 Niestateczna raca srężarki omaż Naływ obliczeniowy na łoatkę Naływ na łoatkę z dodatnimi kątami natarcia Naływ na łoatkę z ujemnymi kątami natarcia

25 Uust Zaobieganie niestatecznej racy srężarki Sterowanie łoatek kierownic srężarki Podział srężarki na dwa wirniki

26 Komora salania [] Dzierżanowski P. i in., Turbinowe silniki odrzutowe, WKŁ 983 [rozd. 3] [] Gajewski, Lesikiewicz, Szymanik, Przeływowe silniki odrzutowe, WNT 973 [3] GierasM. Komory salania silników turbinowych, organizacja rocesu salania, Oficyna wydawnicza PW, Warszawa 00 [4] MattinglyJ.D., Elementrsof Proulsions, Gas Turbinesand Rockets, AIAA Education Series

27 Wyhamowanie strumienia dyfuzory wlotowe

28 Straty rzeływowe w komorze salania Wsółczynnik strat ciśnienia w KS: σ = σ σ KS KS _ M KS _ T σ KS = = wyl KS wl wl σ KS _ M σ KS _ T - wsółczynnik strat mechanicznych ciśnienia - wsółczynnik strat cielnych ciśnienia w KS σ T = T wl wyl KS _ T f Mawl, T s = s + s = c + R KS sal _ str ln ln T σ KS

29 Przykładowa charakterystyka strat ciśnienia w KS sowodowanych rocesem salania

30 Procesy termodynamiczne w komorze salania mɺ al Bilans komory salania (( ) ) ( ) Qɺ = Iɺ = c mɺ + mɺ T mt ɺ c mɺ T T KS KS al Wsółczynnik wydzielania cieła w KS (srawność cielna KS) ξ Q q ( ) c T T KS KS KS = = = QKS _ t qks _ t Wuτ al Q do_t ɺ, mɺ + mɺ al, T m T Q Q τ KS _ t KS al Qstr Q do - Cieło teoretycznie dorowadzone z aliwem - Cieło rzeczywiście wydzielone w rocesie salania - Względne zużycie aliwa

31 rednie

32 Organizacja rocesu salania Strefa ierwot na KS Strefa schładzania salin Paliwo zaotrzebowanie owietrza 8 Ot = C + H O 3 kgo kgal 8 [ ] Paliwo nafta lotnicza udziały masowe C = 0,86, H = 0,4 O t L t 8 kgo ,4 3, 43 [ ] = + = 3 kgal Ot kg ow = = 4,7 [ ] 0, 3 kg al Dostarczona do KS ilość aliwa owinna być na oziomie ok. /5 ilości owietrza dostarczonego w strefie ierwotnej, aby salanie zachodziło z najwyższą srawnością

33 Srawność cielna salania w komorze salania w zaleŝności od wsółczynnika nadmiaru owietrza w części ierwotnej KS α = ɺ m ow _ str _ ier m ɺ al L t Granica załonności mieszanki aliwowo-owietrznej na ziemi: 0,5< α <,5(,7)

34 TURBINA

35 Wsółraca turbiny ze srężarką P = P + P + P T s agr str ( ) P η = P P T m s w BILANS MOCY TURBINA -SPRĘŻARKA T = T 4 3 P ( P ) w s η c mɺ m sal

36 Turbina akcyjna - turbina reakcyjna Turbina akcyjna turbina reakcyjna Rozrężanie na łoatkach wieńca dyszowego turbiny Rozrężanie na łoatkach obydwu wieńców turbiny

37 Praca stonia turbiny W 3 U 3 =U i C 3U W C 3 l st_iz l st C U C U 3 Praca stonia turbiny l = u ( c + c ) st u 3u Praca stonia turbiny: lst = c ( ) T T3 Srawność stonia turbiny η = l l st st st _ iz s

38 Procesy termo-gazodynamiczny na turbinie SPRAWNOŚĆ TURBINY i di di iz -d izentroowa: η l T T l t t = = t _ iz olitroowa: k ( ) k ( T T ) ( ) ln T T di k η t ol = = di k ln _ iz Przyrost entroii w turbinie: k T k ηt + T = = π t ηt T s = s s = c R = R s = c η ln ln lnπ T T ln k k π T k k t _ iz T + t _ iz η π η T ( k ) ηt _ = T k ol t _ ol l t_iz iz # s l t Zależność srawności izentroowej rozrężania od rozrężu dla stałej srawności olitroowej s

39 Chłodzenie turbiny Do ok K rzy zastosowaniu stoów wysokotemeraturowych nie jest wymagane chłodzenie wewnętrzne łoatek turbin Powyżej 300 K wymagane jest chłodzenie turbin, a jego rodzaj jest ściśle związany z temeraturą rzed turbiną CHŁODZENIE KONWEKCYJNE CHŁODZE NIE KONWEKC YJNE + CHŁODZE NIE BŁONOWE CHŁODZENIE TRANSPIRACYJNE DLA KRÓTKICH ŁOPAT DLA DŁUŻSZYCH ŁOPAT Zależność srawności turbiny od temeratury rzed turbiną

40 Metody chłodzenia turbin Chłodzenie konwekcyjne (wewnętrzne) Chłodzenie uderzeniowe (wewnętrzne) Chłodzenie błonowe Warstwa orowata Chłodzenie transiracyjne

41 Dysza wylotowa

42 Praca dyszy wylotowej c iz c C T T T H 5 iz s # Straty ciśnienia w dyszy Strata rędkości w dyszy Przyrost entroii σ 5 dysz = 4 c ϕ = c iz s = s s = R ln σ dysz

43 Warunki racy zbieżnej dyszy wylotowej silnika Jeżeli: T 5 5 o > β = > 5 = β kr T5 = k + kr 5 kr o 5 T 5 c. A 5 m 5 5 (rozręż krytyczny w dyszy) H Jeżeli: kr + k = βkr = o kr 5 k k β = Ma 5 o k k 5 = k o k T = T + Ma o A5 c5 RT 5 (rozręż zuełny w dyszy) o c5 = Ma5 krt5 = ct 5 5 mɺ = k k c = k RT k k + k + ( k ) k 5 = 5 5 RT5 mɺ A

44 Praca dyszy wylotowej zbieżnorozbieżnej kr 5 Przekrój krytyczny ckr = a c c=a Limituje wydatek wyływających salin k + k + ( k ) k 5 = kr kr RTkr mɺ A c Przekrój wylotowy c 5 H > c 5 kr = c T σ DYSZ 4 k k

45 Bilans energii silnika Równanie ędu SIŁA CIĄGU (dla zuełnego rozrężu salin w dyszy wylotowej silnika) Bilans energii silnika: Ciąg silnika: K = mɺ c mv ɺ 5 5 V mɺ c i q e i mɺ 5 5 H + + do _ t = str _ wewn mɺ mɺ c V q W e q mɺ mɺ al 5 5 do _ t = u = str _ wewn. + + od Strata energii w silniku Zmiana energii kinetycznej Cieło odrowa dzone

46 Silnik odrzutowy niezuełny rozręż salin w dyszy wylotowej Zjawisko wystęuje w: Silnikach zakończonych dyszą zbieżną rzy nadkrytycznym stosunku ciśnień omiędzy całkowitym ciśnieniem salin w rzekroju wylotowym dyszy i ciśnieniem otoczenia Silnikach zakończonych nieregulowaną dyszą zbieżno-rozbieżną w ozaobliczeniowychstanach racy q do_t. m al i H i H H V c A5 WL c c A 5 WL 5.. m m 5 e str_wewn. WL 5H i 5H i H H Ciąg silnika: Srawności silnika: η mɺ c V mɺ 5 5H ( ) K = mɺ c mv ɺ = mɺ c mv ɺ + A 5 5H c = al u ( τ W ) mɺ c ηk = k jvh m H gdzie: c = c + 5H 5 ( ) A 5 5 mɺ 5 5H V ɺ ηo = k jvh ( τ alwu ) 5 H

47 DANE T,, Ma, π, T, mɺ H H H s 3 Analiza arametrów termodynamicznych obiegu silnika jednorzeływowego model silnika Srawności oraz straty rzeływowe zesołów silnika W analizie rzyjęto model gazu doskonałego H wl WLOT: k T = T = T + Ma H H H k = σ = σ + Ma wl H wl H H k k SPRĘśARKA T = π s k π k s = T + ηs lub T k k η = T π s s _ ol

48 τ KOMORA SPALANIA mɺ TURBINA Analiza arametrów termodynamicznych obiegu silnika jednorzeływowego c.d. (na odstawie bilansu komory salania) ( ) ( ) c T T c T T al _ s 3 _ s 3 al = = mɺ ξkswu c _ st3 ξkswu (na odstawie bilansu mocy turbina-srężarka) T 4 3 ( ) ' ( + τ ) c T T = T η c m al T 4 ηt + T3 4 = 3 ηt = σ 3 KS k ' k ' lub T = T3 k ' k ' η T _ ol ( )

49 Analiza arametrów termodynamicznych obiegu silnika jednorzeływowego c.d. DYSZA WYLOTOWA (rzy załoŝeniu rozręŝu zuełnego) T = T 5 = H 5 4 Ma = σ 5 dysz 4 5 k ' ' k 5 = k 5 k ' T = T + Ma c = Ma k ' RT lub ( ) ' k ' T = T k k 5_ iz Ma 5_ iz k ' ' k 4 = k 5 c = Ma k ' RT 5_ iz 5_ iz 5_ iz c T = φ c 5 dysz 5_ iz c = T c ' 5 5 5

50 Analiza silnika jednorzeływowego Dane wstęne Parametry otoczenia Temeratura douszczalna (maksymalna) gazów rzed turbiną Zakładany ciąg silnika

51 Dobór odstawowych arametrów racy silnika Otymalizacja arametrów obiegu termodynamicznego silnika jednorzeływowego Polega ona na oszukiwaniu maksimum racy obiegu (ciągu, ciągu jednostkowego) i minimum jednostkowego zużycia aliwa w zależności od arametrów termodynamicznych silnika. ( π ) ( π ) ( π ) l, T, K, T, k, T lub OB _ max c 3 max c 3 j _ max c 3 c ( π c T ) j _ min 3 dk j dπ dk dt dc, lub c j 3 j dπ dc dt c j 3 3 T c = idem π = idem 3 T c = idem π = idem = 0 = 0 = 0 = 0 Wartość arametru, rzy której ciąg (ciągjednostkowy) osiąga maksymalną wartość określa się mianem otymalny n. sręż otymalny Wartość arametru, rzy której jednostkowe zużycie aliwa osiąga wartość minimalną określa się mianem ekonomiczny n. sręż ekonomiczny

52 Dobór srężu silnika Dla zadanej maksymalnej temeratury gazów rzed turbiną wykonuje się obliczenia ciągu jednostkowego i jednostkowego zużycia aliwa dla różnych wartości srężu srężarki H T 3 π S k j c j

53 Wyznaczenie charakterystyki k j, c j dla różnych wartości srężu π S kj [Ns/kg] cj [kg/n/s] π S kj [Ns/kg] cj [kg/n/s] 65,0 5,83E ,8,5E ,0 4,03E ,9,48E ,5 3,54E ,8,46E ,9 3,9E ,6,44E ,7 3,3E ,,4E ,9 3,0E ,7,40E ,9,9E ,,38E ,7,84E ,4,36E ,3,78E ,6,35E ,3,7E ,8,33E ,3,68E ,0,3E ,4,64E ,,3E ,9,60E ,,30E ,9,57E ,,8E ,5,54E ,,7E-05 Temeratura gazów rzed turbiną - 600K Temeratura otoczenia -88 K, ciśnienie 0 5 Pa Stoień odgrzania 5,55

54 Graficzne zobrazowanie zależności Cią ąg jednostkowy [Ns/kg] x π s _ ot _ siln _ id π S_ot =4 Sręż srężarki k,4 k 600 0,4 s T = = = 0, TH 88 Jednostkowe zużycie aliwa [kg/n/s] Sręż srężarki

55 Wływ stonia odgrzania na wartości srężu otymalnego i ekonomicznego cj kj k j( ) k j( ) k j( ) cj( ) c j( ) < < 3 cj_min πot( ) πek( ) πot( 3) πekt( 3) c( j 3) Ze wzrostem stonia odgrzania silnika: wzrasta ciąg maksymalny silnika, który jest osiągany rzy większych wartościach srężu otymalnego obniża się wartość minimalnego jednostkowego zużycia aliwa, które jest osiągane rzy większych wartościach srężu ekonomicznego rozszerza się zakres sręży, rzy których raca obiegu jest dodatnia. zwiększa się rozbieżność omiędzy wartościami srężu otymalnego i ekonomicznego Charakterystyka ta tłumaczy dlaczego dąży się do odnoszenia maksymalnej temeratury obiegu silnika turbinowego oraz dlaczego musi towarzyszyć temu wzrost srężu silnika π

56 Ciąg jednostkowy [Ns/kg] Sręż srężarki x 0-5 Stoień odgrzania 4,9 Stoień odgrzania 5,5 Stoień odgrzania 5,9 Jednostkowe zużycie aliwa [kg/n/s] Sręż srężarki

57 Zależność omiędzy ciągiem jednostkowym i jednostkowym zużyciem aliwa Temeraturę otoczenia rzyjęto 88 K

58 Wymiarowanie silnika Wyznaczanie strumienia masy owietrza rzeływającej rzez silnik mɺ = K k j Przykładowe wyniki dla K=00 kn

59 Ocena średnicy wlotowej silnika D m m ɺ = ρ ca A = ɺ ρc Przyjmując c=00 m/s i gęstość owietrza, kg/m^3 W A A rz rz = 0, D Z = A 0,97 = π ( D ) ( D ) Z Dw=0, Dz 4 W

60 Ocena wymiarów osiowych i masowych silnika Ocena taka jest możliwa do wykonania z wykorzystaniem danych statystycznych silników na odstawie których można oracować korelacje omiędzy masą i wymiarami oszczególnych zesołów, a odstawowymi arametrami silnika.

Zespoły silnika lotniczego. Dr inż. Robert Jakubowski

Zespoły silnika lotniczego. Dr inż. Robert Jakubowski Zesoły silnika lotniczego Dr inż. Robert Jakubowski DYSZA WYLOTOWA TURBINA KOMORA SPALANIA SPRĘŻARKA WLOT WLOT Wlot Zadaniem wlotu jest dostarczenie do silnika owietrza w wymaganej ilości z zaewnieniem

Bardziej szczegółowo

WLOTY I SPRĘŻARKI SILNIKÓW. Dr inż. Robert Jakubowski

WLOTY I SPRĘŻARKI SILNIKÓW. Dr inż. Robert Jakubowski WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH Dr inż. Robert Jakubowski Literatura Literatura: [] Balicki W. i in. Lotnicze siln9iki turbinowe, Konstrukcja eksploatacja diagnostyka, BNIL nr 30 n, 00 [] Dzierżanowski

Bardziej szczegółowo

Turbinowy silnik odrzutowy. Dr inŝ. Robert JAKUBOWSKI

Turbinowy silnik odrzutowy. Dr inŝ. Robert JAKUBOWSKI Turbinowy silnik odrzutowy Dr inŝ. Robert JAKUBOWSKI Turbinowy silnik jednorzeływowy Jest to najbardziej ierwotne rozwiązanie silnika odrzutowego turbinowego, które ojawiło się na oczątku lat trzydziestych

Bardziej szczegółowo

WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH. Dr inż. Robert Jakubowski

WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH. Dr inż. Robert Jakubowski WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH Dr inż. Robert Jakubowski Literatura Literatura: [] Balicki W. i in. Lotnicze siln9iki turbinowe, Konstrukcja eksploatacja diagnostyka, BNIL nr 30 n, 00 [] Dzierżanowski

Bardziej szczegółowo

WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH. Dr inż. Robert Jakubowski

WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH. Dr inż. Robert Jakubowski WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH Dr inż. Robert Jakubowski Literatura Literatura: [] Balicki W. i in. Lotnicze siln9iki turbinowe, Konstrukcja eksploatacja diagnostyka, BNIL nr 30 n, 00 [] Dzierżanowski

Bardziej szczegółowo

Komory spalania turbiny i dysze. Dr inż. Robert JAKUBOWSKI

Komory spalania turbiny i dysze. Dr inż. Robert JAKUBOWSKI Komory salania turbiny i dysze wylotowe Dr inż. Robert JAKUBOWSKI KOMORY SPALNAIA TURBINOWYCH SILNIKÓW LOTNICZYCH BUDOWA KOMORY SPALANIA ORGANIZACJA PROCESU WEWNĄTRZKOMOROWEGO BUDOWA KOMORY SPALANIA ORGANIZACJA

Bardziej szczegółowo

Analiza konstrukcji i cyklu pracy silnika turbinowego. Dr inż. Robert Jakubowski

Analiza konstrukcji i cyklu pracy silnika turbinowego. Dr inż. Robert Jakubowski Analiza konstrukcji i cyklu racy silnika turbinowego Dr inż. Robert Jakubowski CO TO JEST CIĄG? Równanie ciągu: K m(c V) 5 Jak silnik wytwarza ciąg? Silnik śmigłowy silnik odrzutowy Silnik służy do wytworzenia

Bardziej szczegółowo

Komory spalania, turbiny i dysze wylotowe. Dr inż. Robert JAKUBOWSKI

Komory spalania, turbiny i dysze wylotowe. Dr inż. Robert JAKUBOWSKI Komory salania, turbiny i dysze wylotowe Dr inż. Robert JAKUBOWSKI KOMORY SPALNAIA TURBINOWYCH SILNIKÓW LOTNICZYCH BUDOWA KOMORY SPALANIA BUDOWA KOMORY SPALANIA ORGANIZACJA PROCESU WEWNĄTRZKOMOROWEGO 1

Bardziej szczegółowo

Dwuprzepływowe silniki odrzutowe. dr inż. Robert JAKUBOWSKI

Dwuprzepływowe silniki odrzutowe. dr inż. Robert JAKUBOWSKI Dwurzeływowe silniki odrzutowe dr inż. Robert JAKUBOWSK Silnik z oddzielnymi dyszami wylotowymi kanałów V 2500 (Airbus A320, D90) Ciąg 98 147 kn Stoień dwurzeływowości 4,5 5,4 Pierwsze konstrukcje dwurzeływowe

Bardziej szczegółowo

ANALIZA OBIEGU TERMODYNAMICZNEGO SILNIKA ODRZUTOWEGO

ANALIZA OBIEGU TERMODYNAMICZNEGO SILNIKA ODRZUTOWEGO ANALIZA OBIEGU TERMODYNAMICZNEGO SILNIKA ODRZUTOWEGO Wykład nr Napęd stosowany we współczesnym lotnictwie cywilnym Siła ciągu Zasada działania silnika odrzutowego pb > p 0 Akcja Reakcja F Strumień gazu

Bardziej szczegółowo

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Opracował Dr inż. Robert Jakubowski Parametry otoczenia p H, T H Spręż sprężarki, Temperatura gazów

Bardziej szczegółowo

SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO

SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO Dr inŝ. Robert JAKUBOWSKI Wydział Budowy Maszyn i Lotnictwa PRz Pok. 5 bud L 33 E-mail robert.jakubowski@prz.edu.pl WWW www.jakubowskirobert.sd.prz.edu.pl

Bardziej szczegółowo

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Parametry otoczenia p H, T H Spręż sprężarki π S, Temperatura gazów przed turbiną T 3 Model obliczeń

Bardziej szczegółowo

SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO

SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO SILNIK URBINOWY ANALIZA ERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO Dr inŝ. Robert JAKUBOWSKI Wydział Budowy Maszyn i Lotnitwa PRz Po. L 34 a E-mail robersi@rz.edu.l WWW www.jaubowsirobert.sd.rz.edu.l

Bardziej szczegółowo

Parametry charakteryzujące pracę silnika turbinowego. Dr inż. Robert JAKUBOWSKI

Parametry charakteryzujące pracę silnika turbinowego. Dr inż. Robert JAKUBOWSKI Parametry charateryzujące racę silnia turbinweg Dr inż. Rbert JAKUBOWSKI Parametry charateryzujące racę silnia Parametry wewnętrzne (biegu silnia): Sręż całwity silnia (sręż sręzari): Temeratura gazów

Bardziej szczegółowo

9.1 Wstęp Analiza konstrukcji pomp i sprężarek odśrodkowych pozwala stwierdzić, że: Ciśnienie (wysokość) podnoszenia pomp wynosi zwykle ( ) stopnia

9.1 Wstęp Analiza konstrukcji pomp i sprężarek odśrodkowych pozwala stwierdzić, że: Ciśnienie (wysokość) podnoszenia pomp wynosi zwykle ( ) stopnia 114 9.1 Wstę Analiza konstrukcji om i srężarek odśrodkowych ozwala stwierdzić, że: Stosunek ciśnień w srężarkach wynosi zwykle: (3-5):1 0, 3 10, ρuz Ciśnienie (wysokość) odnoszenia om wynosi zwykle ( )

Bardziej szczegółowo

Wykład 2. Przemiany termodynamiczne

Wykład 2. Przemiany termodynamiczne Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const

Bardziej szczegółowo

5. Jednowymiarowy przepływ gazu przez dysze.

5. Jednowymiarowy przepływ gazu przez dysze. CZĘŚĆ II DYNAMIKA GAZÓW 9 rzeływ gazu rzez dysze. 5. Jednowymiarowy rzeływ gazu rzez dysze. Parametry krytyczne. 5.. Dysza zbieżna. T = c E - back ressure T c to exhauster Rys.5.. Dysza zbieżna. Równanie

Bardziej szczegółowo

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne

Bardziej szczegółowo

Cieplne Maszyny Przepływowe. Temat 7 Turbiny. α 2. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. 7.1 Wstęp

Cieplne Maszyny Przepływowe. Temat 7 Turbiny. α 2. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. 7.1 Wstęp 87 7.1 Wstę Zmniejszenie ola rzekroju rzeływu rowadzi do: - wzrostu rędkości czynnika, - znacznego obciążenia łoatki o stronie odciśnieniowej, - większego odchylenia rzeływu rzez wieniec łoatek, n.: turbiny

Bardziej szczegółowo

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO WARUNKI RÓWNOWAGI UKŁADU ERMODYNAMICZNEGO Proces termodynamiczny zachodzi doóty, doóki układ nie osiągnie stanu równowagi. W stanie równowagi odowiedni otencjał termodynamiczny układu osiąga minimum, odczas

Bardziej szczegółowo

Efektywność energetyczna systemu ciepłowniczego z perspektywy optymalizacji procesu pompowania

Efektywność energetyczna systemu ciepłowniczego z perspektywy optymalizacji procesu pompowania Efektywność energetyczna systemu ciełowniczego z ersektywy otymalizacji rocesu omowania Prof. zw. dr hab. Inż. Andrzej J. Osiadacz Prof. ndz. dr hab. inż. Maciej Chaczykowski Dr inż. Małgorzata Kwestarz

Bardziej szczegółowo

Silniki tłokowe. Dr inż. Robert JAKUBOWSKI

Silniki tłokowe. Dr inż. Robert JAKUBOWSKI Silniki tłokowe Dr inż. Robert JAKUBOWSKI Literatura rzedmiotu: Dzierżanowski P. i.in: Silniki Tłokowe z serii Naędy lotnicze, WKŁ. Warszawa 98 Borodzik F.: Budowa silnika z serii Aeroklub olski szkolenie

Bardziej szczegółowo

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt. ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,

Bardziej szczegółowo

Cieplne Maszyny Przepływowe. Temat 4 Charakterystyki ogólne i przy zmiennych wymiarach maszyn wirujących. Część I Podstawy teorii

Cieplne Maszyny Przepływowe. Temat 4 Charakterystyki ogólne i przy zmiennych wymiarach maszyn wirujących. Część I Podstawy teorii 37 wymiarach maszyn wirjących. 38 wymiarach maszyn wirjących. 4. Wstę W niniejszym rozdziale zostanie objaśniony sosób: - rzedstawiania charakterystyk maszyn wirjących, - wyznaczania nkt racy srężarki

Bardziej szczegółowo

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie Pierwsza zasada termodynamiki 2.2.1. Doświadczenie Joule a i jego konsekwencje 2.2.2. ieło, ojemność cielna sens i obliczanie 2.2.3. Praca sens i obliczanie 2.2.4. Energia wewnętrzna oraz entalia 2.2.5.

Bardziej szczegółowo

Kalorymetria paliw gazowych

Kalorymetria paliw gazowych Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cielnych W9/K2 Miernictwo energetyczne laboratorium Kalorymetria aliw gazowych Instrukcja do ćwiczenia nr 7 Oracowała: dr inż. Elżbieta Wróblewska Wrocław,

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Badania wpływu struktury elektrowni gazowo-parowych na charakterystyki sprawności

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Badania wpływu struktury elektrowni gazowo-parowych na charakterystyki sprawności ISSN 1733-8670 ZESZT NAUOWE NR 10(82) AADEMII MORSIEJ W SZCZECINIE IV MIĘDZNARODOWA ONFERENCJA NAUOWO-TECHNICZNA EXPLO-SHIP 2006 Janusz otowicz, Tadeusz Chmielniak Badania wływu struktury elektrowni gazowo-arowych

Bardziej szczegółowo

MODELOWANIE POŻARÓW. Ćwiczenia laboratoryjne. Ćwiczenie nr 1. Obliczenia analityczne parametrów pożaru

MODELOWANIE POŻARÓW. Ćwiczenia laboratoryjne. Ćwiczenie nr 1. Obliczenia analityczne parametrów pożaru MODELOWANIE POŻARÓW Ćwiczenia laboratoryjne Ćwiczenie nr Obliczenia analityczne arametrów ożaru Oracowali: rof. nadzw. dr hab. Marek Konecki st. kt. dr inż. Norbert uśnio Warszawa Sis zadań Nr zadania

Bardziej szczegółowo

Silniki tłokowe. Dr inż. Robert JAKUBOWSKI

Silniki tłokowe. Dr inż. Robert JAKUBOWSKI Silniki tłokowe Dr inż. Robert JAKUBOWSKI Literatura rzedmiotu: Dzierżanowski P. i.in: Silniki Tłokowe z serii Naędy lotnicze, WKŁ. Warszawa 98 Borodzik F.: Budowa silnika z serii Aeroklub olski szkolenie

Bardziej szczegółowo

Płytowe wymienniki ciepła. 1. Wstęp

Płytowe wymienniki ciepła. 1. Wstęp Płytowe wymienniki cieła. Wstę Wymienniki łytowe zbudowane są z rostokątnych łyt o secjalnie wytłaczanej owierzchni, oddzielonych od siebie uszczelkami. Płyty są umieszczane w secjalnej ramie, gdzie są

Bardziej szczegółowo

POLEPSZANIE WŁASNOŚCI UKŁADU STIG POPRZEZ PRZEGRZEW I CHŁODZENIE MIĘDZYSTOPNIOWE

POLEPSZANIE WŁASNOŚCI UKŁADU STIG POPRZEZ PRZEGRZEW I CHŁODZENIE MIĘDZYSTOPNIOWE MODELOWAIE IśYIERSKIE ISS 1896-771X 34, s. 43-48, Gliwice 007 POLEPSZAIE WŁASOŚCI UKŁADU SIG POPRZEZ PRZEGRZEW I CHŁODZEIE MIĘDZYSOPIOWE KRZYSZOF J. JESIOEK, ADRZEJ CHRZCZOOWSKI Politechnika Wrocławska

Bardziej szczegółowo

Teoria silników lotniczych. Pok. 342A TEL Strona

Teoria silników lotniczych. Pok. 342A TEL Strona Teoria silników lotniczych Robert JAKUBOWSKI Pok. 342A TEL 0178651466 e-mail: roberski@prz.edu.pl Strona http://jakubowskirobert.sd.prz.edu.pl Literatura DzierŜanowski i in. Turbiniowe silniki odrzutowe

Bardziej szczegółowo

11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz.

11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz. ermodynamia Wybór i oracowanie zadań od do 5 - Bogusław Kusz W zamniętej butelce o objętości 5cm znajduje się owietrze o temeraturze t 7 C i ciśnieniu hpa Po ewnym czasie słońce ogrzało butelę do temeratury

Bardziej szczegółowo

Węzeł 2 Funkcyjny - Równoległy c.o. i c.w.u. Adres: Siedlce. Komenda Policji

Węzeł 2 Funkcyjny - Równoległy c.o. i c.w.u. Adres: Siedlce. Komenda Policji Węzeł 2 Funkcyjny - Równoległy i u. Adres: Siedlce Komenda Policji. Bilans zaotrzebowania na moc cielną Zaotrzebowanie na moc cielną do (wg danych PEC) Zaotrzebowanie na moc do średnie Zaotrzebowanie na

Bardziej szczegółowo

CHARAKTERYSTYKI ZŁOŻONYCH UKŁADÓW Z TURBINAMI GAZOWYMI

CHARAKTERYSTYKI ZŁOŻONYCH UKŁADÓW Z TURBINAMI GAZOWYMI CHARAERYSYI ZŁOŻOYCH UŁADÓW Z URBIAMI AZOWYMI Autor: rzysztof Badyda ( Rynek Energii nr 6/200) Słowa kluczowe: wytwarzanie energii elektrycznej, turbina gazowa, gaz ziemny Streszczenie. W artykule rzedstawiono

Bardziej szczegółowo

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III Włodzimierz Wolczyński 44 POWÓRKA 6 ERMODYNAMKA Zadanie 1 Przedstaw cykl rzemian na wykresie oniższym w układach wsółrzędnych rzedstawionych oniżej Uzuełnij tabelkę wisując nazwę rzemian i symbole: >0,

Bardziej szczegółowo

A - przepływ laminarny, B - przepływ burzliwy.

A - przepływ laminarny, B - przepływ burzliwy. PRZEPŁYW CZYNNIK ŚCIŚLIWEGO. Definicje odstaoe Rys... Profile rędkości rurze. - rzeły laminarny, B - rzeły burzliy. Liczba Reynoldsa Re D [m/s] średnia rędkość kanale D [m] średnica enętrzna kanału ν [m

Bardziej szczegółowo

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje

Bardziej szczegółowo

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe Proagacja zaburzeń o skończonej (dużej) amlitudzie. W takim rzyadku nie jest możliwa linearyzacja równań zachowania. Rozwiązanie ich w ostaci nieliniowej jest skomlikowane i rowadzi do nastęujących zależności

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

PŁYN Y RZECZYWISTE Przepływy rzeczywiste różnią się od przepływów idealnych obecnością tarcia (lepkości): przepływy laminarne/warstwowe - różnią się

PŁYN Y RZECZYWISTE Przepływy rzeczywiste różnią się od przepływów idealnych obecnością tarcia (lepkości): przepływy laminarne/warstwowe - różnią się PŁYNY RZECZYWISTE Płyny rzeczywiste Przeływ laminarny Prawo tarcia Newtona Przeływ turbulentny Oór dynamiczny Prawdoodobieństwo hydrodynamiczne Liczba Reynoldsa Politechnika Oolska Oole University of Technology

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe:

13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe: ) Ołowiana kula o masie kilograma sada swobodnie z wysokości metrów. Który wzór służy do obliczenia jej energii na wysokości metrów? ) E=m g h B) E=m / C) E=G M m/r D) Q=c w m Δ ) Oblicz energię kulki

Bardziej szczegółowo

Opis techniczny. Strona 1

Opis techniczny. Strona 1 Ois techniczny Strona 1 1. Założenia dla instalacji solarnej a) lokalizacja inwestycji: b) średnie dobowe zużycie ciełej wody na 1 osobę: 50 [l/d] c) ilość użytkowników: 4 osób d) temeratura z.w.u. z sieci

Bardziej szczegółowo

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 : I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej

Bardziej szczegółowo

Badania wentylatora. Politechnika Lubelska. Katedra Termodynamiki, Mechaniki Płynów. i Napędów Lotniczych. Instrukcja laboratoryjna

Badania wentylatora. Politechnika Lubelska. Katedra Termodynamiki, Mechaniki Płynów. i Napędów Lotniczych. Instrukcja laboratoryjna Politechnika Lubelska i Napędów Lotniczych Instrukcja laboratoryjna Badania wentylatora /. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z budową i metodami badań podstawowych typów wentylatorów. II. Wprowadzenie

Bardziej szczegółowo

WYMAGANIA TECHNICZNE DLA PŁYTOWYCH WYMIENNIKÓW CIEPŁA DLA CIEPŁOWNICTWA

WYMAGANIA TECHNICZNE DLA PŁYTOWYCH WYMIENNIKÓW CIEPŁA DLA CIEPŁOWNICTWA WYMAAA TECHCZE DLA PŁYTOWYCH WYMEKÓW CEPŁA DLA CEPŁOWCTWA iniejsza wersja obowiązuje od dnia 02.11.2011 Stołeczne Przedsiębiorstwo Energetyki Cielnej SA Ośrodek Badawczo Rozwojowy Ciełownictwa ul. Skorochód-Majewskiego

Bardziej szczegółowo

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ermodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Siik ciey siikach (maszynach) cieych cieło zamieniane jest na racę. Elementami siika są: źródło cieła

Bardziej szczegółowo

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Pomiar ciepła spalania paliw gazowych

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Pomiar ciepła spalania paliw gazowych Katedra Silników Salinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar cieła salania aliw gazowych Wstę teoretyczny. Salanie olega na gwałtownym chemicznym łączeniu się składników aliwa z tlenem, czemu

Bardziej szczegółowo

termodynamika fenomenologiczna

termodynamika fenomenologiczna termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskoowych uogólnienie licznych badań doświadczalnych ois makro i mikro rezygnacja z rzyczynowości znaczenie raktyczne układ termodynamiczny

Bardziej szczegółowo

II zasada termodynamiki.

II zasada termodynamiki. II zasada termodynamiki. Według I zasady termodynamiki nie jest do omyślenia roces, w którym energia wewnętrzna układu doznałaby zmiany innej, niż wynosi suma algebraiczna energii wymienionych z otoczeniem.

Bardziej szczegółowo

Wykład 7. Energia wewnętrzna jednoatomowego gazu doskonałego wynosi: 3 R . 2. Ciepło molowe przy stałym ciśnieniu obliczymy dzięki zależności: nrt

Wykład 7. Energia wewnętrzna jednoatomowego gazu doskonałego wynosi: 3 R . 2. Ciepło molowe przy stałym ciśnieniu obliczymy dzięki zależności: nrt W. Dominik Wydział Fizyki UW ermodynamika 08/09 /7 Wykład 7 Zasada ekwiartycji energii Stonie swobody ruchu cząsteczek ieło właściwe ciał stałych ównanie adiabaty w modelu kinetyczno-molekularnym g.d.

Bardziej szczegółowo

prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość

prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość 5. Gazy, termochemia Doświadczalne rawa gazowe Model gazu doskonałego emeratura bezwzględna Układ i otoczenie Energia wewnętrzna, raca objęto tościowa i entalia Prawo Hessa i cykl kołowy owy Standardowe

Bardziej szczegółowo

1. Parametry strumienia piaskowo-powietrznego w odlewniczych maszynach dmuchowych

1. Parametry strumienia piaskowo-powietrznego w odlewniczych maszynach dmuchowych MATERIAŁY UZUPEŁNIAJACE DO TEMATU: POMIAR I OKREŚLENIE WARTOŚCI ŚREDNICH I CHWILOWYCH GŁÓWNYCHORAZ POMOCNICZYCH PARAMETRÓW PROCESU DMUCHOWEGO Józef Dańko. Wstę Masa wyływająca z komory nabojowej strzelarki

Bardziej szczegółowo

Opory przepływu powietrza w instalacji wentylacyjnej

Opory przepływu powietrza w instalacji wentylacyjnej Wentylacja i klimatyzacja 2 -ćwiczenia- Opory przepływu powietrza w instalacji wentylacyjnej Przepływ powietrza w przewodach wentylacyjnych Powietrze dostarczane jest do pomieszczeń oraz z nich usuwane

Bardziej szczegółowo

Turbinowy silnik odrzutowy obieg rzeczywisty. opracował Dr inż. Robert Jakubowski

Turbinowy silnik odrzutowy obieg rzeczywisty. opracował Dr inż. Robert Jakubowski urbinowy ilni odrzutowy obieg rzezywity oraował Dr inż. Robert Jaubowi Obieg turbinowego ilnia jednorzeływowego -orównanie ilnia idealnego i ilnia rzezywitego (z uwzględnieniem trat) i 3 3 q do 4 S 4 4

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSYUU ECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI POLIECHNIKI ŚLĄSKIEJ INSRUKCJA LABORAORYJNA emat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA DLA KONWEKCJI WYMUSZONEJ W RURZE

Bardziej szczegółowo

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0, Dobór zestawu hydroforowego PN-9/B-176 Wyznaczenie obliczeniowego unktu racy urzdzenia: 1. Wydajnoci / strumienia rzeływu wody Q O Obl ( ) 45 3 3, 68 14; dm s, m h Q = q =, Σ q, ( ), 1 3 3 Q = q = 1, 7

Bardziej szczegółowo

Jak określić stopień wykorzystania mocy elektrowni wiatrowej?

Jak określić stopień wykorzystania mocy elektrowni wiatrowej? Jak określić stoień wykorzystania mocy elektrowni wiatrowej? Autorzy: rof. dr hab. inŝ. Stanisław Gumuła, Akademia Górniczo-Hutnicza w Krakowie, mgr Agnieszka Woźniak, Państwowa WyŜsza Szkoła Zawodowa

Bardziej szczegółowo

Entalpia swobodna (potencjał termodynamiczny)

Entalpia swobodna (potencjał termodynamiczny) Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

CZĘŚĆ III OBLICZENIA

CZĘŚĆ III OBLICZENIA 1. Dobór wymiennika co CZĘŚĆ III OBLICZENIA Cieło właściwe wody cw c 1,0 kcal/kg C Zaotrzebowanie cieła Qco 204 485 W Parametry wody sieciowej 130/60 C - Tz-T 70 C Parametry wody instalacyjnej 80/55 C

Bardziej szczegółowo

nieciągłość parametrów przepływu przyjmuje postać płaszczyzny prostopadłej do kierunku przepływu

nieciągłość parametrów przepływu przyjmuje postać płaszczyzny prostopadłej do kierunku przepływu CZĘŚĆ II DYNAMIKA GAZÓW 4 Rozdział 6 Prostoadła fala 6. Prostoadła fala Podstawowe własności: nieciągłość arametrów rzeływu rzyjmuje ostać łaszczyzny rostoadłej do kierunku rzeływu w zbieżno - rozbieżnym

Bardziej szczegółowo

Zasada działania maszyny przepływowej.

Zasada działania maszyny przepływowej. Zasada działania maszyny przepływowej. Przyrost ciśnienia statycznego. Rys. 1. Izotermiczny schemat wirnika maszyny przepływowej z kanałem miedzy łopatkowym. Na rys.1. pokazano schemat wirnika maszyny

Bardziej szczegółowo

Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury -

Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury - ermoynamika Pojęcia i zaganienia ostawowe: Buowa materii stany skuienia: gazy, ciecze, ciała stale Ois statystyczny wielka liczba cząstek - N A 6.0*0 at.(cz)/mol Ois termoynamiczny Pojęcie temeratury -

Bardziej szczegółowo

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych a) Wentylator lub pompa osiowa b) Wentylator lub pompa diagonalna c) Sprężarka lub pompa odśrodkowa d) Turbina wodna promieniowo-

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 2

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 2 INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki łynów ĆWICZENIE NR OKREŚLENIE WSPÓLCZYNNIKA STRAT MIEJSCOWYCH PRZEPŁYWU POWIETRZA W RUROCIĄGU ZAKRZYWIONYM 1.

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia II stopnia. Turbinowe silniki lotnicze Rodzaj przedmiotu: Język polski

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia II stopnia. Turbinowe silniki lotnicze Rodzaj przedmiotu: Język polski Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia II stopnia Przedmiot: Turbinowe silniki lotnicze Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MBM 2 S 2 2 21-0_1 Rok: 1 Semestr: 2 Forma

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU mieszkalny CAŁOŚĆ/CZĘŚĆ BUDYNKU Całość budynku ADRES BUDYNKU Olsztyn, ul. Grabowa 7 NAZWA ROJEKTU Standard tradycyjny LICZBA LOKALI

Bardziej szczegółowo

DOBÓR ZESTAWU HYDROFOROWEGO

DOBÓR ZESTAWU HYDROFOROWEGO DOBÓR ZESTAWU YDROFOROWEGO Pierwszym etaem doboru Z jest wyznaczenie obliczeniowego unktu racy urządzenia: 1. Wymaganego ciśnienia odnoszenia zestawu = + min min ss 2. Obliczeniowej wydajności Q o Q 0

Bardziej szczegółowo

[ ] 1. Zabezpieczenia instalacji ogrzewań wodnych systemu zamkniętego. 1. 2. Przeponowe naczynie wzbiorcze. ν dm [1.4] 1. 1. Zawory bezpieczeństwa

[ ] 1. Zabezpieczenia instalacji ogrzewań wodnych systemu zamkniętego. 1. 2. Przeponowe naczynie wzbiorcze. ν dm [1.4] 1. 1. Zawory bezpieczeństwa . Zabezieczenia instalacji ogrzewań wodnych systemu zamkniętego Zabezieczenia te wykonuje się zgodnie z PN - B - 0244 Zabezieczenie instalacji ogrzewań wodnych systemu zamkniętego z naczyniami wzbiorczymi

Bardziej szczegółowo

P O L I T E C H N I K A W A R S Z A W S K A

P O L I T E C H N I K A W A R S Z A W S K A P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ LABORATORIUM NAPĘDÓW I STEROWANIA HYDRAULICZNEGO I PNEUMATYCZNEGO Instrkcja do

Bardziej szczegółowo

Turbiny z napływem promieniowym stosowane są wówczas kiedy niezbędne jest małe (zwarte) źródło mocy

Turbiny z napływem promieniowym stosowane są wówczas kiedy niezbędne jest małe (zwarte) źródło mocy Nazwa turbin pochodzi od tego, że przepływ odchyla się od kierunku promieniowego do osiowego, stąd turbiny z napływem promieniowym 90 o (dziewięćdziesięciostopniowe) 0. Wstęp Turbiny z napływem promieniowym

Bardziej szczegółowo

Silniki tłokowe. Dr inŝ. Robert JAKUBOWSKI

Silniki tłokowe. Dr inŝ. Robert JAKUBOWSKI Silniki tłokowe Dr inŝ. Robert JAKUBOWSKI Podstawowe typy silnika tłokowego ze względu na zasadę działania Silnik czterosuwowy Silnik dwusuwowy Silnik z wirującym tłokiem silnik Wankla Zasada pracy silnika

Bardziej szczegółowo

Teoria silników lotniczych Wykład wprowadzający Studia podyplomowe

Teoria silników lotniczych Wykład wprowadzający Studia podyplomowe Teoria silników lotniczych Wykład wprowadzający Studia podyplomowe Robert JAKUBOWSKI Pok. 342A TEL 0178651466 e-mail: robert.jakubowski@prz.edu.pl Strona http://jakubowskirobert.sd.prz.edu.pl Literatura

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU CAŁOŚĆ/CZĘŚĆ BUDYNKU Mieszkalny Całość budynku ADRES BUDYNKU ----------------, ----------------NAZWA ROJEKTU Budynek mieszkalny 2 LICZBA

Bardziej szczegółowo

J. Szantyr Wykład nr 25 Przepływy w przewodach zamkniętych I

J. Szantyr Wykład nr 25 Przepływy w przewodach zamkniętych I J. Szantyr Wykład nr 5 Przeływy w rzewodach zamkniętych I Przewód zamknięty kanał o dowonym kształcie rzekroju orzecznego, ograniczonym inią zamkniętą, całkowicie wyełniony łynem (bez swobodnej owierzchni)

Bardziej szczegółowo

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA WYKŁAD 4 PROSTOPADŁA FALA UDERZENIOWA PROSTOPADŁA FALA UDERZENIOWA. ADIABATA HUGONIOTA. S 0 normal shock wave S Gazodynamika doszcza istnienie silnych nieciągłości w rzeływach gaz. Najrostszym rzyadkiem

Bardziej szczegółowo

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Termodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Układ termodynamiczny Układ termodynamiczny to ciało lub zbiór rozważanych ciał, w którym obok innych

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU Mieszkalny ADRES BUDYNKU Celestynów, dz. nr ewid. 1046/2 Celestynów NAZWA ROJEKTU Budynek Mieszkalny Wielorodzinny Socjalny OWIERZCHNIA

Bardziej szczegółowo

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos

Bardziej szczegółowo

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU Mieszkalny ADRES BUDYNKU Ustka dz. nr 86/7, ul. Kosynierów 8 NAZWA ROJEKTU Budynek mieszkalny jednorodzinny OWIERZCHNIA CAŁKOWITA OWIERZCHNIA

Bardziej szczegółowo

Wprowadzenie do przedmiotu Teoria silników lotniczych

Wprowadzenie do przedmiotu Teoria silników lotniczych Wprowadzenie do przedmiotu Teoria silników lotniczych Wykład nr 1 Rozwój i przegląd konstrukcji Literatura Dzierżanowski i in. Turbiniowe silniki odrzutowe Gajewski Lesikiewicz: Przepływowe silniki odrzutowe

Bardziej szczegółowo

silniku parowym turbinie parowej dwuetapowa

silniku parowym turbinie parowej dwuetapowa Turbiny parowe Zasada działania W silniku parowym tłokowym energia pary wodnej zamieniana jest bezpośrednio na energię mechaniczną w cylindrze silnika. W turbinie parowej przemiana energii pary wodnej

Bardziej szczegółowo

J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych

J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych J. Szantyr Wykład nr 6 Przeływy w rzewodach zamkniętych Przewód zamknięty kanał o dowolnym kształcie rzekroju orzecznego, ograniczonym linią zamkniętą, całkowicie wyełniony łynem (bez swobodnej owierzchni)

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU Budynek szkolno-administracyjny CAŁOŚĆ/CZĘŚĆ BUDYNKU Całość pomieszczeń przebudowywanych ADRES BUDYNKU Kędzierzyn-Koźle, Kędzierzyn-Koźle

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU obrano ze strony www.okieminzyniera.pl CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU CAŁOŚĆ/CZĘŚĆ BUDYNKU Mieszkalny Całość budynku ADRES BUDYNKU Kraków, NAZWA ROJEKTU rzykładowa

Bardziej szczegółowo

Dobór zestawu hydroforowego Instalacje wodociągowe i kanalizacyjne 2. Wrocław 2014

Dobór zestawu hydroforowego Instalacje wodociągowe i kanalizacyjne 2. Wrocław 2014 Instalacje wodociągowe i kanalizacyjne 2 Wrocław 2014 Wyznaczenie unktu racy Wyznaczenie obliczeniowego unktu racy urządzenia 1. Wymagane ciśnienie odnoszenia zestawu min min ss 2. Obliczeniowa wydajność

Bardziej szczegółowo

BADANiA SPRĘŻAREK SiLNiKÓW TURBiNOWYCH

BADANiA SPRĘŻAREK SiLNiKÓW TURBiNOWYCH PRACE instytutu LOTNiCTWA 213, s. 142-147, Warszawa 2011 BADANiA SPRĘŻAREK SiLNiKÓW TURBiNOWYCH KrzySztof KaWalec Instytut Lotnictwa Streszczenie Znajomość charakterystyk elementów przepływowych silnika

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia: KONWEKCJA SWOBODNA W POWIETRZU OD RURY Konwekcja swobodna od rury

Bardziej szczegółowo

MODELOWANiE TURBiNOWYCH SiLNiKÓW ODRZUTOWYCH W ŚRODOWiSKU GASTURB NA PRZYKŁADZiE SiLNiKA K-15

MODELOWANiE TURBiNOWYCH SiLNiKÓW ODRZUTOWYCH W ŚRODOWiSKU GASTURB NA PRZYKŁADZiE SiLNiKA K-15 PRACE instytutu LOTNiCTWA 213, s. 204-211, Warszawa 2011 MODELOWANiE TURBiNOWYCH SiLNiKÓW ODRZUTOWYCH W ŚRODOWiSKU GASTURB NA PRZYKŁADZiE SiLNiKA K-15 RySzaRd ChaChuRSkI, MaRCIN GapSkI Wojskowa Akademia

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU CAŁOŚĆ/CZĘŚĆ BUDYNKU Użyteczności publicznej Całość budynku ADRES BUDYNKU Sieprawice gm. Jastków, Dz. nr 624/2 NAZWA ROJEKTU Gminny

Bardziej szczegółowo

prędkości przy przepływie przez kanał

prędkości przy przepływie przez kanał Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę

Bardziej szczegółowo

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych.

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych. Termodynamika II ćwiczenia laboratoryjne Ćwiczenie nr 3 Temat: Wyznaczanie wsółczynnika Joule a-tomsona wybranyc gazów rzeczywistyc. Miejsce ćwiczeń: Laboratorium Tecnologii Gazowyc Politecniki Poznańskiej

Bardziej szczegółowo

KASKADOWE UKŁADY OBIEGÓW CIEPLNYCH W MIKROKOGENERACJI

KASKADOWE UKŁADY OBIEGÓW CIEPLNYCH W MIKROKOGENERACJI POZNAN UNIVE RSIY OF E CNOLOGY ACADE MIC JOURNALS No Electrical Engineering 0 Robert WRÓBLEWSKI* KASKADOWE UKŁADY OBIEGÓW CIEPLNYC W MIKROKOGENERACJI Obecnie w mikrogeneracji i małej generacji rozroszonej

Bardziej szczegółowo

M. Chorowski Podstawy Kriogeniki, wykład Metody uzyskiwania niskich temperatur - ciąg dalszy Dławienie izentalpowe

M. Chorowski Podstawy Kriogeniki, wykład Metody uzyskiwania niskich temperatur - ciąg dalszy Dławienie izentalpowe M. Corowski Podstawy Kriogeniki, wykład 4. 3. Metody uzyskiwania niskic temeratur - ciąg dalszy 3.. Dławienie izentalowe Jeżeli gaz rozręża się adiabatycznie w układzie otwartym, bez wykonania racy zewnętrznej

Bardziej szczegółowo

Spalanie detonacyjne - czy to się opłaca?

Spalanie detonacyjne - czy to się opłaca? Spalanie detonacyjne - czy to się opłaca? Mgr inż. Dariusz Ejmocki Spalanie Spalanie jest egzotermiczną reakcją chemiczną syntezy, zdolną do samoczynnego przemieszczania się w przestrzeni wypełnionej substratami.

Bardziej szczegółowo